JP2578815B2 - DC sputtering method - Google Patents

DC sputtering method

Info

Publication number
JP2578815B2
JP2578815B2 JP62170235A JP17023587A JP2578815B2 JP 2578815 B2 JP2578815 B2 JP 2578815B2 JP 62170235 A JP62170235 A JP 62170235A JP 17023587 A JP17023587 A JP 17023587A JP 2578815 B2 JP2578815 B2 JP 2578815B2
Authority
JP
Japan
Prior art keywords
target
sputtering
sputtering method
metal compound
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62170235A
Other languages
Japanese (ja)
Other versions
JPS6415370A (en
Inventor
洋介 藤田
純 桑田
雅博 西川
隆夫 任田
富造 松岡
惇 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62170235A priority Critical patent/JP2578815B2/en
Publication of JPS6415370A publication Critical patent/JPS6415370A/en
Application granted granted Critical
Publication of JP2578815B2 publication Critical patent/JP2578815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は電子部品等の化合物薄膜の製造工程に用い
られる直流スパッタリング法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct current sputtering method used in a manufacturing process of a compound thin film such as an electronic component.

従来の技術 酸化物等の金属化合物の誘電体薄膜を形成するには、
金属をターゲットとする場合と焼結体をターゲットとす
る場合がある。特に複合酸化物等の複雑な化合物薄膜
は、相当する組成の合金ターゲットが作りにくいため、
焼結体をターゲットにする必要がある。この時スパッタ
リングの方法はRFスパッタリングが一般的である。
2. Description of the Related Art To form a dielectric thin film of a metal compound such as an oxide,
There are a case where a metal is a target and a case where a sintered body is a target. In particular, complex compound thin films such as complex oxides are difficult to produce alloy targets of the corresponding composition,
It is necessary to target a sintered body. At this time, the sputtering method is generally RF sputtering.

発明が解決しようとする問題点 RFスパッタリングは直流スパッタリングに比べて同一
パワーでは成膜速度が遅い。また、RF電源、カソードの
マッチング回路、及びその自動制御装置等が必要であ
り、直流スパッタリング法に比べて、装置の構成が大き
くなり非常に高価である。
Problems to be Solved by the Invention RF sputtering has a lower film formation rate at the same power than DC sputtering. In addition, an RF power source, a matching circuit for a cathode, an automatic control device for the same, and the like are required, and the configuration of the device becomes large and very expensive as compared with the DC sputtering method.

本発明は上述した従来の欠点に鑑み、誘電体薄膜を高
速度で安価に形成する方法を提供するものである。
The present invention has been made in view of the above-mentioned conventional drawbacks, and provides a method for forming a dielectric thin film at high speed and at low cost.

問題点を解決するための手段 反応性ガスを含む雰囲気中で、誘導性を有する金属化
合物を導電性に改質した焼結体をターゲットとして間欠
的に直流電圧を印加する事により、前記ターゲットと前
記反応性ガスの反応により生じた金属化合物の誘電体を
形成する。
Means for solving the problem In an atmosphere containing a reactive gas, by intermittently applying a DC voltage to a sintered body obtained by modifying a metal compound having conductivity to be conductive, the target and the target are intermittently applied. A dielectric of the metal compound formed by the reaction of the reactive gas is formed.

作 用 導電性の金属化合物ターゲットに間欠的に直流電圧を
印加することで、ターゲット表面の電位の不安定さが除
かれてスパッタリングが安定して行われる。
Effect By applying a DC voltage intermittently to the conductive metal compound target, the instability of the potential on the target surface is removed and the sputtering is stably performed.

実施例 ターゲットとしては導電性のBaTiO3焼結体を用いた。
この焼結体は次のようにして作成する。BaCO3とTiO2
粉末を混合し、1200℃の空気雰囲気で2時間の熱処理を
することでBaCO3とTiO2が反応してBaTiO3の粉末が出来
る。その粉末にバインダを加えて加圧成形した後、約30
0℃の加熱により前記バインダを飛散させ、10%H2を含
むN2中、熱処理温度1350℃で3時間の処理により焼結と
還元を同時に行った。
Example A conductive BaTiO 3 sintered body was used as a target.
This sintered body is prepared as follows. Mixing the powders of BaCO 3 and TiO 2, 1200 ° C. for making the heat treatment of 2 hours in an air atmosphere BaCO 3 and TiO 2 is BaTiO 3 powder can be reacted. After adding a binder to the powder and pressing it, about 30
The heating of 0 ℃ to scatter the binder, in N 2 containing 10% H 2, was carried out with sintered reduced simultaneously by treatment for 3 hours at the heat treatment temperature 1350 ° C..

こうして得られた焼結体の密度は理論値の約92%、抵
抗率は5×103Ω・cmであり、還元されたため体色は鼠
色であった。
The density of the thus obtained sintered body was about 92% of the theoretical value, the resistivity was 5 × 10 3 Ω · cm, and the body color was rattan due to reduction.

上記により得た焼結体の外形を研磨等により成形し、
直径100mm,厚さ5mmの円板状にし、それを燐青銅製のバ
ッキングプレート上にインジウム半田で貼り着けてBaTi
O3のターゲットを作成した。
The outer shape of the sintered body obtained above is formed by polishing or the like,
A disk with a diameter of 100mm and a thickness of 5mm is attached on a backing plate made of phosphor bronze with indium solder and BaTi
It created the O 3 of the target.

第1図は直流スパッタリング装置の断面概要を示した
もので、上述のように形成したBaTiO3のターゲット1
を、図のようにスパッタリングチャンバ2の中に設置し
た。この直流スパッタリング装置のカソード3内に、タ
ーゲット1の表面と平行な磁界を与える永久磁石4が設
置されており、直流マグネトロンスパッタリングを行う
装置である。基板5はITO膜を設けたアルミノシリケイ
ドガラスを使用し、450℃に加熱した。
FIG. 1 shows an outline of a cross section of a DC sputtering apparatus, and a target 1 of BaTiO 3 formed as described above.
Was installed in the sputtering chamber 2 as shown in the figure. A permanent magnet 4 for applying a magnetic field parallel to the surface of the target 1 is installed in a cathode 3 of the DC sputtering apparatus, and is an apparatus for performing DC magnetron sputtering. The substrate 5 was made of aluminosilicate glass provided with an ITO film, and was heated to 450 ° C.

O2ガスとArガスをスパッタリングチャンバ2内に導入
して圧力を1.5Paに設定した。O2ガスとArガスの流量比
は30:70とした。スパッタリングチャンバ2にアース電
位を与えた。直流電源6には供給する電力をオンオフす
る回路が設けられていて、第2図に示すような波形の電
圧をターゲット1に印加した。この電圧は−260Vを間欠
的に印加するもので、0.9ms印加し0.1ms休止するサイク
ルを繰り返した。放電電流は1150mA、電力は300Wであ
り、放電は安定に持続した。そのまま30分間スパッタリ
ングを続けたところ、無色透明な薄膜が基板5上に形成
された。膜厚は570nmであった。この膜の1kHzでの誘電
特性を測定したところ、比誘電率は140で、誘電損失は
0.6%であった。又、絶縁破壊電界強度は1.8MV/cmであ
り、優れた誘電体膜であった。
O 2 gas and Ar gas were introduced into the sputtering chamber 2 and the pressure was set to 1.5 Pa. The flow ratio of O 2 gas to Ar gas was 30:70. An earth potential was applied to the sputtering chamber 2. The DC power supply 6 was provided with a circuit for turning on and off the supplied power, and a voltage having a waveform as shown in FIG. 2 was applied to the target 1. This voltage was applied intermittently at -260 V, and a cycle of applying 0.9 ms and resting for 0.1 ms was repeated. The discharge current was 1150 mA, the power was 300 W, and the discharge continued stably. When the sputtering was continued for 30 minutes, a colorless and transparent thin film was formed on the substrate 5. The film thickness was 570 nm. When the dielectric properties of this film at 1 kHz were measured, the relative dielectric constant was 140 and the dielectric loss was
0.6%. Further, the dielectric breakdown electric field strength was 1.8 MV / cm, and it was an excellent dielectric film.

同じターゲットを用い、ガス流量、ガス圧力、スパッ
タリング電力を同じにしてRFマグネトロンスパッタリン
グを行ったところ、30分間のスパッタリングで360nmの
膜厚となった。直流スパッタリングの63%の成膜速度で
ある。この時の印加電圧は2.4kV、電流は195mAであっ
た。
When RF magnetron sputtering was performed using the same target with the same gas flow rate, gas pressure, and sputtering power, the film thickness was 360 nm after 30 minutes of sputtering. It is a film formation rate of 63% of DC sputtering. At this time, the applied voltage was 2.4 kV and the current was 195 mA.

従来の方法のように、休止期間を設けずにターゲット
に−260Vを印加し続けたところ、ターゲット上で異常放
電が発生した。この異常放電はプラズマ中で瞬間的に明
るく光るもので、アーク放電が起こっていると考えられ
る。ターゲット表面は放電のエネルギーで直径1mm程度
の領域が破壊した。割れたり溶けたセラミックスが基板
5の上に付着するという問題も起こった。これはターゲ
ット表面の一部に電位的な不均一が生じたために起きた
絶縁破壊と考えられる。
As in the conventional method, when -260 V was continuously applied to the target without a pause, abnormal discharge occurred on the target. This abnormal discharge instantly glows brightly in the plasma, and it is considered that arc discharge has occurred. An area of about 1 mm in diameter was destroyed on the target surface by the energy of discharge. There was also a problem that cracked or melted ceramics adhered to the substrate 5. This is considered to be dielectric breakdown caused by potential nonuniformity on a part of the target surface.

BaTiO3以外の金属酸化物でも、本発明が適用出来るの
は言うまでもない。又、窒化物等の金属化合物において
も本発明は同様に有用である。
It goes without saying that the present invention can be applied to metal oxides other than BaTiO 3 . The present invention is also useful for metal compounds such as nitrides.

発明の効果 この発明の製造方法によれば、特性の優れた金属化合
物薄膜層をDCスパッタリング法により高速度で、簡単に
形成することができる。
According to the manufacturing method of the present invention, a metal compound thin film layer having excellent characteristics can be easily formed at a high speed by a DC sputtering method.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の直流スパッタリング法を模式的に示す
断面図、第2図はターゲットへの印加電圧を示す波形図
である。 1……焼結体ターゲット、2……スパッタリングチャン
バ、5……基板、6……直流電源。
FIG. 1 is a cross-sectional view schematically showing a DC sputtering method of the present invention, and FIG. 2 is a waveform chart showing a voltage applied to a target. 1 ... Sintered body target, 2 ... Sputtering chamber, 5 ... Substrate, 6 ... DC power supply.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 任田 隆夫 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 松岡 富造 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 阿部 惇 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭59−136480(JP,A) 特開 昭61−261473(JP,A) ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Takao Nita 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. In-company (72) Inventor Atsushi Abe 1006 Kadoma, Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-59-136480 (JP, A) JP-A-61-261473 (JP, A )

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】反応性ガスを含む雰囲気中で、誘電性を有
する金属化合物を導電性に改質した焼結体をターゲット
として、間欠的に直流電圧を印加する事により、前記タ
ーゲットと前記反応性ガスの反応により生じた金属化合
物の誘電体を形成することを特徴とする直流スパッタリ
ング法。
An intermittent application of a DC voltage to a target of a sintered body obtained by modifying a metal compound having a dielectric property to be conductive in an atmosphere containing a reactive gas, whereby the target reacts with the target. A direct current sputtering method characterized by forming a dielectric of a metal compound generated by a reaction of a reactive gas.
【請求項2】反応性ガスが酸素ガスであり、金属化合物
が金属酸化物であることを特徴とする特許請求の範囲第
1項に記載の直流スパッタリング法。
2. The direct-current sputtering method according to claim 1, wherein the reactive gas is oxygen gas, and the metal compound is a metal oxide.
JP62170235A 1987-07-08 1987-07-08 DC sputtering method Expired - Fee Related JP2578815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62170235A JP2578815B2 (en) 1987-07-08 1987-07-08 DC sputtering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62170235A JP2578815B2 (en) 1987-07-08 1987-07-08 DC sputtering method

Publications (2)

Publication Number Publication Date
JPS6415370A JPS6415370A (en) 1989-01-19
JP2578815B2 true JP2578815B2 (en) 1997-02-05

Family

ID=15901171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62170235A Expired - Fee Related JP2578815B2 (en) 1987-07-08 1987-07-08 DC sputtering method

Country Status (1)

Country Link
JP (1) JP2578815B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7488526B2 (en) 2005-11-22 2009-02-10 Ricoh Company, Ltd. Sputtering target and manufacturing method therefor, and optical recording medium and manufacturing method therefor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2836072B2 (en) * 1988-05-30 1998-12-14 株式会社島津製作所 Sputtering equipment
EP0636702B1 (en) 1993-07-28 1999-05-19 Asahi Glass Company Ltd. Methods for producing functional films
JP2004107774A (en) * 2002-09-20 2004-04-08 Seiko Epson Corp Sputtering film deposition method, sputtering film deposition system, and method for producing optoelectronic apparatus
DE102006046312B4 (en) * 2006-09-29 2010-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solar cells with stable, transparent and conductive layer system
RU2620534C2 (en) * 2015-09-08 2017-05-26 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" (ФГАОУВПО КФУ) Method of coating and device for its implementation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3300525A1 (en) * 1983-01-10 1984-07-12 Merck Patent Gmbh, 6100 Darmstadt TARGETS FOR CATHOD SPRAYING
JPS61261473A (en) * 1985-05-15 1986-11-19 Tokuda Seisakusho Ltd Sputtering device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7488526B2 (en) 2005-11-22 2009-02-10 Ricoh Company, Ltd. Sputtering target and manufacturing method therefor, and optical recording medium and manufacturing method therefor

Also Published As

Publication number Publication date
JPS6415370A (en) 1989-01-19

Similar Documents

Publication Publication Date Title
CN103360122B (en) Method for improving metalized surface performance of ceramic workpiece
US4309266A (en) Magnetron sputtering apparatus
WO2002011187A3 (en) Method and apparatus for depositing a tantalum-containing layer on a substrate
JP2578815B2 (en) DC sputtering method
US3749658A (en) Method of fabricating transparent conductors
US3481854A (en) Preparation of thin cermet films by radio frequency sputtering
JPS6059695A (en) Electroluminescent device
US3808109A (en) Method of producing pure alpha tantalum films by cathode sputtering
US4596719A (en) Multilayer coating method and apparatus
JPS5850419B2 (en) Method for manufacturing piezoelectric thin film
TWI384523B (en) Fluorine-containing indium-tin oxide sintered body and manufacturing method thereof
JPS628408A (en) Improved sputtering
US4537794A (en) Method of coating ceramics
JP3127836B2 (en) Sputtering method
JPS6258510A (en) Manufacture of dielectric thin film
JPS6011372B2 (en) Method for manufacturing magnetic recording media
US3485739A (en) Method for coating a surface of a substrate with an insulating material by sputtering
JPS6046370A (en) Opposed target type sputtering apparatus
JPS60221569A (en) Target for electrical vapor deposition
US3575833A (en) Hafnium nitride film resistor
JP2003081673A (en) Method for producing indium-tin oxide sintered compact
JPS61256506A (en) Low resistance transparent conductive film and generation thereof
JPS6329396B2 (en)
JPS62147602A (en) Manufacture of dielectric film
JPH09176853A (en) Magnetron sputtering apparatus for forming transparent conductive film and production of transparent conductive film by using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees