JP2575607B2 - Focus detection device - Google Patents

Focus detection device

Info

Publication number
JP2575607B2
JP2575607B2 JP59039788A JP3978884A JP2575607B2 JP 2575607 B2 JP2575607 B2 JP 2575607B2 JP 59039788 A JP59039788 A JP 59039788A JP 3978884 A JP3978884 A JP 3978884A JP 2575607 B2 JP2575607 B2 JP 2575607B2
Authority
JP
Japan
Prior art keywords
focus
optical system
focus detection
focal length
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59039788A
Other languages
Japanese (ja)
Other versions
JPS60183877A (en
Inventor
直也 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59039788A priority Critical patent/JP2575607B2/en
Publication of JPS60183877A publication Critical patent/JPS60183877A/en
Application granted granted Critical
Publication of JP2575607B2 publication Critical patent/JP2575607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/673Focus control based on electronic image sensor signals based on contrast or high frequency components of image signals, e.g. hill climbing method

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【発明の詳細な説明】 (技術分野) この出願の発明は、撮像手段の出力信号によつて焦点
検出を行う装置に関し、とくにビデオカメラ等の高感度
化に伴い、高精度の焦点検出を行うことができる焦点検
出装置に関する。
Description: TECHNICAL FIELD The invention of the present application relates to an apparatus for performing focus detection based on an output signal of an imaging unit, and particularly, performs high-precision focus detection in accordance with an increase in sensitivity of a video camera or the like. The present invention relates to a focus detection device which can be used.

(従来技術) 主としてビデオカメラに用いられる、映像信号中の輝
度信号から焦点検出を行ういわゆるTTL−受動方式の自
動焦点調節装置として、「NHK技術研究」第17巻第1号
(通巻第86号)(昭和40年発行)中の「山登りサーボ方
式によるテレビカメラの自動焦点調整」の論文をはじめ
として各種の方式が提案されている。これらの方式の多
くは、被写体の像が鮮鋭になるほど輝度信号中の高周波
成分が高くなる現象を利用し、なんらかの信号処理手段
によつてこの高周波成分を取り出し、これがピークにな
る位置を合焦とする原理によるものである。
(Prior art) As a so-called TTL-passive type automatic focusing device mainly used for a video camera and performing focus detection from a luminance signal in a video signal, it is known as "NHK Technology Research" Vol. 17 No. 1 (Vol. 86 ) (Issued in 1965), various papers have been proposed, including a paper on "Automatic Focus Adjustment of TV Cameras Using the Climbing Servo System". Many of these methods utilize the phenomenon that the higher the sharpness of the image of a subject, the higher the high-frequency component in the luminance signal.The high-frequency component is extracted by some kind of signal processing means, and the position at which this peak occurs is focused. It is based on the principle of doing.

ところで、後に詳細に説明するように、従来のビデオ
カメラでは、短焦点側で被写界深度が深くなるため、短
焦点側で遠近競合が起きる確率が高くても、後記第10図
及び第11図の24で示す程度の一定の測距視野を設定して
いたが、カメラの高感度化に伴い、短焦点側でも正確な
ピントを得ることが必要になつて来ている。
By the way, as will be described in detail later, in the conventional video camera, since the depth of field becomes deep on the short focus side, even if there is a high probability of a near-far conflict on the short focus side, FIG. 10 and FIG. Although a fixed distance measurement field of view was set as indicated by 24 in the figure, it has become necessary to obtain an accurate focus even on the short focal length side with an increase in the sensitivity of the camera.

(目的) この出願の発明は、前述の問題点に対処するため、撮
像手段の出力信号によつて焦点検出を行う焦点検出装置
において、一定の測距視野のもとでは起こり勝ちであつ
た遠近競合被写体による誤測距を減少し、高精度の焦点
検出を行うことができる手段を提供することを目的とす
る。
(Object) In order to address the above-described problems, the invention of this application is directed to a focus detection apparatus that performs focus detection based on an output signal of an imaging unit, and a perspective view that tends to occur under a fixed distance measurement field of view. It is an object of the present invention to provide means capable of reducing erroneous distance measurement due to a competing subject and performing highly accurate focus detection.

また撮影者の作画意図や被写体条件等に応じて測距視
野の大きさを設定することができる手段を提供すること
を目的とする。
It is another object of the present invention to provide a unit capable of setting the size of a distance measurement field of view according to a photographer's drawing intention and subject conditions.

また焦点検出動作の開始時、まず測距領域の変更を行
つてから、レンズの駆動方向判定を行うようにし、最適
の測距領域から得た正確な焦点信号に基づく方向判定動
作を行うことができる焦点検出装置を提供することを目
的とする。
Also, at the start of the focus detection operation, first, the distance measurement area is changed, and then the drive direction of the lens is determined, and the direction determination operation based on the accurate focus signal obtained from the optimal distance measurement area can be performed. It is an object of the present invention to provide a focus detection device which can be used.

(実施例による説明) 以下図示の実施例を参照して上記の目的を達成するた
めこの出願の発明において講じた手段について例示説明
する。下記の説明は、この出願の発明を二次元イメージ
センサの出力信号中の輝度信号の高周波成分から焦点検
出を行う方式の焦点検出装置に適用した例について、従
来の焦点検出装置、この出願の発明の焦点検出装置の一
実施例並びに同実施例におけるズーム環情報検出及び伝
達装置の順序で行う。
(Explanation by Examples) Hereinafter, means taken in the invention of the present application to achieve the above object will be described with reference to the illustrated examples. The following description is directed to an example in which the invention of this application is applied to a focus detection device of a type that performs focus detection from a high-frequency component of a luminance signal in an output signal of a two-dimensional image sensor. Of the focus detection device of the first embodiment and the zoom ring information detection and transmission device in the first embodiment.

(従来の焦点検出装置)(第1図〜第11図) 第1図〜第4図は、前述の輝度信号中の高周波成分が
ピークになる位置を合焦とする原理を模式的に説明する
ものである。第1図は、白黒の縞をもつ被写体をビデオ
カメラで撮像する場合の結像面における像の状態を示し
ており、図中縦方向の線を引いた部分が黒の部分に対応
している。結像面で合焦時には同図(A)のようになる
のに対し、非合焦時には同図(B)のように被写体の白
黒の境界がぼけた状態になる。第2図は、上記のそれぞ
れの状態におけるイメージセンサの出力中の輝度信号
(Y信号)を示し、当然合焦状態(A)が(B)に比べ
て位置による出力差が大きい。すなわち、合焦に近づく
ほどコントラストが高い。このY信号の処理手段につい
てはいくつかの提案がされており、例えばこの信号を微
分して絶対値化すると第3図(A),(B)に示すよう
に合焦位置で微分信号のピークが最大になることを利用
する手段が提案されているが、さらにS/Nをよくするた
めにはこの微分信号を2乗してから積分するという手段
を採つてもよい。
(Conventional focus detection device) (FIGS. 1 to 11) FIGS. 1 to 4 schematically explain the principle of focusing on a position where a high-frequency component in a luminance signal reaches a peak. Things. FIG. 1 shows a state of an image on an image forming plane when a subject having black and white stripes is picked up by a video camera, and a portion where a vertical line is drawn in the drawing corresponds to a black portion. . When the image is focused on the image forming surface, the image becomes as shown in FIG. 7A, but when the image is out of focus, the black and white boundary of the subject becomes blurred as shown in FIG. FIG. 2 shows a luminance signal (Y signal) during the output of the image sensor in each of the above states, and the output difference depending on the position in the in-focus state (A) is naturally larger than that in (B). That is, the contrast increases as the focus approaches. Several proposals have been made for this Y signal processing means. For example, when this signal is differentiated and converted into an absolute value, the peak of the differentiated signal is obtained at the in-focus position as shown in FIGS. 3 (A) and 3 (B). Has been proposed which utilizes the fact that the maximum value of the differential signal is maximized. However, in order to further improve the S / N ratio, a method may be employed in which the differential signal is squared and then integrated.

第4図は、縦軸に上記のようにして検出された高周波
成分の出力を、横軸に撮影レンズのうち焦点調節に関与
するレンズ群の停止位置を示すもので、図から明らかな
ように合焦位置Aでは高周波成分がピークを示し、非合
焦位置Bではピークをはずれる。
FIG. 4 shows the output of the high-frequency component detected as described above on the vertical axis, and the stop position of the lens group involved in focus adjustment among the photographing lenses on the horizontal axis. At the in-focus position A, the high-frequency component shows a peak, and at the out-of-focus position B, the peak deviates.

第5図は、第1図〜第4図に示す焦点検出動作を実行
するためのシーケンスの一例を示す。測距開始と同時に
後述の手段により測距視野に相当する部分のY信号がと
り出され、でその高周波成分が抽出される。次にで
前記のレンズを微小量、この例ではくりこむ方向へ駆動
する(一般にくりこむことにより遠方の被写体に合焦す
るようになる)。なお第5図では「→F」の符号でレン
ズをくりこみ方向へ駆動することを示し、「→N」の符
号でくり出し方向へ駆動することを示している。この状
態でで再び高周波成分がとり出される。測距開始時点
でこのように2つのレンズ位置における高周波成分をと
り出すのは、方向(前ピンか後ピンか)を検知するため
であり、でこれら2つの信号が比較される。
FIG. 5 shows an example of a sequence for executing the focus detection operation shown in FIGS. Simultaneously with the start of the distance measurement, a Y signal of a portion corresponding to the distance measurement field of view is extracted by means to be described later, and the high frequency component thereof is extracted. Next, the lens is driven in a minute amount, that is, in the reentrant direction in this example (in general, focusing on a distant subject is performed by reentrantness). In FIG. 5, the symbol “→ F” indicates that the lens is driven in the reentrant direction, and the symbol “→ N” indicates that the lens is driven in the reentrant direction. In this state, high-frequency components are extracted again. The reason why the high-frequency components at the two lens positions are taken out at the start of the distance measurement is to detect the direction (front focus or rear focus), and these two signals are compared.

第6図は、前記の及びでそれぞれ抽出された高周
波成分A及びBの大小と焦点検出系の状態との関係を示
すものであり、同図(A)ではA<Bであつて前ピンの
状態であるからレンズをさらにくりこむことを要し
()、同図(B)ではA≒Bであるから合ピンとみな
すことができ()、同図(C)ではA>Bであつて後
ピンの状態であるからレンズをさらにくり出すことを要
する()。このようにして方向検知した結果、レンズ
を駆動した新たな位置でにおいて再び高周波成分をと
り出し、駆動前の値と比較する()。その際、今回の
値は次のサイクルでも比較に用いるのででサンプルホ
ールドし(S/H)、次回の高周波成分抽出時にとり出さ
れて比較に用いられる。このようにして、A≒Bとなつ
た段階で合焦と判断してレンズの駆動を停止する。
FIG. 6 shows the relationship between the magnitudes of the high-frequency components A and B extracted in and above and the state of the focus detection system. In FIG. In this state, the lens needs to be further re-introduced (). In FIG. (B), since A ≒ B, it can be regarded as an in-focus pin (), and in FIG. Since it is in a pin state, it is necessary to further draw out the lens (). As a result of the direction detection as described above, the high-frequency component is taken out again at the new position where the lens is driven, and compared with the value before the driving (). At this time, since the current value is used for comparison in the next cycle, it is sampled and held (S / H), taken out at the next high frequency component extraction, and used for comparison. In this way, it is determined that focusing has been achieved when A 段 階 B, and driving of the lens is stopped.

第7図は、上記のY信号を取り出す手段を実際のカメ
ラに組みこんだ例を示すものであり、図において10は撮
影レンズのうちで焦点調節に関与するレンズ群、11はズ
ーム系を構成するレンズ群で通常バリエータレンズとコ
ンペンセータレンズよりなり、12は結像系のレンズ群で
ある。13は例えばCCDよりなるイメージセンスタイプの
固体撮像素子、14はクロツク信号発生器、15は分周器、
16はCCD駆動回路、17は水平及び垂直同期信号発生器、1
8はアナログゲート、19は自動焦点調節回路であつて具
体的には前述のように高周波成分によつて方向検知を行
うものとする。20はマイクロプロセツサであつて、その
指令に基づきモータ駆動回路21が動作し、モータ22を駆
動する。
FIG. 7 shows an example in which the means for extracting the Y signal is incorporated in an actual camera. In FIG. 7, reference numeral 10 denotes a lens group involved in focus adjustment among photographing lenses, and reference numeral 11 denotes a zoom system. The lens group normally includes a variator lens and a compensator lens, and 12 is a lens group of an imaging system. 13 is an image sensing type solid-state imaging device composed of, for example, a CCD, 14 is a clock signal generator, 15 is a frequency divider,
16 is a CCD drive circuit, 17 is a horizontal and vertical synchronization signal generator, 1
Reference numeral 8 denotes an analog gate, and reference numeral 19 denotes an automatic focus adjustment circuit. Specifically, as described above, it is assumed that direction detection is performed using a high-frequency component. Reference numeral 20 denotes a microprocessor, and a motor drive circuit 21 operates based on the instruction to drive a motor 22.

上記の構成において、クロツク信号発生器14が発生す
るクロツク信号は、分周器15で分周されてNTSC又はPAL
方式等における標準テレビジヨン信号に基づいて1フイ
ールド1/60秒で画面を作り出すようにCCD13の1水平期
間の読み出しタイミングを定める信号が形成される。こ
の信号に基づきCCD駆動回路16によつて、CCD13上に蓄積
された光情報が順次読み出される。読み出された信号は
加算回路17で同期信号が重畳され、さらに不図示の処理
回路で公知のように処理されて映像信号が形成される。
In the above configuration, the clock signal generated by the clock signal generator 14 is frequency-divided by the frequency divider 15 to be NTSC or PAL.
A signal that determines the read timing of one horizontal period of the CCD 13 is formed so as to produce a screen in one field of 1/60 second based on a standard television signal in a system or the like. The optical information stored on the CCD 13 is sequentially read out by the CCD drive circuit 16 based on this signal. The read signal is superimposed with a synchronizing signal by an adder circuit 17 and further processed by a processing circuit (not shown) as is well known to form a video signal.

一方分周器15からは、あらかじめ定められた測距視野
(例えば第8図の24で示す位置)に対応する位置でのみ
ゲートを開くべき信号が同時に出力され、アナログゲー
ト18を経て、この部分のY信号のみ自動焦点調節回路19
へ送られる。以後の動作は前述のとおりである。
On the other hand, the frequency divider 15 simultaneously outputs a signal to open the gate only at a position corresponding to a predetermined distance measurement field of view (for example, a position indicated by 24 in FIG. 8). Only Y signal of automatic focus adjustment circuit 19
Sent to Subsequent operations are as described above.

第9図は、第7図中のD〜Gの各位置での信号の一例
を示し、(D)はCCD13から読み出されたばかりの生の
信号を、(E)はこの信号に加算器17Aで同期信号が重
畳された信号を、(F)は自動焦点調節のための同期信
号を、また(G)は自動焦点調節のために取り出された
ところの測距視野24に相当する部分のY信号をそれぞれ
示している。
FIG. 9 shows an example of a signal at each position of D to G in FIG. 7. (D) shows a raw signal just read from the CCD 13, and (E) shows an adder 17A to this signal. (F) shows a synchronizing signal for automatic focusing, and (G) shows a signal corresponding to the distance measurement field 24 taken out for automatic focusing. Each signal is shown.

第10図及び第11図は、上記のように構成されたビデオ
カメラで被写体32を撮影した場合のフアインダ画面内の
像を示すもので、第10図は比較的長焦点よりの、第11図
は比較的短焦点よりの焦点距離で被写体32を撮影した場
合である。この図からも分かるように、一般的に、短焦
点距離で撮影している場合は画面内で被写体が占める割
合は、長焦点距離で撮影している場合よりも小さいこと
が多い。また長焦点距離で撮影しても、被写体が小さい
場合は被写体距離が遠方であることが多い。これらのこ
とを考え合わせると、第10図,第11図に示した程度の測
距視野24の位置を設定しておくと、長焦点側で撮影して
いるときは、遠近競合による誤測距が起こり難いが、短
焦点側ではこれが起こり易い。なお図中23は撮像視野を
示している。
FIG. 10 and FIG. 11 show images in the finder screen when the subject 32 is photographed by the video camera configured as described above. Is a case where the subject 32 is photographed with a focal length shorter than the short focus. As can be seen from this figure, in general, when shooting at a short focal length, the proportion of the subject in the screen is often smaller than when shooting at a long focal length. Further, even when photographing at a long focal length, if the subject is small, the subject distance is often far. Considering these facts, if the position of the distance measurement field of view 24 is set to the extent shown in FIGS. 10 and 11, when shooting on the long focal length side, erroneous distance measurement due to perspective conflict will occur. Is unlikely to occur, but tends to occur on the short focal length side. In the drawing, reference numeral 23 denotes an imaging field of view.

一方、遠近競合を防ぐ目的で、第10図,第11図に示す
測距視野24をさらに小さく構成することもできるが、こ
の場合には、主として長焦点側で被写体のコントラスト
のない部分を測距する確率が高くなるので好ましくな
い。それで、従来のビデオカメラでは、短焦点側で被写
体深度が深くなることから、短焦点側で遠近競合が起き
る確率が高くても、前述の24で示した程度の大きさの測
距視野位置を設定している。しかしながら、カメラの高
感度化等に伴い、できれば短焦点側でも正確なピントを
得ることが必要になつて来ている。
On the other hand, the distance measurement field of view 24 shown in FIGS. 10 and 11 can be made smaller in order to prevent perspective conflict, but in this case, the part without contrast of the subject is mainly measured on the long focal length side. It is not preferable because the probability of distance increases. Therefore, in the conventional video camera, since the depth of the subject becomes deep on the short focal length side, even if the probability of a near-far conflict occurring on the short focal length side is high, the distance measurement visual field position of the size indicated by 24 described above is required. You have set. However, with the increase in the sensitivity of cameras, it has become necessary to obtain accurate focus even on the short focal length side if possible.

(この出願の発明の焦点検出装置の一実施例) (第12図〜第14図) この出願の発明は、従来の焦点検出装置の前述の欠点
を除去し、一定の測距視野のもとでは起こり勝ちであつ
た遠近競合被写体による誤測距を減少し、高制度の焦点
検出を行うことを可能にするものであり、撮影者の作画
意図や被写体条件等に応じて測距視野の大きさを設定す
ることを可能にするものである。
(One Embodiment of the Focus Detection Apparatus of the Invention of this Application) (FIGS. 12 to 14) The invention of this application eliminates the above-mentioned disadvantages of the conventional focus detection apparatus and provides a fixed distance measurement field of view. This reduces erroneous ranging due to a subject that is likely to occur in the near-far conflict and enables high-precision focus detection.The size of the ranging field can be adjusted according to the photographer's drawing intention and subject conditions. It is possible to set the height.

第12図の25は、この出願の発明を実施した場合の短焦
点側での測距視野位置の一例を示すもので、第11図と同
等の焦点距離及び被写体距離のもとで測距視野がより小
さくなつたことを示している。
Fig. 25 in Fig. 12 shows an example of the distance measurement visual field position on the short focal length side when the invention of this application is carried out. Has become smaller.

第13図は、この出願の発明の焦点検出装置の一実施例
を示し、第7図の装置と基本的に同一の構成及び機能を
有する部分は、第7図と同一符号を付してその詳細な説
明を省略する。第13図中26はゲート制御回路の一例であ
るプログラマブル・ロジツク・アレイ(PLA)であつ
て、測距視野を選択する信号を制御する。27はズーム位
置検出手段であつて、例えば検出部とその情報により測
距位置を決定するためのマイクロプロセツサ部を含み、
刻々の焦点距離を検出し、それによつて定まる測距視野
の大きさに基づく情報をPLA26に出力する。PLA26は、こ
の測距視野情報に従つてゲート18に供給する制御信号を
変化させる。すなわち、例えば第9図のFに示す、輝度
信号取り出しのための同期信号のオン,オフのタイミン
グを変化させ、短焦点側ではオンの期間を短く、長焦点
側では長くなるように制御する。
FIG. 13 shows an embodiment of the focus detection device of the invention of the present application. Portions having basically the same configuration and function as the device of FIG. 7 are denoted by the same reference numerals as in FIG. Detailed description is omitted. In FIG. 13, reference numeral 26 denotes a programmable logic array (PLA) which is an example of a gate control circuit, and controls a signal for selecting a distance measurement field of view. Reference numeral 27 denotes a zoom position detecting means, which includes, for example, a detecting unit and a microprocessor unit for determining a distance measuring position based on the information,
The instantaneous focal length is detected, and information based on the size of the distance measurement field determined thereby is output to the PLA 26. The PLA 26 changes a control signal supplied to the gate 18 according to the distance measurement field information. That is, for example, the on / off timing of the synchronization signal for extracting the luminance signal shown in F of FIG. 9 is changed so that the on-period is shortened on the short focal length side and is increased on the long focal length side.

第14図は、この出願の発明を実施した場合の焦点検出
動作のシーケンスの一例を示すもので、第5図に示す従
来の装置のシーケンスと比べると、ズーム位置検出ステ
ツプ,とその情報による測距領域選択ステツプ,
とが追加されている。先ず測距開始時にでズーム位
置、すなわち焦点距離を検出し、でそれによつて定ま
る測距領域を選択する。以下第5図に関して説明した過
程で方向を検知し、焦点調節に関与するレンズ群(第13
図の10)を駆動した後、ズーム位置検出及び測距領域
選択のステツプを経て、前述のようにで再び高周波
成分を抽出する。
FIG. 14 shows an example of a sequence of a focus detection operation when the invention of the present application is carried out. Compared with the sequence of the conventional apparatus shown in FIG. 5, a zoom position detection step and measurement based on the information are shown. Distance area selection step,
And have been added. First, at the start of distance measurement, the zoom position, that is, the focal length, is detected, and then the distance measurement area determined thereby is selected. Hereinafter, the direction is detected in the process described with reference to FIG.
After driving (10) in the figure, the high-frequency components are extracted again as described above through the steps of zoom position detection and distance measurement area selection.

(この出願の発明の実施例におけるズーム環情報検出及
び伝達装置)(第15図,第16図) 前述のズーム位置検出のための手段としては、従来公
知のグレーコード又はポテンシヨメータ等により測距視
野をかなり細かく変化させるほかにリーフスイツチ等に
より2〜3段階に分割してもよい。
(Zoom ring information detection and transmission device in the embodiment of the invention of this application) (FIGS. 15 and 16) As means for detecting the zoom position described above, measurement is performed using a conventionally known gray code or potentiometer. In addition to changing the distance visual field very finely, the distance field may be divided into two or three stages by a leaf switch or the like.

第15図は、後者の一例として2分割の例を示す。ズー
ム操作環33の回転によりレンズ11の位置が変化し、撮影
レンズの焦点距離が変化する。具体的には、例えば固定
鏡筒に内周嵌合したカム環に2本のカムが切られ、バリ
エータレンズとコンペンセータレンズの位置がズーム操
作環33に連動して変化するよう構成される。ズーム操作
環33の外周には、カム部34,35,36が形成され、一方2枚
の接片37,38で構成されたリーフスイツチは、ワイド域
でオンになり、テレ域でオフになる。なお図示の位置は
中間状態であつてほぼ上記のオンとオフとの切り換えポ
イントである。
FIG. 15 shows an example of two divisions as an example of the latter. The rotation of the zoom operation ring 33 changes the position of the lens 11 and changes the focal length of the taking lens. Specifically, for example, two cams are cut into a cam ring fitted on the inner periphery of the fixed lens barrel, and the positions of the variator lens and the compensator lens are changed in conjunction with the zoom operation ring 33. On the outer periphery of the zoom operation ring 33, cam portions 34, 35, 36 are formed, while a leaf switch constituted by two contact pieces 37, 38 is turned on in a wide range and turned off in a tele range. . The position shown in the figure is an intermediate state and is a switching point between the above-mentioned ON and OFF.

さらに、第15図のズーム環情報演出装置では、スイツ
チ基板Pが設けられ、接片37,38の接触又は非接触によ
る情報はこのスイツチ基板Pを介して第13図のズーム位
置検出手段27中のマイクロプロセツサ部へ伝達される。
スイツチ基板Pにおいて、39,40は入力側ターミナル、4
1,42,43は環状の固定導体片、44,45は出力側ターミナ
ル、46は軸47を中心として回動可能な可動導体片であつ
てその各腕部は環状をなし、その各先端部46a,46bは接
触子を形成し、図示の位置では接触子46a,46bはそれぞ
れ固定導体片42,43と接触している。可動導体片46には
穴48,49が設けられ、第16図の操作つまみ51はねじ止め
等の手段でこれらの穴48,49に固定され、つまみ51を操
作すれば可動導体片46はこれと一体に回動する。つまみ
51には指針52が設けられ、またそれぞれ後述の「自
動」,「大」及び「小」を示す指標53,54及び55がつま
み51の周りに設けられる。なお第15図中39aはターミナ
ル39、導体片41及びターミナル44を接続する導体部、40
aはターミナル40と導体片42とを接続する導体部、45aは
ターミナル45と導体片43とを接続する導体部、50はズー
ム操作環3の操作ロツドである。
Further, in the zoom ring information presentation device of FIG. 15, a switch board P is provided, and information by contact or non-contact of the contact pieces 37 and 38 is transmitted through the switch board P to the zoom position detecting means 27 of FIG. Is transmitted to the microprocessor section.
In the switch board P, 39 and 40 are input terminals, 4
1, 42, 43 are annular fixed conductor pieces, 44, 45 are output terminals, 46 is a movable conductor piece rotatable about a shaft 47, each arm of which is annular, and each tip end thereof. The contacts 46a and 46b form contacts, and the contacts 46a and 46b are in contact with the fixed conductor pieces 42 and 43 at the positions shown in the figure. The movable conductor piece 46 is provided with holes 48 and 49, and the operation knob 51 in FIG. 16 is fixed to these holes 48 and 49 by means such as screwing, and if the knob 51 is operated, the movable conductor piece 46 And rotate together. Knob
The pointer 51 is provided with a pointer 52, and indicators 53, 54 and 55 indicating “automatic”, “large” and “small” described later are provided around the knob 51, respectively. In FIG. 15, reference numeral 39a denotes a conductor for connecting the terminal 39, the conductor piece 41 and the terminal 44, and 40
a is a conductor for connecting the terminal 40 to the conductor piece 43; 45a is a conductor for connecting the terminal 45 to the conductor piece 43; and 50 is an operation rod of the zoom operation ring 3.

上記の構成において、可動導体片46及びつまみ51の図
示の位置は、「自動」の位置であつて、ターミナル44,4
5からの出力はリーフスイツチを構成する接片37,38のオ
ン,オフに対応する。すなわち、ズームレンズ系11の焦
点距離に応じた信号を出力する。次につまみ51を図示の
位置から約30度時計方向へ回動させて指針52が「大」の
指標54の位置に達すると、接触子46aと導体片42及び接
触子46bと導体片43の接触が断たれるので、接片37,38の
オン,オフにかかわらずターミナル44,45からの出力は
オフになる。つまみ51をさらに約30度時計方向へ回動さ
せて指針52が「小」の指標55の位置に達すると、接触子
46aと導体片43及び接触子46bと導体片41とがそれぞれ接
触し、ターミナル44,45はこれらの固定及び可動導体片
により短絡され、これらのターミナルからの出力は接片
37,38のオン,オフにかかわらずオンになる。
In the above configuration, the illustrated positions of the movable conductor piece 46 and the knob 51 are "automatic" positions, and the terminals 44, 4
The output from 5 corresponds to ON and OFF of the contact pieces 37 and 38 constituting the leaf switch. That is, a signal corresponding to the focal length of the zoom lens system 11 is output. Next, when the knob 51 is rotated clockwise from the illustrated position by about 30 degrees and the pointer 52 reaches the position of the `` large '' indicator 54, the contact 46a and the conductor piece 42 and the contact 46b and the conductor piece 43 Since the contact is broken, the output from the terminals 44 and 45 is turned off regardless of whether the contact pieces 37 and 38 are on or off. When the knob 52 is further rotated clockwise about 30 degrees and the pointer 52 reaches the position of the "small" index 55, the contact
46a and the conductor piece 43, and the contact 46b and the conductor piece 41 are in contact with each other, the terminals 44 and 45 are short-circuited by these fixed and movable conductor pieces, and the output from these terminals is a contact piece.
It turns on regardless of whether 37 or 38 is on or off.

よつて前述のように、一般的には、比較的テレで測距
視野が大,比較的ワイドで測距視野が小となるように構
成されているが(自動モード)、これに加えて、テレで
も遠近競合が激しい場合は「小」に、またワイドでもコ
ントラストがなく焦点検出が不可能な場合は「大」にな
るように測距視野を切り換えることができるようにした
ので、合焦確率を上げることができる。
Therefore, as described above, in general, the distance measurement field of view is relatively large and the distance measurement field of view is relatively wide and the distance measurement field is small (automatic mode). The focus detection range can be switched to "small" when teleconferencing is intense even in telephoto, and to "large" when there is no contrast and focus detection is impossible even in wide. Can be raised.

前述の実施例は、撮像手段として二次元のイメージセ
ンサを用いるものであつたが、この出願の発明を実施す
るに当たつては、一次元のイメージセンサを用いること
もできる。あるいはインターラインCCDのひとつ又は一
部の列の出力信号によつて焦点検出を行うようにしても
よい。さらに、この出願の発明は、撮像素子中の測距視
野に対応する位置を2つの部分に分け、これらの部分の
出力を比較して焦点検出を行う装置のように高周波成分
を利用しない装置にも適用することができる。また第13
図のプログラマブル・ロジツク・アレイに代えて他のゲ
ート制御回路を用いることもできる。
In the above-described embodiment, a two-dimensional image sensor is used as the imaging means. However, in practicing the invention of this application, a one-dimensional image sensor can be used. Alternatively, the focus detection may be performed by using output signals of one or a part of columns of the interline CCD. Further, the invention of this application divides the position corresponding to the distance measurement field of view in the image sensor into two parts, and compares the outputs of these parts to perform focus detection. Can also be applied. Also the thirteenth
Other gate control circuits can be used in place of the programmable logic array shown.

(効果) 前述のように、この出願の発明によれば、撮像手段の
出力信号によつて焦点検出を行う装置において、撮像光
学系の焦点距離を検知し、この焦点距離に応じて撮像手
段の出力信号のとり出し範囲を可変にするようにしたの
で、一定の測距視野のもとでは起こり勝ちであつた遠近
競合被写体による誤測距を減少し、高精度の焦点検出を
行うことができる。
(Effects) As described above, according to the invention of this application, in a device that performs focus detection based on an output signal of an imaging unit, the focal length of an imaging optical system is detected, and the focal length of the imaging unit is determined in accordance with the focal length. Since the output signal extraction range is made variable, erroneous ranging due to a subject of distance conflict that is likely to occur under a fixed ranging field of view can be reduced, and highly accurate focus detection can be performed. .

また焦点距離と無関係に撮像手段の出力信号のとり出
し範囲を特定の範囲に設定する手段をも併せ設けたの
で、一般的には焦点距離に応じて測距視野を変更するこ
とができるとともに撮影者の作画意図や被写体条件等に
応じて測距視野の大きさを設定することもできる。
Also provided is a means for setting the output signal extraction range of the imaging means to a specific range regardless of the focal length, so that in general, it is possible to change the distance measurement field of view according to the focal length and take a picture. The size of the distance measurement field of view can also be set according to the user's drawing intention, subject conditions, and the like.

また焦点検出動作の開始時、まず測距領域の変更を行
い、その後に方向判定を行うようにしているので、最適
の測距領域から得た正確な焦点信号に基づく方向判定動
作を行うことができるものである。
At the start of the focus detection operation, the distance measurement area is first changed, and then the direction is determined. Therefore, it is possible to perform the direction determination operation based on the accurate focus signal obtained from the optimal distance measurement area. You can do it.

【図面の簡単な説明】[Brief description of the drawings]

第1図(A)及び(B)は、それぞれ合焦時及び非合焦
時における撮像装置の結像面上の被写体像の状態を模式
的に示す説明図、第2図(A)及び(B)は、それぞれ
第1図(A)及び(B)の状態におけるイメージセンサ
の出力中の輝度信号を示す説明図、第3図(A)及び
(B)は、それぞれ第2図(A)及び(B)で示す信号
を微分した信号を示す説明図、第4図は撮像装置のレン
ズ位置とイメージセンサの出力中の高周波成分との関係
を示す線図、第5図は焦点検出動作のシーケンスの一例
を示す説明図、第6図(A),(B)及び(C)は、そ
れぞれ焦点検出系の状態とイメージセンサの出力中の高
周波成分との関係を示す説明図、第7図は従来の焦点検
出装置のブロツク図、第8図は標準的な測距視野位置を
示す説明図、第9図(D),(E),(F)及び(G)
はそれぞれ第7図のD,E,F及びGの個所の信号を示す波
形図、第10図は従来の焦点検出装置を用いる撮像装置に
おいて比較的長焦点よりの焦点距離で被写体を撮影した
場合のフアインダ画面内の像の状態を示す説明図、第11
図は同じく比較的短焦点よりの焦点距離で撮影した場合
の像の状態を示す説明図、第12図はこの出願の発明を実
施した撮像装置において短焦点側の測距視野の大きさを
示す説明図、第13図はこの出願の発明の焦点検出装置の
実施例のブロツク図、第14図は第13図の実施例における
焦点検出動作のシーケンスの一例を示す説明図、第15図
はこの出願の発明の実施例に適用されるズーム環情報検
出及び伝達装置の構成図、第16図は第15図の装置を操作
するつまみの平面図である。 符号の説明 11:ズーム系を構成するレンズ群、13:撮像手段の一例で
ある二次元イメージセンサ、18:アナログゲート、24,2
5:測距視野、26:ゲート制御回路の一例であるプログラ
マブル・ロジツク・アレイ、27:ズーム位置検出手段、3
3:ズーム操作環、34,35,36:カム部、37,38:接片、51:操
作つまみ、P:スイツチ基板。
FIGS. 1A and 1B are explanatory views schematically showing states of a subject image on an image forming plane of an image pickup apparatus at the time of focusing and at the time of out-of-focus, respectively, and FIGS. 3B is an explanatory diagram showing a luminance signal being output from the image sensor in the states of FIGS. 1A and 1B, and FIGS. 3A and 3B are respectively FIGS. 2A and 2B. FIG. 4 is an explanatory diagram showing a signal obtained by differentiating the signal shown in FIG. 4B and FIG. 4B. FIG. 4 is a diagram showing a relationship between a lens position of the imaging device and a high-frequency component in an output of the image sensor. FIGS. 6A, 6B and 6C are explanatory diagrams showing an example of the sequence, and are explanatory diagrams showing the relationship between the state of the focus detection system and the high-frequency component in the output of the image sensor, respectively, and FIG. FIG. 8 is a block diagram of a conventional focus detecting device, FIG. 8 is an explanatory diagram showing a standard distance measuring visual field position, and FIG. D), (E), (F) and (G)
Fig. 10 is a waveform diagram showing signals at points D, E, F and G in Fig. 7, respectively. Fig. 10 shows a case where a subject is photographed at a focal length longer than a relatively long focal point in an imaging device using a conventional focus detection device. Explanatory diagram showing the state of the image in the finder screen
FIG. 12 is an explanatory view showing the state of an image when the image is taken at a focal length relatively shorter than the short focus, and FIG. 12 shows the size of the distance measurement field on the short focus side in the imaging apparatus embodying the present invention. FIG. 13 is a block diagram of an embodiment of the focus detection device of the invention of this application, FIG. 14 is an explanatory diagram showing an example of a focus detection operation sequence in the embodiment of FIG. 13, and FIG. FIG. 16 is a configuration diagram of a zoom ring information detecting and transmitting device applied to the embodiment of the invention of the application, and FIG. 16 is a plan view of a knob for operating the device of FIG. DESCRIPTION OF SYMBOLS 11: lens group constituting a zoom system, 13: two-dimensional image sensor as an example of imaging means, 18: analog gate, 24, 2
5: distance measurement field of view; 26: programmable logic array as an example of a gate control circuit; 27: zoom position detection means; 3
3: Zoom operation ring, 34, 35, 36: cam section, 37, 38: contact piece, 51: operation knob, P: switch board.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−67505(JP,A) 特開 昭58−219505(JP,A) 特開 昭57−116311(JP,A) 特開 昭58−188965(JP,A) 特開 昭58−188966(JP,A) 特開 昭48−12615(JP,A) 特公 昭39−5265(JP,B1) ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-59-67505 (JP, A) JP-A-58-219505 (JP, A) JP-A-57-116311 (JP, A) JP-A 58-219 188965 (JP, A) JP-A-58-188966 (JP, A) JP-A-48-12615 (JP, A) JP-B-39-5265 (JP, B1)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】撮像手段の出力信号によつて焦点検出を行
う焦点検出装置であつて、 撮像光学系の焦点距離を検知する検出手段と、 前記撮像手段より出力された撮像信号より、画面内にお
いて焦点検出に用いる測距視野内に相当する信号を抽出
するゲート回路と、 前記ゲート回路によつて形成された前記測距視野内に相
当する撮像信号中より焦点状態を検出する焦点検出手段
と、 前記検出手段によつて検出された前記撮像光学系の焦点
距離にしたがつて前記ゲート回路の開閉タイミングを制
御して前記画面内における前記測距視野の大きさを複数
段階に可変する測距視野制御手段と、 前記撮像光学系を光軸方向前後に微小量駆動させたとき
の前記焦点検出手段の出力の変化から前記撮像光学系の
駆動方向を判別する方向判別手段と、 焦点検出動作の開始に応じて前記測距視野制御手段を動
作し、前記検出手段によつて検出された前記撮像光学系
の焦点距離にしたがつて前記測距視野の大きさを可変し
た後、前記方向判別手段を動作して前記撮像光学系の駆
動方向を決定し、その決定された方向へと前記撮像光学
系を駆動するように制御する制御手段と、 を備えたことを特徴とする焦点検出装置。
1. A focus detection device for detecting a focus based on an output signal of an image pickup means, comprising: a detection means for detecting a focal length of an image pickup optical system; A gate circuit for extracting a signal corresponding to the inside of the distance measuring field used for focus detection; and focus detecting means for detecting a focus state from an image signal corresponding to the inside of the distance measuring field formed by the gate circuit. A distance measuring step of controlling the opening / closing timing of the gate circuit in accordance with the focal length of the imaging optical system detected by the detecting means to change the size of the distance measuring visual field in the screen in a plurality of steps; Field-of-view control means, direction discriminating means for discriminating the driving direction of the imaging optical system from a change in the output of the focus detection means when the imaging optical system is driven back and forth by a small amount in the optical axis direction, Operating the ranging field control means in response to the start of the operation, changing the size of the ranging field according to the focal length of the imaging optical system detected by the detection means, Control means for operating a discriminating means to determine a driving direction of the imaging optical system, and controlling to drive the imaging optical system in the determined direction. .
JP59039788A 1984-03-02 1984-03-02 Focus detection device Expired - Fee Related JP2575607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59039788A JP2575607B2 (en) 1984-03-02 1984-03-02 Focus detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59039788A JP2575607B2 (en) 1984-03-02 1984-03-02 Focus detection device

Publications (2)

Publication Number Publication Date
JPS60183877A JPS60183877A (en) 1985-09-19
JP2575607B2 true JP2575607B2 (en) 1997-01-29

Family

ID=12562678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59039788A Expired - Fee Related JP2575607B2 (en) 1984-03-02 1984-03-02 Focus detection device

Country Status (1)

Country Link
JP (1) JP2575607B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935763A (en) * 1987-02-02 1990-06-19 Minolta Camera Kabushiki Kaisha Camera having a zoom lens unit
DE68914712T2 (en) * 1988-05-11 1994-10-13 Sanyo Electric Co Image sensor apparatus with an automatic focusing device for automatic focus adjustment as a function of video signals.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116311A (en) * 1981-01-13 1982-07-20 Canon Inc Measured visual field switching method in focusing position detector
JPS58219505A (en) * 1982-06-14 1983-12-21 Nippon Seimitsu Kogyo Kk Automatic focusing device capable of varying area for detecting focus
JPS5967505A (en) * 1982-10-12 1984-04-17 Asahi Optical Co Ltd Automatic focusing device of video camera

Also Published As

Publication number Publication date
JPS60183877A (en) 1985-09-19

Similar Documents

Publication Publication Date Title
US6850280B2 (en) Automatic focus adjusting device with distance measuring area selection based on discrimination of a state of focus
JP4094458B2 (en) Image input device
JP2003125275A (en) Object image adjustment device and imaging apparatus
JP3738795B2 (en) Electronic still camera
JPH0683387B2 (en) Focus detection device
JPS6128914A (en) Automatic tracking device of camera
JPH0829667A (en) Automatic focusing method
JP2575607B2 (en) Focus detection device
JP2517542B2 (en) Focus detection device
JPH07143388A (en) Video camera
JPH0646310A (en) Automatic focusing device
JPH04221944A (en) Video camera device
JP2744320B2 (en) Automatic focusing device
JPS6139009A (en) Camera
JPH0754971B2 (en) Autofocus video camera
JP3109812B2 (en) Imaging device
JPH0746455A (en) Video camera
JPH07318788A (en) Automatic focusing device
JP2698127B2 (en) Auto focus video camera
JPH06205258A (en) Focal position detector
JPS6138918A (en) Camera
JPH03259671A (en) Automatic focusing device
JP3869689B2 (en) Auto focus camera
JPH0332172A (en) Focusing device for solid-state image pickup camera
JPH06225198A (en) Automatic focus video camera

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees