JP2575456B2 - Power cable insulation diagnostic method - Google Patents

Power cable insulation diagnostic method

Info

Publication number
JP2575456B2
JP2575456B2 JP9443088A JP9443088A JP2575456B2 JP 2575456 B2 JP2575456 B2 JP 2575456B2 JP 9443088 A JP9443088 A JP 9443088A JP 9443088 A JP9443088 A JP 9443088A JP 2575456 B2 JP2575456 B2 JP 2575456B2
Authority
JP
Japan
Prior art keywords
power cable
current
measuring device
component
shielding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9443088A
Other languages
Japanese (ja)
Other versions
JPH01267469A (en
Inventor
義雄 丸山
宏之 波多
三郎 高橋
肇之 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP9443088A priority Critical patent/JP2575456B2/en
Publication of JPH01267469A publication Critical patent/JPH01267469A/en
Application granted granted Critical
Publication of JP2575456B2 publication Critical patent/JP2575456B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電力ケーブルの導体と遮蔽層間に流れる電
流の直流成分を測定して、その大きさにより電力ケーブ
ルの絶縁劣化を診断する方法に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of measuring a DC component of a current flowing between a conductor and a shielding layer of a power cable and diagnosing insulation deterioration of the power cable based on the magnitude of the measured DC component. Things.

〔従来技術とその課題〕[Conventional technology and its problems]

活線状態にある電力ケーブルの導体と遮蔽層間に流れ
る電流つまり絶縁層を通って流れる電流の直流成分の大
きさは、絶縁層の劣化と密接な関係があることが知られ
ている。従ってこの直流成分を測定すれば、例えばCVケ
ーブルの絶縁層が水トリーの発生等のために絶縁劣化が
どの程度進行しているかを診断することができる。
It is known that the magnitude of the DC component of the current flowing between the conductor and the shielding layer of the power cable in a live state, that is, the current flowing through the insulating layer, is closely related to the deterioration of the insulating layer. Therefore, by measuring this DC component, it is possible to diagnose how much insulation deterioration of the insulation layer of the CV cable has progressed due to the occurrence of water trees and the like.

従来、この電流成分の測定は図−3のようにして行わ
れている。電力ケーブル11は導体12の外周に絶縁層(図
示せず)を介して遮蔽層13を設けた構造で、導体12は高
圧母線14に接続されて活線状態にある。また高圧母線14
には電源変圧器(または接地変圧器)15が接続されてい
る。通常の運転状態では遮蔽層13の両端は設置されてい
るが、直流成分を測定するときは、遮蔽層13の一端と大
地の間に、交流接地用コンデンサ16を並列接続した電流
測定器17を接続し、他端の接地を開放する。これにより
遮蔽層13は、直流的には大地と絶縁され、交流的には低
インピーダンス接地された状態となる。
Conventionally, the measurement of this current component is performed as shown in FIG. The power cable 11 has a structure in which a shielding layer 13 is provided on the outer periphery of a conductor 12 via an insulating layer (not shown). The conductor 12 is connected to a high-voltage bus 14 and is in a live state. High-voltage bus 14
Is connected to a power transformer (or a ground transformer) 15. In a normal operation state, both ends of the shielding layer 13 are installed, but when measuring a DC component, a current measuring device 17 having an AC grounding capacitor 16 connected in parallel between one end of the shielding layer 13 and the ground is used. Connect and open the ground at the other end. As a result, the shielding layer 13 is insulated from the ground in terms of DC, and is grounded with low impedance in terms of AC.

このようにすると直流成分は、高圧充電部から電力ケ
ーブルの導体12→同絶縁層→同遮蔽層13→電流測定器17
→大地→変圧器15→高圧充電部という経路で実線矢印の
ように流れる。したがって電流測定器17の値を読めば、
電力ケーブルの絶縁層に流れる電流の直流成分が測定で
きるわけである。
In this case, the DC component is transferred from the high voltage charging unit to the conductor 12 of the power cable → the same insulating layer → the same shielding layer 13 → the current measuring device 17
It flows along the route of → ground → transformer 15 → high voltage charging section as indicated by the solid line arrow. Therefore, if you read the value of the current measuring device 17,
This means that the DC component of the current flowing through the insulating layer of the power cable can be measured.

しかし遮蔽層13には電磁誘導や迷走電流による電位18
が発生することがあり、このような電位18が発生する
と、それによって点線矢印のような電流が電流測定器17
に流れるため、測定値に誤差が生じ、絶縁診断を誤るお
それがある。
However, the shielding layer 13 has a potential 18 due to electromagnetic induction or stray current.
When such a potential 18 is generated, a current as indicated by a dotted arrow is generated.
Therefore, an error may occur in the measured value, and the insulation diagnosis may be erroneously performed.

このため図−4に示すように、電力ケーブルの遮蔽層
13は接地したままとし、電源変圧器(または接地変圧
器)15の中性点と大地の間に電流測定器17を接続して測
定を行う方法も提案されている。このようにすれば遮蔽
層13が接地されているので、電磁誘導や迷走電流の影響
を受けなくて済むことになる。
Therefore, as shown in Fig. 4, the shielding layer of the power cable
There is also proposed a method in which a current measuring device 17 is connected between a neutral point of a power transformer (or a grounding transformer) 15 and the ground, and measurement is performed, while the ground 13 is kept grounded. In this way, since the shielding layer 13 is grounded, it is not necessary to be affected by electromagnetic induction or stray current.

しかしこの方法の難点は、電源変圧器または接地変圧
器には一般に堅牢な配線がなされているため活線状態で
電流測定器を挿入する作業がきわめて困難であり、また
安全性にも問題があるということである。
However, the disadvantage of this method is that it is extremely difficult to insert a current measuring instrument in a live state because the power transformer or grounding transformer is generally hard-wired, and there are also safety problems. That's what it means.

〔課題の解決手段とその作用〕[Means for solving the problem and its operation]

本発明は、上記のような課題を解決し、精度よく、か
つ容易に絶縁診断を行える方法を提供するもので、その
方法は、電力ケーブルの導体と遮蔽層間に流れる電流の
直流成分を測定して、その大きさにより電力ケーブルの
絶縁劣化を診断する方法において、電力ケーブルの導体
にリアクトルの一端を接地し、そのリアクトルの他端と
大地の間に電流測定器を接続すると共に、電力ケーブル
の遮蔽層を接地し、その状態で電流測定器に流れる直流
電流を測定することを特徴とするものである。
The present invention solves the above-described problems, and provides a method for accurately and easily performing an insulation diagnosis. The method measures a DC component of a current flowing between a conductor and a shielding layer of a power cable. In the method of diagnosing power cable insulation deterioration based on the size of the power cable, one end of the reactor is grounded to the conductor of the power cable, and a current measuring device is connected between the other end of the reactor and the ground. The shielding layer is grounded, and a DC current flowing through the current measuring device is measured in this state.

この方法は、リアクトルを使用することにより活線状
態のケーブル導体に電流測定器を容易に接続できるよう
にし、また遮蔽層を接地することにより電磁誘導や迷走
電流の影響を排除して、直流成分の測定を容易にかつ正
確に行えるようにしたものである。
This method makes it possible to easily connect a current measuring device to a live cable conductor by using a reactor, and to eliminate the effects of electromagnetic induction and stray current by grounding a shielding layer, thereby reducing the DC component. Is easily and accurately measured.

また電力ケーブルに負荷が接地されていて、その負荷
で発生する直流成分が問題となる場合は、上記の方法に
おいて、電流測定器と大地の間に直流カット用フィルタ
を接続すると共に、その電流測定器と直流カット用フィ
ルタとの間に電力ケーブルの遮蔽層を電気的に接続する
ことが有効である。
If the load is grounded to the power cable and the DC component generated by the load poses a problem, a DC cut filter is connected between the current measuring device and the ground, and the current is measured. It is effective to electrically connect the shield layer of the power cable between the filter and the DC cut filter.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して詳細に説明す
る。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図−1は本発明の一実施例を示すもので、先に説明し
た図−3と同一部分には同一符号が付してある。この方
法の特徴は、電力ケーブル11の導体12に(高圧母線14を
介して)交流遮断用のリアクトル21の一端を接続し、そ
のリアクトル21の他端と大地の間に電流測定器17を接続
すると共に、電力ケーブルの遮蔽層13を接地した状態
で、電流測定を行うようにしたことである。
FIG. 1 shows an embodiment of the present invention, and the same parts as those in FIG. 3 described above are denoted by the same reference numerals. The feature of this method is that one end of the reactor 21 for AC interruption is connected to the conductor 12 of the power cable 11 (via the high voltage bus 14), and the current measuring device 17 is connected between the other end of the reactor 21 and the ground. In addition, the current measurement is performed with the shield layer 13 of the power cable grounded.

このようにすれば電流測定器17は変圧器の中性点に接
続したのと同じ状態となり、また遮蔽層13が接地されて
いるため電磁誘導や迷走電流の影響を受けることもなく
なり、電流測定器17では電力ケーブル11の絶縁層を通し
て流れる電流の直流成分を正確に測定できることにな
る。なおリアクトル21の一端は高圧母線14に着脱自在に
接続できるようにしておくと便利である。
In this way, the current measuring device 17 is in the same state as connected to the neutral point of the transformer, and since the shielding layer 13 is grounded, the current measuring device 17 is not affected by electromagnetic induction or stray current. In the device 17, the DC component of the current flowing through the insulating layer of the power cable 11 can be accurately measured. It is convenient if one end of the reactor 21 can be detachably connected to the high-voltage bus 14.

実験によると、250mの6.6KV CVケーブルについて、
図−1の方法と、図−3、図−4の方法で電流測定を行
った結果、図−1と図−4の方法では測定値が同じ25nA
であったが、図−3の方法では31nAとなった。これによ
り図−1の方法は図−4の方法と同程度の精度を有して
いることが確認された。なお図−1の方法では1.5Hのリ
アクトルを使用した。
According to experiments, for a 250m 6.6KV CV cable,
As a result of performing current measurement by the method of FIG. 1 and the method of FIG. 3 and FIG. 4, the measured values are the same at 25 nA in the method of FIG. 1 and FIG.
However, it was 31 nA in the method of FIG. Thereby, it was confirmed that the method of FIG. 1 has approximately the same accuracy as the method of FIG. In the method of FIG. 1, a 1.5H reactor was used.

図−2は本発明の他の実施例を示す。電力ケーブル11
にモーターなどの負荷22が接続されている場合、その負
荷で発生する直流成分が測定値に影響することがあるの
で、この方法は、電流測定器17と大地の間に直流カット
用フィルタ23を接続すると共に、その電流測定器17と直
流カット用フィルタ23との間に電力ケーブルの遮蔽層13
を電気的に接続することにより、負荷22で発生する直流
成分の影響を遮断したものである。それ以外は図−1の
実施例と同じである。なおこの方法は、電力ケーブルに
負荷が接続されていない場合にも適用可能である。
FIG. 2 shows another embodiment of the present invention. Power cable 11
If a load 22 such as a motor is connected to the motor, the DC component generated by the load may affect the measured value.Therefore, this method uses a DC cut filter 23 between the current measuring device 17 and the ground. At the same time, the power cable shielding layer 13 is connected between the current measuring device 17 and the DC cut filter 23.
Are electrically connected to cut off the influence of the DC component generated in the load 22. The other parts are the same as the embodiment of FIG. Note that this method is applicable even when no load is connected to the power cable.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、電磁誘導や迷走
電流の影響を受けることなく直流成分の測定ができる
上、リアクトルを使用したことにより電源変圧器や接地
変圧器の配線を変更することなく電流測定器の接続がで
きるため、配線作業がきわめて簡単になる。またリアク
トル電力ケーブルのどちらの端末へも接続できるから、
スペースなど都合のよい方の端末で測定作業が行え、作
業の自由度も高い。
As described above, according to the present invention, the DC component can be measured without being affected by electromagnetic induction or stray current, and the use of the reactor allows the power supply transformer and the grounding transformer to be connected without changing the wiring. Wiring work becomes extremely simple because a current measuring instrument can be connected. Also, since it can be connected to either terminal of the reactor power cable,
Measurement work can be performed with a terminal that is more convenient, such as space, and the degree of freedom of work is high.

【図面の簡単な説明】[Brief description of the drawings]

図−1および図−2はそれぞれ本発明に係る電力ケーブ
ルの絶縁診断方法の実施例を示す配線図、図−3および
図−4は従来の電力ケーブルの絶縁診断方法を示す配線
図である。 11:電力ケーブル、12:導体、13:遮蔽層、14:高圧母線、
15:電源変圧器または接地変圧器、16:交流接地用コンデ
ンサ、17:電流測定器、21:リアクトル、22:負荷、23:直
流カット用フィルタ。
FIG. 1 and FIG. 2 are wiring diagrams showing an embodiment of a power cable insulation diagnosis method according to the present invention, and FIGS. 3 and 4 are wiring diagrams showing a conventional power cable insulation diagnosis method. 11: power cable, 12: conductor, 13: shielding layer, 14: high-voltage bus,
15: Power transformer or grounding transformer, 16: AC grounding capacitor, 17: Current measuring instrument, 21: Reactor, 22: Load, 23: DC cut filter.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沢田 肇之 神奈川県横浜市西区岡野2―4―3 古 河電気工業株式会社横浜研究所内 (56)参考文献 特開 昭54−140572(JP,A) 特開 昭51−146871(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hajiyuki Sawada 2-4-3 Okano, Nishi-ku, Yokohama-shi, Kanagawa Prefecture Inside the Yokohama Research Laboratory of Furukawa Electric Co., Ltd. (56) References JP-A-54-140572 (JP, A ) JP-A-51-146871 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電力ケーブルの導体と遮蔽層間に流れる電
流の直流成分を測定して、その大きさにより電力ケーブ
ルの絶縁劣化を診断する方法において、電力ケーブルの
導体にリアクトルの一端を接続し、そのリアクトルの他
端と大地の間に電流測定器を接続すると共に、電力ケー
ブルの遮蔽層を接地し、その状態で電流測定器に流れる
直流電流を測定することを特徴とする電力ケーブルの絶
縁診断方法。
1. A method of measuring a DC component of a current flowing between a conductor of a power cable and a shielding layer and diagnosing deterioration of insulation of the power cable based on a magnitude of the DC component, wherein one end of a reactor is connected to the conductor of the power cable. A power cable insulation diagnosis characterized by connecting a current measuring device between the other end of the reactor and the ground, grounding a shield layer of the power cable, and measuring a DC current flowing through the current measuring device in that state. Method.
【請求項2】電力ケーブルの導体と遮蔽層間に流れる電
流の直流成分を測定して、その大きさにより電力ケーブ
ルの絶縁劣化を診断する方法において、電力ケーブルの
導体にリアクトルの一端を接続し、そのリアクトルの他
端と大地の間に、電流測定器と直流カット用フィルタと
を後者を大地側にして直列接続すると共に、上記電流測
定器と直流カット用フィルタとの間に電力ケーブルの遮
蔽層を電気的に接続し、その状態で上記電流測定器に流
れる直流電流を測定することを特徴とする電力ケーブル
の絶縁診断方法。
2. A method for measuring a DC component of a current flowing between a conductor of a power cable and a shielding layer and diagnosing deterioration of insulation of the power cable based on the magnitude of the DC component, comprising connecting one end of a reactor to the conductor of the power cable; Between the other end of the reactor and the ground, a current measuring device and a DC cut filter are connected in series with the latter on the ground side, and a shielding layer of a power cable is provided between the current measuring device and the DC cut filter. And electrically measuring the DC current flowing through the current measuring device in this state.
JP9443088A 1988-04-19 1988-04-19 Power cable insulation diagnostic method Expired - Lifetime JP2575456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9443088A JP2575456B2 (en) 1988-04-19 1988-04-19 Power cable insulation diagnostic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9443088A JP2575456B2 (en) 1988-04-19 1988-04-19 Power cable insulation diagnostic method

Publications (2)

Publication Number Publication Date
JPH01267469A JPH01267469A (en) 1989-10-25
JP2575456B2 true JP2575456B2 (en) 1997-01-22

Family

ID=14110019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9443088A Expired - Lifetime JP2575456B2 (en) 1988-04-19 1988-04-19 Power cable insulation diagnostic method

Country Status (1)

Country Link
JP (1) JP2575456B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108051715A (en) * 2018-01-08 2018-05-18 云南电网有限责任公司曲靖供电局 A kind of air reactor inter-turn insulation defect detecting system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7403687B2 (en) * 2020-12-03 2023-12-22 三菱電機株式会社 Disconnection detection method for power converter, motor drive system, and signal transmission cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108051715A (en) * 2018-01-08 2018-05-18 云南电网有限责任公司曲靖供电局 A kind of air reactor inter-turn insulation defect detecting system and method

Also Published As

Publication number Publication date
JPH01267469A (en) 1989-10-25

Similar Documents

Publication Publication Date Title
JP2575456B2 (en) Power cable insulation diagnostic method
JP2876322B2 (en) Diagnosis method for insulation deterioration of CV cable
CN210465583U (en) Sensor for submarine cable fault monitoring
JPH09318696A (en) Method and device for diagnosing insulation deterioration of active line power cable
JPH0720171A (en) Insulation diagnosis/monitor system for power cable
KR100202831B1 (en) Insulation degradation detection method for hot-line and device therefor
JP2670948B2 (en) Partial discharge monitoring method
JP2001183412A (en) Insulation degradation diagnosing method for power cable
JPS629277A (en) Diagnostic method for cable insulation under hotline
JP2542406B2 (en) Insulation deterioration diagnosis method for power cables
JPH01158369A (en) Method for measuring dc component of power cable
JPH077028B2 (en) Method for measuring DC component of power cable
JP4089129B2 (en) Insulation diagnostic bridge circuit
JP3010367B2 (en) Insulation resistance measurement method of cable sheath under hot wire
JPH0627766B2 (en) CV cable insulation deterioration diagnosis device
SU974288A1 (en) Zero sequence parameter pickup
JP2002277496A (en) Measuring method for dielectric loss tangent of cable
JPH0862264A (en) Insulation resistance measuring device for power cable
JP2002196030A (en) Method for diagnosing deterioration of power cable
JPH01158371A (en) Method for measuring dc component of power cable
JPH05133995A (en) Method for diagnosing insulation deterioration of power cable
JPH02198369A (en) Measuring method of insulation resistance of electronic cable
JPS63186512A (en) Grounding device for compact switchgear
JPS63135876A (en) Diagnosis of insulation deterioration for power cable
JP2000009788A (en) Deterioration diagnosis method of cables