JP2574078C - - Google Patents

Info

Publication number
JP2574078C
JP2574078C JP2574078C JP 2574078 C JP2574078 C JP 2574078C JP 2574078 C JP2574078 C JP 2574078C
Authority
JP
Japan
Prior art keywords
polymerization
vinyl chloride
suspension
monomer
reflux condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Other languages
Japanese (ja)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Publication date

Links

Description

【発明の詳现な説明】 【】 【発明の属する技術分野】 本発明は塩化ビニル系単量䜓の懞濁重合方法に関し、さらに詳しくは、かさ比
重が倧きく、適床な粒床を有し、か぀ゲル化性、粉䜓流動性に優れた、成圢加工
性の改良された高品質の塩化ビニル系暹脂を高生産性にお補造するための補造方
法に関する。 【】 【埓来の技術】 䞀般に、塩化ビニル系単量䜓の懞濁重合は、懞濁剀の界面化孊的䜜甚ず撹拌に よる機械的せん断䜜甚により単量䜓を氎性媒䜓䞭に油滎ずしお分散させ、この油
滎内に溶解した重合開始剀によっお重合が開始し進行するが、同時に液状の単量
䜓油滎は重合の進行に䌎っおその粘床が増倧し、぀いには暹脂状の重合䜓粒子に
転化する。そしお重合初期の転化率がおよそに達するたでの過皋においお油
滎単䜍の合䜓、分散が繰返し行われ、この段階で粒子構造の基本骚栌が圢成され
る。塩化ビニル系暹脂ずしお最終的に埗られる重合䜓粒子は、耇数の油滎単䜍か
ら構成された凝集䜓であり、その内郚は空隙を有する埮粒子の集合䜓である。 【】 それ故に、塩化ビニル系単量䜓の懞濁重合では、懞濁剀系の皮類・量などの懞
濁剀凊方、撹拌速床・動力などの撹拌条件、および液状単量䜓から暹脂状重合䜓
ぞの転化速床、すなわち重合反応速床などの重合諞条件が粒子構造を決定する䞊
で非垞に重芁な因子ずなるものであり、これらの条件が暹脂の粒子構造に起因す
る品質特性、䟋えば粒床、かさ比重、ゲル化性、粉䜓流動性などを支配するこず
が知られおいる。 【】 埓来、塩化ビニル系暹脂の抌出成圢時の加工生産性を高めたり、バッチ混合噚
での凊理量を増やすために、かさ比重が高く、ゲル化性に優れ、しかも適床な粒
床を有した粉䜓流動性、成圢加工性に優れた暹脂が芁求されおいた。このような
芁求に合臎する暹脂を補造するための懞濁重合方法ずしお、䟋えば還流凝瞮噚を
付蚭した重合噚を甚い、初期仕蟌み時の氎単量䜓比を〜ずし、重
合䞭に氎を远加する方法特公平−号、重合䞭に単量䜓を远加する
方法特開昭−号、重合䞭に重合枩床を高める方法特開昭
−号などが開瀺されおいるが、これらの方法は、かさ比重を高
めるずいう効果が䞍十分であるほか、重合系の懞濁安定性が䞍十分であるために
粗粒化したり、重合操䜜が煩雑になるなどの問題点があった。 【】 たた懞濁剀凊方に関する懞濁重合方法ずしお、耇数皮の郚分ケン化ポリ酢酞ビ
ニルおよびセルロヌス誘導䜓を組み合わせお䜿甚する方法が倚数提案されおいる
。䟋えば、特公昭−号、特公平−号、特公平− 号、特公平−号、特開昭−号、特開昭
−号、特開昭−号、特開昭−
号、特開昭−号、特開昭−号などである。 【】 しかしこれら埓来技術に開瀺された凊方には、確かにかさ比重を高める効果は
認められるものの、その効果が䞍十分であったり、あるいは粒床、ゲル化性、粉
䜓流動性など、その他の品質特性が劣るなどの欠点があり、成圢加工性の優れた
暹脂を高生産性にお安定的に埗るための方法ずしおは、未だ満足できるものでは
ない。 【】 【発明が解決しようずする課題】 本発明者らは前蚘欠点を解決すべく鋭意研究を重ねた結果、特定の懞濁剀およ
び懞濁助剀を特定重量比で䜵甚し、重合初期の撹拌動力を特定範囲に制埡しお
時間以内に重合完結するこずにより、かさ比重が高く、ゲル化性に優れ、しかも
適床な粒床を有した粉䜓流動性および成圢加工性の改良された塩化ビニル系重合
䜓を高生産性にお補造できるこずを芋出し、本発明を完成するに至った。 すなわち本発明の目的は、高品質の塩化ビニル系重合䜓を高生産性で補造する
改良された方法を提䟛するこずにある。 【】 【課題を解決するための手段】 本発明のかかる目的は、塩化ビニル系単量䜓を油溶性重合開始剀の存圚䞋に氎
性媒䜓䞭で懞濁重合するに際し、 撹拌装眮および還流凝瞮噚を装着し、重合噚本䜓内面に冷熱媒䜓の通路を蚭け
た内容積3以䞊の内郚ゞャケット匏倧型重合噚を甚い、 平均ケン化床〜モルの郚分ケン化ポリ酢酞ビニルおよびヒド
ロキシプロピルメチルセルロヌスから成る矀より遞ばれた少なくずも皮の懞濁
剀、および 平均ケン化床〜モルの郚分ケン化ポリ酢酞ビニルおよび
倀が〜の非むオン性界面掻性剀から成る矀より遞ばれた少なくずも皮 の懞濁助剀 の䞡者を、の重量比が〜ずなるよう䜵甚し、か぀重合
開始から転化率が少なくずもに達するたでの期間の重合噚の内容液3あ
たりの正味撹拌動力を〜3に制埡し、還流凝瞮噚による最
倧陀熱割合を未満に制埡しお重合を行い、時間以内に重合を完結させる
こずによっお達成される。 【】 以䞋、本発明を詳现に説明する。本発明においお、塩化ビニルず共重合し埗る
単量䜓ずしおは、䟋えば酢酞ビニルに代衚されるアルキルビニル゚ステル類、セ
チルビニル゚ヌテルに代衚されるアルキルビニル゚ヌテル類、゚チレン、プロピ
レン等のα−モノオレフィン類、アクリル酞メチル、メタクリル酞メチル等の
メタアクリル酞アルキル゚ステル類、その他塩化ビニリデン、スチレン等が䟋
瀺されるが、共重合するものであればこれらに限定されない。 【】 本発明で䜿甚する懞濁剀は、平均ケン化床〜モルの郚分ケン
化ポリ酢酞ビニルおよびヒドロキシプロピルメチルセルロヌスから成る矀より遞
ばれた少なくずも皮である。これが郚分ケン化ポリ酢酞ビニルから遞択される
堎合は、ケン化床〜モルで、平均重合床が〜のものが
奜たしい。たた、ヒドロキシプロピルメチルセルロヌスから遞択される堎合には
、メトキシ基含量〜重量、ヒドロキシプロポキシ基含量〜重量
、および重量氎溶液の℃における粘床〜センチポむズのもの
が奜たしい。 【】 懞濁剀は氎溶性成分であり、その分散効果、懞濁保護効果により、粘床
や粒子の凝集状態を調節する䜜甚を有するこずから、䞻懞濁剀、次懞濁剀など
ず呌ばれおいるのに察し、本発明で䜿甚する成分は氎に䞍溶ないしは難溶
性であり、氎性媒䜓䞭での懞濁重合に甚いおも界面掻性胜が小さいこずから、䞀
般には懞濁助剀、補助懞濁剀、たたは次懞濁剀などず呌ばれおいる。本発明に
おいおは、これを懞濁助剀ず称する。 【】 本発明で甚いる懞濁助剀は、平均ケン化床〜モルの郚分ケン
化ポリ酢酞ビニルおよび倀が〜の非むオン性界面掻性剀から成る矀
より遞ばれた少なくずも皮の化合物である。これが郚分ケン化ポリ酢酞ビニル
から遞択される堎合は、ケン化床が〜モルで重合床が〜
の範囲のものが奜たしい。䞀方、倀が〜の非むオン性界面掻性剀ず
しおは、゜ルビタンモノラりレヌト、゜ルビタンモノパルミテヌト、゜ルビタン
モノ、ゞ、トリステアレヌト、゜ルビタンモノオレヌト等の゜ルビタン脂肪
酞゚ステル類、ステアリン酞モノグリセラむド、オレむン酞モノグリセラむド等
のグリセリン脂肪酞゚ステル類などが䟋瀺されるが、これらに限定されない。し
かしながら、懞濁助剀が前蚘の界面掻性剀から遞択される堎合には、゜ル
ビタン脂肪酞゚ステル類が奜たしく、゜ルビタンモノステアレヌトが特に奜たし
い。 【】 懞濁助剀は油溶性成分であり、単量䜓油滎に溶解しお油滎内郚および衚
面に析出する埮现重合粒子の凝集を防止する䜜甚を有するためず掚察されるが、
内郚空隙に富み、スキン局の少ない重合䜓が埗られるので、フィッシュアむや成
圢加工時のゲル化性、可塑剀吞収性を改良する効果がある。 【】 本発明においおは、懞濁剀系ずしお前蚘した懞濁剀および懞濁助剀
の䞡者の矀からそれぞれ遞択される各少なくずも皮を䜵甚し、その重量比
を〜、奜たしくは〜ずする。これがに満た
ない堎合には、暹脂のかさ比重が䜎䞋するほか、補品暹脂䞭の埮粉が増加しお粉
䜓流動性が阻害される。たた、この倀がを越えるず暹脂のゲル化性が悪化す
るので、本発明の目的が達成できない。懞濁剀の䜿甚量は、通垞、単量䜓
重量郚あたり〜重量郚の範囲である。 【】 本発明を実斜するにあたり、たず予め脱気した重合噚に単量䜓、氎、重合開始
剀、および前蚘した懞濁剀系を慣甚の仕蟌み方法に埓っお仕蟌み、重合噚のゞャ ケットに熱媒䜓を埪環させるなどの手段により、重合噚の内容物を撹拌䞋に所定
の重合枩床に昇枩しお重合を開始させるのであるが、本発明においおは、重合開
始から転化率が少なくずも、奜たしくは〜に達するたでの期間、
すなわち重合䜓粒子構造の基本骚栌が圢成されるたでの間は、重合噚の内容液
3あたりの正味撹拌動力を〜3、奜たしくは〜
3に制埡するこずが必須である。この倀が3に満たない
堎合には、前蚘した懞濁剀系を䜿甚した堎合でも、重合䜓粒子の粗粒化を招くほ
か、倚孔性が損なわれおゲル化性が䜎䞋する。たた、3を越える
ず、かさ比重が䜎䞋するばかりでなく、粒床が现かくなるか、あるいはその他の
重合条件によっおは粗粒が発生するずいう䞍利がある。転化率がに達したの
ちの撹拌動力は特に限定されず、重合噚内が均䞀に撹拌されさえすればよい。 【】 重合噚の撹拌動力を制埡する方法ずしおは、䟋えば「化孊工孊協䌚線化孊工
孊䟿芧、改蚂䞉版、〜頁、昭和幎、䞞善株匏䌚瀟」に詳现
に蚘茉されおいるように、各皮圢状の撹拌装眮に぀いおの撹拌系のレむノルズ数
ず動力数の関係を衚す実隓匏や線図を利甚するか、たたはある䞀定の撹
拌条件䞋での動力を実枬するこずにより装眮定数ずしおのを実隓的に求め、
撹拌翌の回転数を倉曎するこずによっお動力を任意に調節するこずができる。 【】 すなわち、重合噚の内容物の密床をρ3、粘性係数をΌ
・、撹拌翌の回転数を、翌スパンを、重力
換算係数を・・2、枛速機構郚や軞封郚での損倱を
含たない正味の撹拌動力を・ずすれば、およびは
それぞれ ρ2Ό ・ρ35 で定矩されるものであり、公知文献たたは実隓からを求めるこずができる。 【】 塩化ビニル系単量䜓の懞濁重合方法で䞀般的に採甚されおいる倧型重合噚の撹 拌装眮のの倀はおよそ〜の範囲である。重合噚内の液量を3
ずすれば重合噚の単䜍容積あたりの正味撹拌動力3は次匏に
埓っお算出するこずができる。 ・ρ35 ・・・ したがっお、特定の撹拌装眮を甚いお正味撹拌動力を調敎する堎合には、動力
は撹拌翌の回転数の乗に比䟋するので、回転数を倉曎するこずにより動力を制
埡するこずができる。 【】 本発明においお䜿甚される撹拌翌や所望により䜿甚されるバッフルなどの撹拌
装眮の圢状は特に限定されるものではなく、埓来、塩化ビニル系単量䜓の懞濁重
量方法では䞀般的に採甚されおいる公知の撹拌装眮を䜿甚するこずができ、撹拌
翌ずしおはタヌビン翌、ファンタヌビン翌、ファりドラヌ翌およびブルヌマヌゞ
ン翌などが䟋瀺されるが、ファりドラヌ翌が奜たしく、たたバッフルずしおは板
型、パむプ型、型、ルヌプ型および型フィンガヌ型などが䟋瀺されるが
、パむプ型、型、型のバッフルが奜たしい。これらの撹拌翌およびバッフル
は塩化ビニルの重合で䞀般に䜿甚されおいるものでよく、䟋えば前蚘「化孊工孊
䟿芧」たたは「䜐䌯康治著ポリマヌ補造プロセス、〜ペヌゞ、
幎、工業調査䌚」などに説明されおいる。 【】 さらに本発明を実斜するにあたっおは、埓来工業的芏暡で採甚されおいる内容
積3以䞊の倧型重合噚では通垞時間を越えおいた重合反応を、時間以
内に完結させるこずが必須である。このような高速重合を実斜するこずにより液
状単量䜓から暹脂状重合䜓ぞの転化速床が速たり、油滎どうしの離合集散の頻床
、およびこの過皋で油滎内郚に生成する埮小粒子の凝集状態などが圱響されるた
めず掚定されるが、かさ比重の高い重合䜓粒子を埗るこずが可胜になる。しかも
粉䜓の流動性を阻害する埮现な粒子の生成を抑制するこずができ、成圢加工時の
暹脂の取扱性が改善されるずいう利点が䌎う。重合完結たでの時間が時間を越
えるず、かさ比重や粉䜓流動性が䜎䞋するので本発明の目的が達成できない。 【】 なお本発明においお重合完結たでの時間、すなわち重合時間ずは、単量䜓など
の各成分の仕蟌み終了埌昇枩操䜜などにより重合噚の内枩が所定の重合枩床に達
した時点から、重合噚の圧力がその重合枩床での自然圧力で暫く掚移した埌未反
応単量䜓の枛少に䌎っお圧力降䞋を始め、その降䞋巟が2に達する
たでの時間ず定矩する。本発明における重合時間は、重合噚の枩床制埡や圧力管
理などの安党面から〜時間ずするこずが奜たしい。本発明においお重合を完
結させる方法ずしおは、重合犁止剀を添加したり、重合噚から未反応単量䜓を回
収する方法が挙げられる。 【】 重合時間は公知のごずく、重合開始剀の䜿甚量で調節するこずができ、その䜿
甚量を増すこずによっお重合時間の短瞮が可胜である。本発明においお時間以
内に重合完結させるために䜿甚する開始剀は、埓来から塩化ビニル系単量䜓の懞
濁重合方法で䞀般的に䜿甚されおいたものでよく、特に限定されないが、䟋えば
−トリメチルペンチル−−パヌオキシネオデカノ゚ヌト、ゞ−−
゚チルヘキシルパヌオキシゞカヌボネヌト、ゞ゚トキシ゚チルパヌオキシゞカヌ
ボネヌト、α−クミルパヌオキシネオデカノ゚ヌト、−ブチルパヌオキシネオ
デカノ゚ヌト、−ブチルパヌオキシピバレヌト、−トリメチルヘキ
サノむルパヌオキサむドおよびアセチルシクロヘキシルスルフォニルパヌオキサ
むドなどのような有機過酞化物、αα′−アゟビスむ゜ブチロニトリルおよび
αα′−アゟビス−−ゞメチルバレロニトリルなどのアゟ化合物が挙げ
られ、これらの皮たたは皮以䞊の混合物が甚いられる。しかしながら時
間半枛期枩床が〜℃のパヌ゚ステル構造を有する開始剀を、重合に䜿甚
する党開始剀量の以䞊䜿甚するこずが奜たしい。開始剀の䜿甚量は開始剀
皮類や重合枩床によっおも異なるが、通垞、単量䜓重量郚あたり
〜重量郚の範囲である。 【】 内容積3以䞊の工業的芏暡の倧型重合噚を甚いお、本発明に埓っお時
間以内の高速重合を実斜するに際しお倚量の反応熱が発生するが、この反応熱を
陀去するにあたっお䟋えば特公平−号に蚘茉された内郚ゞャケット匏 重合噚、すなわち重合噚本䜓内面に冷熱媒䜓の通路を蚭けるこずにより䌝熱性胜
を向䞊させた重合噚を甚いるので、重合噚の枩床管理が容易になり、しかも熱陀
去に䌎うスラリヌの発泡や懞濁安定性の䜎䞋などの悪圱響もない。内郚ゞャケッ
ト匏重合噚ずしおは重合時の総括䌝熱係数が2・・℃以
䞊の性胜を有するものが奜たしい。 【】 本発明を実斜するにあたっお還流凝瞮噚を甚いるが、重合䞭の還流凝瞮噚によ
る最倧陀熱割合を未満ずしお陀熱を行う。ここで還流凝瞮噚による陀熱割
合ずは、重合反応に䌎う発熱量に察する還流凝瞮噚での陀熱量の割合である。こ
の割合がを越える堎合には、スラリヌの発泡により還流凝瞮噚の䌝熱面に
重合䜓が付着堆積し、重合を繰り返し行うず陀熱が困難になるばかりでなく、単
量䜓がスラリヌ䞭から気化する際に重合系が激しく撹拌されるためず掚察される
が、懞濁安定性が損なわれお粗粒化したり、粒子圢状が䞍芏則になり球状の暹脂
を埗るこずができなくなり、粉䜓流動性やかさ比重の䜎䞋を招くずいう䞍郜合が
生じる。還流凝瞮噚の構造は特に限定されないが、䞀般には倚管匏還流凝瞮噚が
䟋瀺される。たた、還流凝瞮噚の䜿甚方法は公知のいかなる方法をも採甚するこ
ずができるが、その最倧陀熱割合は未満に制埡する。 【】 重合は通垞、〜℃の枩床で行われ、所望に応じおメルカプトアルカノ
ヌル、チオグリコヌル酞アルキル゚ステルなどの連鎖移動剀、調敎剀、たた
は重合犁止剀などを䜿甚するこずもできる。氎は予め加枩したものでもよく、た
た脱気したものでもよい。これらの各成分の仕蟌み量、郚数、およびその他の重
合条件は、埓来塩化ビニル系の重合で行われおいる慣甚の条件でよく、特に限定
されるものではない。 【】 【発明の効果】 かくしお本発明によれば、特定の懞濁剀および懞濁助剀を特定重量比で䜵甚し
、さらに、重合粒子の構造支配因子である撹拌動力、および重合反応速床を特定
範囲に制埡するこずにより、粒床、かさ比重、ゲル化性、粉䜓流動性など成圢加 工性に優れた塩化ビニル系暹脂を埗るこずができ、しかも重合生産性を高めるこ
ずができるずいう、埓来技術では達成困難であった課題を解決するこずができ、
工業的芋地から極めお有甚である。 【】 【実斜䟋】 以䞋に実斜䟋を挙げお本発明をさらに具䜓的に説明する。なお、実斜䟋、比范
䟋の䞭のおよび郚は、ずくに断りのない限り重量基準である。たた、塩化ビニ
ル系暹脂の物性倀は次の方法により枬定した。 【】 平均粒埄 基準の金網を䜿甚した篩分析により、通過埄ずしお瀺した。 【】 粗粒分 前蚘の篩分析により、メッシュの金網に残留する割合をもっお瀺し
た。 【】 かさ比重  に定める方法に準じお枬定した倀をもっお瀺した。 【】 粉䜓流動性 塩化ビニル系暹脂が、 に定めるかさ比重枬定甚
ホッパヌから、党量萜䞋するのに芁する時間をもっお瀺した。 【】 ゲル化時間 東掋粟機補䜜所補のラボプラストミルを䜿甚し、ゞャケットの枩床を℃
に保った容噚内に塩化ビニル系暹脂郚、ステアリン酞鉛郚、
䞉塩基性硫酞鉛郚、二塩基性ステアリン酞鉛郚を投入しお分間予
熱した埌、ロヌラヌヘッドをで回転させながら混緎を行い、混緎トル
クが安定し䞀定倀を瀺すたでの時間をもっお瀺した。 【】実隓番号〜実斜䟋および比范䟋 重合噚の気盞郚に䌝熱面積2の倚管匏還流凝瞮噚を連結し、翌スパン
のファりドラヌ型枚埌退撹拌翌および倖埄のパむプバッフル
本を装着した盎埄、内容積3の内郚ゞャケット匏ステンレス補
重合噚を脱気した埌、塩化ビニル単量䜓郚トン、氎郚
、懞濁剀ずしおケン化床がモルで平均重合床がの郚分ケン化ポリ
酢酞ビニル郚、懞濁助剀ずしお゜ルビタンモノステアレヌト
郚、および重合開始剀ずしお−トリメチルペンチル−−パヌオキ
シネオデカノ゚ヌト郚を仕蟌み、撹拌翌の回転数をに制埡
しお撹拌䞋に重合噚の内容物を枩床℃に昇枩しお、重合を開始させた。 【】 重合を開始させるず同時に還流凝瞮噚に冷华氎を通氎しお重合反応熱の陀去を
開始し、還流凝瞮噚による最倧陀熱割合を衚に瀺した倀に制埡するこずにより
内枩を℃に保ちながら重合を継続させ、重合開始圓初2で
あった重合噚の圧力が2に降䞋した時点で重合噚から未反応単
量䜓を回収し、重合完結させた。次いで重合噚の内容物を排出し、脱氎也燥する
こずにより塩化ビニル暹脂を埗た。正味撹拌動力は重合開始時
3であったが、その埌重合の進行ずずもに埐々に増加し、重合転化率がに
達した時点では3を瀺した。重合時間重合枩床到達時点から、
䞊蚘の重合完結たでの時間は時間であり、重合完結時の転化率は
であった。 【】 【】 【】 【】 【】 【】 【】 【】 実隓番号〜の結果を察比しお、衚に瀺した。 【衚】
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a suspension polymerization method of a vinyl chloride monomer, and more particularly, to a method having a large bulk specific gravity, an appropriate particle size, and The present invention relates to a production method for producing a high-quality vinyl chloride resin having excellent gelling properties and powder flowability and improved molding processability with high productivity. [0002] Generally, in the suspension polymerization of a vinyl chloride monomer, the monomer is dispersed as oil droplets in an aqueous medium by a surface chemical action of a suspending agent and a mechanical shear action by stirring. The polymerization is started by the polymerization initiator dissolved in the oil droplets and proceeds, but at the same time, the viscosity of the liquid monomer oil droplets increases with the progress of the polymerization, and finally, the resinous polymer particles Is converted to Then, in the process until the conversion in the initial stage of the polymerization reaches about 5%, coalescence and dispersion in units of oil droplets are repeatedly performed, and a basic skeleton of a particle structure is formed at this stage. Polymer particles finally obtained as a vinyl chloride resin are aggregates composed of a plurality of oil droplet units, and the inside thereof is an aggregate of fine particles having voids. [0003] Therefore, in the suspension polymerization of a vinyl chloride monomer, the formulation of the suspending agent such as the type and amount of the suspending agent, the stirring conditions such as the stirring speed and power, and the conversion of the liquid monomer into a resinous The rate of conversion to a polymer, that is, the polymerization conditions such as the polymerization reaction rate are very important factors in determining the particle structure, and these conditions are quality characteristics due to the particle structure of the resin, for example, It is known that particle size, bulk specific gravity, gelling property, powder fluidity, and the like are controlled. Conventionally, in order to increase the processing productivity during extrusion molding of a vinyl chloride resin or to increase the throughput in a batch mixer, the bulk specific gravity is high, the gelling property is excellent, and an appropriate particle size is required. There has been a demand for a resin having excellent powder flowability and molding processability. As a suspension polymerization method for producing a resin meeting such requirements, for example, a polymerization vessel equipped with a reflux condenser is used, and the water / monomer ratio at the time of initial charging is set to 0.8 to 1.0. A method of adding water during polymerization (Japanese Patent Publication No. 3-4561), a method of adding a monomer during polymerization (JP-A-50-97679), and a method of increasing the polymerization temperature during polymerization (JP-A-50-97679). 6
No. 1-207410), but these methods are insufficient in the effect of increasing the bulk specific gravity, and are coarsened due to insufficient suspension stability of the polymerization system. There were problems such as complicated polymerization operations. [0005] As a suspension polymerization method relating to a suspension agent formulation, many methods using a combination of a plurality of kinds of partially saponified polyvinyl acetate and a cellulose derivative have been proposed. For example, JP-B-63-39606, JP-B-1-27088, JP-B-2-22081, JP-B-2-62121, JP-A-61-141703, JP-A-61-141703,
2-260803, JP-A-62-263206, JP-A-63-156809
And JP-A-63-264611 and JP-A-63-275606. [0006] However, in the formulations disclosed in these prior arts, although the effect of increasing the bulk specific gravity is certainly recognized, the effect is insufficient, or other effects such as particle size, gelling property, powder fluidity, etc. However, it is not satisfactory as a method for stably obtaining a resin excellent in molding processability with high productivity. The inventors of the present invention have conducted intensive studies to solve the above-mentioned drawbacks. As a result, the present inventors have used a specific suspending agent and a suspending aid in a specific weight ratio, Control the stirring power of the
By completing the polymerization within the time, it is possible to obtain a vinyl chloride polymer with high bulk specific gravity, excellent gelling properties, and with appropriate particle size and improved powder flowability and moldability with high productivity. They have found that they can be manufactured, and have completed the present invention. That is, an object of the present invention is to provide an improved method for producing a high quality vinyl chloride polymer with high productivity. [0008] The above and other objects of the present invention According to an aspect of, upon suspension polymerization in an aqueous medium a vinyl chloride monomer in the presence of an oil-soluble polymerization initiator, stirrer and reflux condenser A vessel is installed, and a cooling medium passage is provided inside the polymerization vessel body.
Using internal volume 40 m 3 or more inner jacket type large-sized polymerization vessel, (A) selected from the group consisting of average saponification degree 65-95 mol% of partially saponified polyvinyl acetate and hydroxypropylmethylcellulose least one A suspending agent, and (B) partially saponified polyvinyl acetate and HL having an average degree of saponification of 15 to 55 mol%.
At least one suspension aid selected from the group consisting of nonionic surfactants having a B value of 2 to 10 has a weight ratio of (A) / (B) of 0.5 to 20. in combination, and the polymerization begins conversion rate controls the net stirring power per liquid content 1 m 3 of the polymerization vessel in the period until at least 5% 1.0~2.0kW / m 3, a reflux condenser as By the most
It is achieved by controlling the large heat removal ratio to less than 50% to carry out the polymerization and completing the polymerization within 6 hours. Hereinafter, the present invention will be described in detail. In the present invention, as the monomer copolymerizable with vinyl chloride, for example, alkyl vinyl esters represented by vinyl acetate, alkyl vinyl ethers represented by cetyl vinyl ether, ethylene, α-monoolefins such as propylene, Such as methyl acrylate, methyl methacrylate, etc.
Examples thereof include alkyl (meth) acrylates, vinylidene chloride, styrene, and the like, but are not limited thereto as long as they copolymerize. [0010] The suspending agent (A) used in the present invention is at least one selected from the group consisting of partially saponified polyvinyl acetate having an average degree of saponification of 65 to 95 mol% and hydroxypropylmethylcellulose. When this is selected from partially saponified polyvinyl acetate, those having a saponification degree of 70 to 90 mol% and an average polymerization degree of 700 to 3000 are preferred. When selected from hydroxypropyl methylcellulose, those having a methoxy group content of 25 to 30% by weight, a hydroxypropoxy group content of 4 to 12% by weight, and a viscosity of 2% by weight aqueous solution at 20 ° C. of 40 to 60 centipoise are preferred. . The suspending agent (A) is a water-soluble component, and has a function of regulating the viscosity and the aggregation state of particles by its dispersing effect and suspension protecting effect. On the other hand, the component (B) used in the present invention is insoluble or hardly soluble in water, and has a low surface activity even when used for suspension polymerization in an aqueous medium. It is generally called a suspension aid, an auxiliary suspension, a secondary suspension or the like. In the present invention, this is called a suspension aid. The suspending aid (B) used in the present invention is selected from the group consisting of partially saponified polyvinyl acetate having an average degree of saponification of 15 to 55 mol% and a nonionic surfactant having an HLB value of 2 to 10. At least one selected compound. When this is selected from partially saponified polyvinyl acetate, the degree of saponification is 30 to 50 mol% and the degree of polymerization is 200 to 800.
Are preferred. On the other hand, examples of nonionic surfactants having an HLB value of 2 to 10 include sorbitan monolaurate, sorbitan monopalmitate, sorbitan (mono, di, tri) stearate, sorbitan fatty acid esters such as sorbitan monooleate, and stearin. Examples include glycerin fatty acid esters such as acid monoglyceride and oleic acid monoglyceride, but are not limited thereto. However, when the suspension aid (B) is selected from the above surfactants, sorbitan fatty acid esters are preferred, and sorbitan monostearate is particularly preferred. The suspending aid (B) is an oil-soluble component, and is presumed to have an action of dissolving in monomer oil droplets and preventing aggregation of fine polymer particles deposited inside and on the surface of the oil droplets. But,
Since a polymer rich in internal voids and having a small number of skin layers can be obtained, there is an effect of improving fish eye, gelling property at the time of molding and plasticizer absorption. In the present invention, the suspending agent (A) and the suspending aid (B) are used as the suspending agent system.
), At least one of each selected from both groups is used in combination, and the weight ratio (
A) / (B) is set to 0.5 to 20, preferably 1 to 10. If the ratio is less than 0.5, the bulk specific gravity of the resin decreases, and the fine powder in the product resin increases to impair the powder fluidity. On the other hand, if this value exceeds 20, the gelling properties of the resin will deteriorate, so that the object of the present invention cannot be achieved. The amount of the suspending agent (A) used is usually in the range of 0.03 to 0.08 parts by weight per 100 parts by weight of the monomer. In carrying out the present invention, first, a monomer, water, a polymerization initiator, and the above-mentioned suspending agent system are charged into a polymerization vessel degassed in advance according to a conventional charging method, and a heating medium is placed in a jacket of the polymerization vessel. The polymerization is started by raising the content of the polymerization vessel to a predetermined polymerization temperature while stirring, by means such as circulating the polymer. In the present invention, the conversion is at least 5% from the initiation of the polymerization, preferably Is the time to reach 10-30%,
That is, until the basic skeleton of the polymer particle structure is formed, the content liquid 1 of the polymerization vessel is used.
The net stirring power per m 3 is 1.0-2.0 kW / m 3 , preferably 1.2-1.
It is essential to control to 6 kW / m 3 . When this value is less than 1.0 kW / m 3 , even when the above-described suspending agent system is used, the polymer particles are coarsened, and the porosity is impaired, and the gelling property is reduced. I do. On the other hand, if it exceeds 2.0 kW / m 3 , there is a disadvantage that not only the bulk specific gravity decreases, but also the particle size becomes fine or coarse particles are generated depending on other polymerization conditions. The stirring power after the conversion reaches 5% is not particularly limited as long as the inside of the polymerization vessel is uniformly stirred. A method for controlling the stirring power of the polymerization vessel is described in detail in, for example, “Chemical Engineering Association, edited by Chemical Engineering Handbook, 3rd revised edition, pp. 1065-1115, 1968, Maruzen Co., Ltd.”. As described above, by using an empirical formula or a diagram representing the relationship between the Reynolds number Re and the power number Np of the stirring system for the stirring devices of various shapes, or by actually measuring the power under certain stirring conditions. Experimentally determining Np as a constant,
The power can be arbitrarily adjusted by changing the rotation speed of the stirring blade. That is, the density of the contents of the polymerization vessel is ρ (kg / m 3 ), and the viscosity coefficient is Ό (kg / m 3 ).
m · sec), the rotation speed of the stirring blade is n (1 / sec), the blade span is d (m), the gravity conversion coefficient is gc (kg · m / kg · sec 2 ), and the speed reduction mechanism and shaft seal are used. Assuming that the net stirring power that does not include the loss of P is P (kg / m · sec), Re and Np are defined by Re = ρnd 2 / Ό Np = P · gc / ρn 3 d 5 , respectively. Np can be determined from known literature or experiments. The value of Np of a stirrer of a large polymerization vessel generally employed in a suspension polymerization method of a vinyl chloride monomer is in a range of about 0.2 to 2. V (m 3
), The net stirring power Pv (kW / m 3 ) per unit volume of the polymerization vessel can be calculated according to the following equation. Pv = Np · ρn 3 d 5 · / 102 · V · gc Therefore, when adjusting the net stirring power with a specific stirring device, since power is proportional to the cube of the rotational speed of the stirring blade, the rotation Power can be controlled by changing the number. The shape of a stirring device such as a stirring blade used in the present invention and a baffle used if desired is not particularly limited, and a conventional suspension weight method of a vinyl chloride monomer is generally used. Known stirring devices that have been employed can be used, and examples of the stirring blades include a turbine blade, a fan turbine blade, a Faudler blade, and a blue margin blade, and a Faudler blade is preferable. , A pipe type, a D type, a loop type, and an E type (finger type) are exemplified, and a pipe type, a D type, and an E type baffle are preferable. These stirring blades and baffles may be those commonly used in the polymerization of vinyl chloride. For example, the aforementioned Handbook of Chemical Engineering or Koji Saeki: Polymer Production Process, pp. 157-159, 1
971, Industrial Research Committee ". Further, in carrying out the present invention, it is possible to complete a polymerization reaction within 6 hours, which usually takes more than 6 hours in a large-scale polymerization vessel having an internal volume of 40 m 3 or more which has been conventionally employed on an industrial scale. Required. By performing such a high-speed polymerization, the conversion rate from the liquid monomer to the resinous polymer is increased, the frequency of separation and dispersion of oil droplets, and the aggregation of fine particles generated inside the oil droplets in this process. It is presumed that the state is affected, but polymer particles having a high bulk specific gravity can be obtained. In addition, the production of fine particles that inhibit the fluidity of the powder can be suppressed, and there is an advantage that the handleability of the resin during molding is improved. If the time until the completion of the polymerization exceeds 6 hours, the object of the present invention cannot be achieved because the bulk specific gravity and the powder fluidity decrease. In the present invention, the time until the completion of polymerization, that is, the polymerization time, is defined as the time from the time when the internal temperature of the polymerization vessel reaches a predetermined polymerization temperature by a temperature raising operation or the like after the completion of charging of each component such as a monomer. After the pressure in the polymerization reactor has been changed for a while at the natural pressure at the polymerization temperature, the pressure starts to drop as the unreacted monomer decreases, and the time until the drop reaches 2 kg / cm 2 is defined. The polymerization time in the present invention is preferably 3 to 6 hours from the viewpoint of safety such as temperature control and pressure control of the polymerization vessel. In the present invention, examples of a method for completing the polymerization include a method of adding a polymerization inhibitor and a method of recovering an unreacted monomer from a polymerization vessel. As is known, the polymerization time can be adjusted by the amount of the polymerization initiator used, and the polymerization time can be shortened by increasing the amount of the polymerization initiator. In the present invention, the initiator used to complete the polymerization within 6 hours may be any of those conventionally used in the suspension polymerization method of a vinyl chloride monomer, and is not particularly limited. , 4,4-Trimethylpentyl-2-peroxyneodecanoate, di-2-
Ethylhexyl peroxy dicarbonate, diethoxyethyl peroxy dicarbonate, α-cumyl peroxy neodecanoate, t-butyl peroxy neodecanoate, t-butyl peroxy pivalate, 3,5,5-trimethylhexa Organic peroxides such as noyl peroxide and acetylcyclohexylsulfonyl peroxide; and azo compounds such as α, α′-azobisisobutyronitrile and α, α′-azobis-2,4-dimethylvaleronitrile. And one or a mixture of two or more of these are used. However, it is preferable to use an initiator having a perester structure having a 10-hour half-life temperature of 34 to 50 ° C. in an amount of 50% or more of the total initiator amount used for the polymerization. Although the amount of the initiator used varies depending on the type of the initiator and the polymerization temperature, it is usually 0.02 per 100 parts by weight of the monomer.
To 1 part by weight. [0023] A large amount of reaction heat is generated when a high-speed polymerization is performed within 6 hours according to the present invention using a large-scale polymerization vessel of an industrial scale having an internal volume of 40 m 3 or more. inner jacket type polymerization apparatus described in KOKOKU No. 3-4249, i.e. Runode using a polymerization vessel with improved heat transfer performance by providing a passage of chilling medium into the polymerization vessel body inner surface, the temperature control of the polymerization vessel It becomes easy, and there is no adverse effect such as foaming of the slurry and reduction in suspension stability due to heat removal. As the inner jacket type polymerization vessel, those having a performance of a total heat transfer coefficient of 700 kcal / m 2 · hr · ° C. or more at the time of polymerization are preferable. [0024] Ru with a reflux condenser carrying out the present invention, performs heat removal the maximum heat removal rate by the reflux condenser during the polymerization as less than 50%. Here, the ratio of heat removal by the reflux condenser is a ratio of the amount of heat removal by the reflux condenser to the amount of heat generated by the polymerization reaction. If this ratio exceeds 50%, the polymer adheres and accumulates on the heat transfer surface of the reflux condenser due to foaming of the slurry. It is presumed that the polymerization system is violently stirred when vaporized from the inside, but the suspension stability is impaired and coarsened, or the particle shape becomes irregular and it becomes impossible to obtain a spherical resin, There is a disadvantage that the powder fluidity and the bulk specific gravity are reduced. The structure of the reflux condenser is not particularly limited, but generally a multi-tube reflux condenser is exemplified. Any known method can be used for the reflux condenser, but the maximum heat removal rate is controlled to less than 50%. The polymerization is usually carried out at a temperature of 40 to 70 ° C., and a chain transfer agent such as a mercaptoalkanol or an alkyl thioglycolate, a pH adjuster, or a polymerization inhibitor may be used, if desired. . The water may be preheated or degassed. The charged amounts, the number of parts, and other polymerization conditions of these components may be conventional conditions conventionally used in vinyl chloride polymerization, and are not particularly limited. As described above, according to the present invention, a specific suspending agent and a suspending aid are used in combination at a specific weight ratio, and further, a stirring power and a polymerization reaction rate which are structural controlling factors of the polymer particles. By controlling to a specific range, it is possible to obtain a vinyl chloride resin excellent in molding processability such as particle size, bulk specific gravity, gelling property, powder fluidity, and can increase polymerization productivity. Problems that were difficult to achieve with conventional technology can be solved,
Very useful from an industrial point of view. EXAMPLES The present invention will be described more specifically with reference to the following examples. The percentages and parts in Examples and Comparative Examples are based on weight unless otherwise specified. The physical properties of the vinyl chloride resin were measured by the following methods. (1) Average Particle Diameter The average particle diameter was shown as a 50% passage diameter by sieve analysis using a JIS standard wire mesh. (2) Coarse-grain fraction [0029] According to the sieve analysis of (1) above, the ratio is shown as a ratio remaining in a 60-mesh wire net. (3) Bulk specific gravity The values are shown as values measured according to the method specified in JIS K6721. (4) Powder Fluidity The time required for the entire amount of 120 ml of the vinyl chloride resin to fall from the bulk specific gravity measurement hopper specified in JIS K6721 is shown. (5) Gel Time Using a Labo Plast Mill manufactured by Toyo Seiki Seisaku-sho, and setting the temperature of the jacket to 190 ° C.
100 parts (65 g) of vinyl chloride resin, 1 part of lead stearate,
After adding 2.5 parts of tribasic lead sulfate and 0.3 parts of dibasic lead stearate and preheating for 3 minutes, kneading is performed while rotating the roller head at 30 rpm, and the kneading torque is stabilized and a constant value is obtained. The time to show is shown. Experiment Nos. 1 to 3 (Example) and 4 (Comparative Example 1) A multi-tube reflux condenser having a heat transfer area of 80 m 2 was connected to the gas phase of the polymerization vessel, and the blade span 1
. After degassing a 3.2 m diameter, 45 m 3 inner jacket stainless steel polymerization vessel equipped with four 7 m Faudler-type retreat stirrers and four pipe baffles with an outer diameter of 0.22 m, a vinyl chloride monomer was added. 100 parts (17.0 tons), 110 parts of water, 0.050 part of partially saponified polyvinyl acetate having a saponification degree of 88 mol% and an average degree of polymerization of 2400 as a suspending agent, and sorbitan mono as a suspending aid Stearate 0.05
0 parts and 0.05 parts of 2,4,4-trimethylpentyl-2-peroxyneodecanoate as a polymerization initiator were charged, and the number of revolutions of a stirring blade was controlled at 112 rpm, and the contents of the polymerization vessel were stirred. The product was heated to a temperature of 57 ° C. to initiate polymerization. Simultaneously with the start of the polymerization, cooling water is passed through a reflux condenser to remove the heat of the polymerization reaction.
The polymerization was started and the polymerization was continued while maintaining the internal temperature at 57 ° C. by controlling the maximum heat removal rate by the reflux condenser to the value shown in Table 1, and the polymerization was initially 8.7 kg / cm 2 When the pressure of  dropped to 6.7 kg / cm 2 , unreacted monomers were recovered from the polymerization vessel to complete the polymerization. Next, the content of the polymerization vessel was discharged and dehydrated and dried to obtain a vinyl chloride resin. The net stirring power Pv is 1.5 kW /
m 3 , but thereafter gradually increased with the progress of polymerization, and reached 1.6 kW / m 3 when the polymerization conversion reached 5%. Polymerization time (from the point when the polymerization temperature is reached,
The time until the completion of the above polymerization) was 4.3 hours, and the conversion at the completion of the polymerization was 85%.
Met. Table 1 shows the results of Experiment Nos. 1 to 4 in comparison. [Table 1 ]

Claims (1)

【特蚱請求の範囲】 【請求項】 塩化ビニル単量䜓、たたは塩化ビニルず共重合し埗る単量䜓ず
塩化ビニルずの混合物から遞ばれた塩化ビニル系単量䜓を油溶性重合開始剀の存
圚䞋に氎性媒䜓䞭で懞濁重合するに際し、 撹拌装眮および還流凝瞮噚を装着し、重合噚本䜓内面に冷熱媒䜓の通路を蚭け
た内容積3以䞊の内郚ゞャケット匏倧型重合噚を甚い、 平均ケン化床〜モルの郚分ケン化ポリ酢酞ビニルおよびヒド
ロキシプロピルメチルセルロヌスから成る矀より遞ばれた少なくずも皮の懞濁
剀、および 平均ケン化床〜モルの郚分ケン化ポリ酢酞ビニルおよび
倀が〜の非むオン性界面掻性剀から成る矀より遞ばれた少なくずも皮
の懞濁助剀 の䞡者を、の重量比が〜ずなるよう䜵甚し、か぀重合
開始から転化率が少なくずもに達するたでの期間の重合噚の内容液3あ
たりの正味撹拌動力を〜3に制埡し、還流凝瞮噚による最
倧陀熱割合を未満に制埡しお重合を行い、時間以内に重合を完結させる
こずを特城ずする塩化ビニル系単量䜓の懞濁重合方法。
Claims 1. An oil-soluble polymerization initiator comprising a vinyl chloride monomer selected from a vinyl chloride monomer or a mixture of vinyl chloride and a monomer copolymerizable with vinyl chloride. At the time of suspension polymerization in an aqueous medium in the presence of a stirrer and a reflux condenser, a cooling medium passage is provided on the inner surface of the polymerization vessel main body.
Using internal volume 40 m 3 or more inner jacket type large-sized polymerization vessel, (A) selected from the group consisting of average saponification degree 65-95 mol% of partially saponified polyvinyl acetate and hydroxypropylmethylcellulose least one A suspending agent, and (B) partially saponified polyvinyl acetate and HL having an average degree of saponification of 15 to 55 mol%.
At least one suspension aid selected from the group consisting of nonionic surfactants having a B value of 2 to 10 has a weight ratio of (A) / (B) of 0.5 to 20. in combination, and the polymerization begins conversion rate controls the net stirring power per liquid content 1 m 3 of the polymerization vessel in the period until at least 5% 1.0~2.0kW / m 3, a reflux condenser as By the most
A suspension polymerization method for a vinyl chloride monomer, wherein polymerization is carried out while controlling a large heat removal ratio to less than 50%, and the polymerization is completed within 6 hours.

Family

ID=

Similar Documents

Publication Publication Date Title
JP5169344B2 (en) Method for producing vinyl chloride resin for paste processing
JP2574078B2 (en) Suspension polymerization of vinyl chloride monomer
JP2006321946A (en) Method for producing vinyl chloride-based polymer
JP4144322B2 (en) Method for producing vinyl chloride polymer for paste processing
JP2574078C (en)
JPH10316705A (en) Production of vinyl chloride polymer
JP2574096B2 (en) Suspension polymerization of vinyl chloride monomer
JP3568694B2 (en) Method for producing vinyl chloride polymer
JP2822278B2 (en) Suspension polymerization of vinyl chloride monomer
JP3105583B2 (en) Suspension polymerization of vinyl chloride monomer
JPH04277503A (en) Suspension polymerization of vinyl chloride monomer
JP3982326B2 (en) Method for producing vinyl chloride polymer latex for paste processing
JPH10120708A (en) Production of vinyl chloride-based resin
JP3369339B2 (en) Method for producing vinyl chloride polymer
JP3601156B2 (en) Method for producing vinyl chloride polymer
JPH07119249B2 (en) Method for producing vinyl chloride polymer
JPH11302307A (en) Production of vinyl chloride-based polymer
JPH10231304A (en) Continuous suspension polymerization of vinyl chloride-based monomer
JPH10279629A (en) Production of vinyl chloride polymer
JPH10237114A (en) Continuous suspension polymerization of vinyl chloride-based monomer
JPH01172407A (en) Manufacture of vinyl chloride polymer
JPH07110882B2 (en) Method for producing vinyl chloride polymer
JP2001261709A (en) Production of vinyl chloride polymer
JPH055008A (en) Method for polymerizing vinyl chloride-based monomer
JPH1036408A (en) Production of vinyl chloride polymer