JP2573442B2 - Operation method of centrifugal clarifier - Google Patents

Operation method of centrifugal clarifier

Info

Publication number
JP2573442B2
JP2573442B2 JP22684291A JP22684291A JP2573442B2 JP 2573442 B2 JP2573442 B2 JP 2573442B2 JP 22684291 A JP22684291 A JP 22684291A JP 22684291 A JP22684291 A JP 22684291A JP 2573442 B2 JP2573442 B2 JP 2573442B2
Authority
JP
Japan
Prior art keywords
sludge
centrifugal
rotating body
motor
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22684291A
Other languages
Japanese (ja)
Other versions
JPH0566288A (en
Inventor
勝記 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP22684291A priority Critical patent/JP2573442B2/en
Publication of JPH0566288A publication Critical patent/JPH0566288A/en
Application granted granted Critical
Publication of JP2573442B2 publication Critical patent/JP2573442B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Centrifugal Separators (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は例えば核燃料再処理にお
ける遠心清澄機の運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a centrifugal clarifier, for example, in nuclear fuel reprocessing.

【0002】[0002]

【従来の技術】使用済燃料の再処理施設においては、使
用済燃料を解体、切断後、硝酸を用いて溶解している。
この場合、少量の有用核種、特にウラン、プルトニウ
ム、核分裂生成物の一部およびジルカロイ燃料被覆管の
切屑が不溶性のスラッジとして残る。
2. Description of the Related Art In a spent fuel reprocessing facility, spent fuel is disassembled and cut and then dissolved using nitric acid.
In this case, small amounts of useful nuclides, in particular uranium, plutonium, some of the fission products and chips of the Zircaloy fuel cladding remain as insoluble sludge.

【0003】ところで、ウランとプルトニウムを有機溶
媒で抽出する前にあらかじめこの微粒子状のスラッジを
除去しておく必要があり、このスラッジを固液分離する
ための清澄工程として遠心清澄機が開発されている。こ
の遠心清澄機は、スラッジと溶解液との比重の差によっ
て遠心分離を行うもので、スラッジの捕集、洗浄、排出
が遠心操作で容易に行える利点がある。ここで、遠心清
澄機の構成を図3を参照しながら説明する。
By the way, it is necessary to remove this particulate sludge before extracting uranium and plutonium with an organic solvent, and a centrifugal fining machine has been developed as a fining process for solid-liquid separation of the sludge. I have. This centrifugal clarifier performs centrifugal separation by the difference in specific gravity between the sludge and the lysis solution, and has the advantage that collection, washing, and discharge of the sludge can be easily performed by a centrifugal operation. Here, the configuration of the centrifugal clarifier will be described with reference to FIG.

【0004】図3において、1はコンクリート製しゃへ
い壁であり、このしゃへい壁1の上部には架台2を介し
て駆動機構のモータ3が載置されている。モータ3には
カップリング4を介して回転軸5が接続されている。こ
の回転軸5の下端はしゃへい壁1を貫通し、しゃへい壁
1の下部に設置された回転体6の上部端板7に接続され
ている。回転体6の下端には開口部8を有する下部端板
9が接続されている。また、回転体6の内部には給液ノ
ズル10および洗浄ノズル11が挿入されている。
[0004] In FIG. 3, reference numeral 1 denotes a concrete shielding wall, and a motor 3 of a driving mechanism is mounted on a top of the shielding wall 1 via a gantry 2. A rotating shaft 5 is connected to the motor 3 via a coupling 4. The lower end of the rotating shaft 5 penetrates through the shielding wall 1 and is connected to an upper end plate 7 of a rotating body 6 installed below the shielding wall 1. A lower end plate 9 having an opening 8 is connected to a lower end of the rotating body 6. A liquid supply nozzle 10 and a cleaning nozzle 11 are inserted inside the rotating body 6.

【0005】回転体6の外周囲はケーシング13で包囲
されており、ケーシング13の上部外側面に環状の受け
容器14が設けられている。この受け容器14の上部内
面には、清澄液排出孔12から流出した清澄液が上方へ
飛散しないで受け容器14内に落下するように案内板1
5が設けられている。ケーシング13の下方は円錐状に
形成され、下端に不溶解スクラップ排出管16が接続さ
れている。回転体6の振動は軸受17で抑制されてい
る。モータ3はモータ駆動電源18で駆動され、回転速
度は回転計19で検出される。
[0005] The outer periphery of the rotating body 6 is surrounded by a casing 13, and an annular receiving container 14 is provided on the upper outer surface of the casing 13. The guide plate 1 is provided on the inner surface of the upper portion of the receiving container 14 such that the clarified liquid flowing out of the clarified liquid discharging hole 12 falls into the receiving container 14 without scattering upward.
5 are provided. A lower part of the casing 13 is formed in a conical shape, and an insoluble scrap discharge pipe 16 is connected to a lower end. The vibration of the rotating body 6 is suppressed by the bearing 17. The motor 3 is driven by a motor drive power supply 18, and the rotation speed is detected by a tachometer 19.

【0006】上記構成の遠心清澄機において、通常運転
は分析(不溶解スクラップ濃度等)の終了した溶解液を
定格回転数に保持された回転体6に給液ノズル10から
供給する。清澄液は清澄液出口管18から連続的に排出
され、不溶解スクラップは下部端板9上にスラッジとし
て捕集される。このスラッジは強い放射能を有するた
め、従来その捕集量の測定は間接的に算出されており、
分析値の濃度と運転時間からの算出もその一つである。
In the centrifugal fining machine having the above-described configuration, the normal operation is to supply the lysate having undergone analysis (insoluble scrap concentration or the like) from the liquid supply nozzle 10 to the rotating body 6 maintained at the rated rotation speed. The clarified liquid is continuously discharged from the clarified liquid outlet pipe 18, and the undissolved scrap is collected as sludge on the lower end plate 9. Since this sludge has strong radioactivity, the measurement of its collection amount has been calculated indirectly in the past,
Calculation from the concentration of the analysis value and the operation time is one of them.

【0007】[0007]

【発明が解決しようとする課題】このような構造の遠心
清澄機では、捕集され堆積したスラッジ量を処理液のス
ラッジ濃度と回転体の分離室の容積および運転時間から
推定している。しかし、この方法では濃度測定後の液体
移送経路において、スラッジの堆積があった場合など実
際の回転体内のスラッジ堆積量と一致しない課題があっ
た。
In the centrifugal fining machine having such a structure, the amount of collected and deposited sludge is estimated from the sludge concentration of the processing solution, the volume of the separation chamber of the rotating body, and the operation time. However, this method has a problem that the amount of sludge does not coincide with the actual amount of sludge accumulated in the rotating body, such as when sludge is accumulated in the liquid transfer path after the concentration measurement.

【0008】また、間接的なものとしては回転軸の回転
変位を回転体重量と対応させる方法(例えば特開昭57-7
5164号公報)および分離したスラッジ中の放射性核種(
106 Ru)のγ線測定による回転体内スラッジ重量の推
定(例えば特開昭59-195194号公報)する方法が知られ
ているが、何れの方法も大掛かりな計測機器が必要にな
る。
Indirectly, the rotation of the rotating shaft
A method of associating the displacement with the weight of the rotating body (for example, see
No. 5164) and radionuclides in separated sludge (
106 Estimation of sludge weight in rotating body by gamma measurement of Ru)
(For example, JP-A-59-195194).
However, both methods require large-scale measurement equipment.
You.

【0009】この種の遠心清澄機は放射線環境下に設置
されるため、計測機器類は保守の容易化の観点から個数
低減が望まれており、また遠心清澄機は通常連続運転を
行うので、スラッジ重量の測定は必要時に短時間で行え
るものが望まれている。本発明の目的は、回転体内のス
ラッジ重量を簡易に測定し、運転状況の把握が可能な遠
心清澄機の運転方法を提供することにある。
Since this type of centrifugal fining machine is installed in a radiation environment, it is desired to reduce the number of measuring instruments from the viewpoint of easy maintenance, and the centrifugal fining machine normally operates continuously. It is desired that the sludge weight can be measured in a short time when necessary. An object of the present invention is to provide an operation method of a centrifugal clarifier that can easily measure the weight of sludge in a rotating body and can grasp an operation state.

【0010】[0010]

【課題を解決するための手段】本発明は上記の目的を達
成するため、モータにより回転体を回転させ、その遠心
力を利用して回転体内のスラッジを清澄液と分離する遠
心清澄機の運転方法において、回転速度を若干変化させ
てそのときのモータ電流を検出し、このモータ電流の検
出値からあらかじめ求められたモータ電流とスラッジ量
の相関関係に基づいてスラッジ堆積量を推定しながら運
転することにある。
In order to achieve the above object, the present invention operates a centrifugal fining machine which rotates a rotator by a motor and separates sludge from the rotator from a fining liquid by utilizing the centrifugal force. In the method, the motor current is detected by slightly changing the rotation speed, and the operation is performed while estimating the sludge accumulation amount based on the correlation between the motor current and the sludge amount obtained in advance from the detected value of the motor current. It is in.

【0011】[0011]

【作用】このような遠心清澄機の運転方法にあっては、
清澄運転中に回転速度を変化させると、モータ電流は回
転速度の加減速時の回転体の完成モーメントに比例して
変化する。一方、スラッジが回転体中に堆積すると、慣
性モーメントが増加、つまりモータ電流とスラッジ堆積
量に相関関係がある。
[Function] In the operation method of such a centrifugal clarifier,
When the rotation speed is changed during the fining operation, the motor current changes in proportion to the completion moment of the rotating body when the rotation speed is accelerated or decelerated. On the other hand, when sludge accumulates in the rotating body, the moment of inertia increases, that is, there is a correlation between the motor current and the amount of sludge accumulation.

【0012】したがって、回転速度変化一定で若干回転
速度を減速、加速し、その時のモータ電流からモータ電
流とスラッジ量の相関関係に基づいてスラッジ堆積量が
推定可能となる。
Therefore, the rotation speed is slightly reduced and accelerated with a constant rotation speed change, and the sludge accumulation amount can be estimated from the motor current at that time based on the correlation between the motor current and the sludge amount.

【0013】[0013]

【実施例】以下本発明の一実施例を図面を参照して説明
する。遠心清澄機の構造は図3に示したものと同様なの
でその説明を省略し、ここでは運転方法についてのみ図
1および図2を参照して述べる。
An embodiment of the present invention will be described below with reference to the drawings. Since the structure of the centrifugal fining machine is the same as that shown in FIG. 3, the description thereof will be omitted, and here, only the operation method will be described with reference to FIGS.

【0014】図1に示すように、本実施例の構成では、
回転体6に回転軸5を介して連結されたモータ3とこの
モータ3にモータ電流を供給するモータ駆動電源18と
を結ぶ電路に設けられた電流計20でモータ電流を計測
すると共に、モータ3の回転速度を回転計19で検出
し、これら電流計20で計測されたモータ電流および回
転計19で検出された回転速度を検出回路21にそれぞ
れ入力する。この検出回路21は、モータ3の回転速度
を変化(減速、加速)させて、その時の加速電流IAcc
を検出するもので、この検出回路21で検出された加速
電流を判定部22に与えて加速電流から不溶性のスラッ
ジ量を推定し、モータ3の運転続行、停止を判断するも
のである。
As shown in FIG. 1, in the configuration of this embodiment,
The motor current is measured by an ammeter 20 provided on an electric path connecting the motor 3 connected to the rotating body 6 via the rotating shaft 5 and a motor drive power supply 18 for supplying a motor current to the motor 3. Is detected by the tachometer 19, and the motor current measured by the ammeter 20 and the rotation speed detected by the tachometer 19 are input to the detection circuit 21, respectively. The detection circuit 21 changes the rotation speed of the motor 3 (deceleration, acceleration), and changes the acceleration current I Acc at that time.
The accelerating current detected by the detecting circuit 21 is supplied to the determining unit 22 to estimate the amount of insoluble sludge from the accelerating current, and to determine whether to continue or stop the operation of the motor 3.

【0015】図2はモータ3の加速電流Acc と不溶性ス
ラッジ量の関係を示すもので、この関係から不溶性のス
ラッジ量を推定してモータ3の運転続行、停止を判断す
る。図1に示す構成において、清澄機運転中に強制的に
モータ3の回転速度を間欠的に定格の5%程度まで減速
し、さらに定格まで加速する。いま、ΔN/Δt=一定
で、速度変化させると次式が成立する。 Ip ・(ΔN/Δt)=T−TL ……(1) ここで、Ip :回転体の慣性モーメント、ΔN/Δt:
速度変化率、T:電動機発生トルク、TL :機械損トル
ク 機械損トルクTL はスラッジが堆積しても、ころがり軸
受の損失が微小に変化するため、スラッジ量に対してほ
ぼ不変である。一方、Ip は回転体の質量Δm、このΔ
mの回転半径をrとして Ip =Δmr2 ……(2)
FIG. 2 shows the relationship between the acceleration current Acc of the motor 3 and the amount of insoluble sludge. From this relationship, the amount of insoluble sludge is estimated to determine whether to continue or stop the operation of the motor 3. In the configuration shown in FIG. 1, during the operation of the finer, the rotational speed of the motor 3 is forcibly reduced intermittently to about 5% of the rated value and further accelerated to the rated value. Now, when ΔN / Δt = constant and the speed is changed, the following equation is established. I p · (ΔN / Δt) = T−T L (1) where I p : moment of inertia of the rotating body, ΔN / Δt:
Speed change rate, T: motor generated torque, TL : mechanical loss torque Even if sludge is deposited, the mechanical loss torque TL is almost invariant to the amount of sludge because the loss of the rolling bearing changes minutely. On the other hand, I p is the mass Δm of the rotating body,
Assuming that the radius of rotation of m is r, I p = Δmr 2 …… (2)

【0016】となるので、スラッジ量の増加に対してI
p も増加する。また、Ip が増加し、ΔN/Δt=一定
で、速度変化させるとトルクTがIp に比例して増加す
ることになる。
Therefore, when the amount of sludge increases, I
p also increases. When Ip increases and ΔN / Δt = constant and the speed is changed, the torque T increases in proportion to Ip .

【0017】モータトルクTが増すと、電流が増加(電
圧は毎回同じパターン)する。つまり、加速電流を検出
すれば、あらかじめ求めたスラッジ量推定曲線から不溶
性のスラッジ堆積量が推定可能となる。
When the motor torque T increases, the current increases (the voltage has the same pattern every time). That is, if the acceleration current is detected, the insoluble sludge accumulation amount can be estimated from the sludge amount estimation curve obtained in advance.

【0018】スラッジ量の計測は、細かく何回も実施す
る必要性がなく、例えば本実施例では清澄予想時間の約
1/20時間間隔で実施した。また、減速の範囲は定格の約
5%とした。5%とした理由は次の通りである。
It is not necessary to carry out the measurement of the sludge amount many times in detail.
Performed at 1/20 hour intervals. The range of deceleration was about 5% of the rating. The reason for setting it to 5% is as follows.

【0019】現在、溶解液中のミクロオーダの不溶性ス
ラッジを取除くため、数1000Gの遠心力が必要とされて
いる。このため、回転数として数1000rpm が要求され
る。スラッジと溶解液との比重差の遠心分離では、分離
し得る最小の粒子径、すなわち限界粒径dPは dP={18・μ・Q/ΔP・g・Σ}1/2 ここで、Σは遠心沈降面積で Σ=2 π・l・ω2 (r2 2 −r1 2 )/g・[ln 2 /r1 ] 但し、r1 :抜出し半径、r2 :ボウル半径、l:回転
体長さ、ω:回転体回転数、μ:溶解液(処理液)の粘
度、Q:処理流量、ΔP:比重差 で表される。
At present, the insolubility of micro-order
To remove ludge, centrifugal force of several thousand g is required
I have. For this reason, several thousand rpm is required as the rotation speed.
You. Centrifugation of the specific gravity difference between sludge and lysate
The minimum particle size that can be obtained, that is, the critical particle size dP is: dP = {18 · μ · Q / ΔP · g ·}1/2  Where Σ is the centrifugal sedimentation area Σ = 2 π ・ l ・ ωTwo (RTwo Two -R1 Two ) / G · [lnrTwo/ R1Where r1: Extraction radius, rTwo: Bowl radius, l: Rotation
Body length, ω: Number of rotations of rotating body, μ: Viscosity of solution (treatment solution)
Degree, Q: processing flow rate, ΔP: specific gravity difference.

【0020】遠心沈降面積は回転体の形状が同一
(r1 ,r2 ,l)で、処理量が同一(μ,Q,ΔP)
ならば、回転体の回転数にのみ依存し、結局ΔPはωに
比例する。例えば定格回転数が数1000rpm の場合、減速
の測定時間として数10秒間から数分間になるには定速の
95%まで自由降速する必要がある。清澄への影響は前式
から dP1 /dP2 =ω1 /ω2 =ω1 /0.95ω1 =1.05 であり、ミクロンオーダの最小粒子径の5%の増加とな
るが、時間も短いので問題となるものではない。
The centrifugal sedimentation area has the same shape of the rotating body (r 1 , r 2 , l) and the same throughput (μ, Q, ΔP).
Then, it depends only on the rotation speed of the rotating body, and eventually ΔP is proportional to ω. For example, if the rated rotation speed is several thousand rpm, a constant speed
Free down to 95%. The effect on fining is dP 1 / dP 2 = ω 1 / ω 2 = ω 1 /0.95ω 1 = 1.05 from the previous equation, which is a 5% increase in the minimum particle diameter on the order of microns, but since the time is short, Not a problem.

【0021】本実施例では、清澄運転中の一時期にスラ
ッジ捕集量の算出手順を示したが、処理液の供給液停止
後の捕集量確認、洗浄運転後に次の清澄運転スタート時
に前回と回転体重量の差のチェックにも利用することが
可能である。
In the present embodiment, the calculation procedure of the sludge collection amount was shown at one time during the fining operation. However, the collection amount confirmation after stopping the supply of the processing liquid, and the next operation after the rinsing operation, when the next fining operation is started. It can also be used to check the difference in the weight of the rotating body.

【0022】[0022]

【発明の効果】以上述べたように本発明による清澄機の
運転方法によれば、清澄運転中、任意の時期に短時間に
正確に捕集スラッジ量を確認することができると共に、
計測系として新たな機器をエリア内に持込む必要がな
く、計測系の簡素化を図ることができる。また、回転体
の定格捕集のチェックが簡単に行え、長期間運転にかか
わる場合、遠心清澄機の信頼性の向上につながり、しか
も供給液を一定にしておくことにより溶解液中のスラッ
ジ濃度の変動のチェックを行うことができる。
As described above, according to the operation method of the finer according to the present invention, the amount of collected sludge can be accurately confirmed in a short time at any time during the fine operation.
There is no need to bring new equipment into the area as a measurement system, and the measurement system can be simplified. In addition, it is easy to check the rated collection of the rotating body, which leads to an improvement in the reliability of the centrifugal clarifier when operating for a long period of time. Check for fluctuations.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による遠心清澄機の運転方法を説明する
ための構成図。
FIG. 1 is a configuration diagram for explaining an operation method of a centrifugal clarifier according to the present invention.

【図2】同実施例におけるモータ加速電流とスラッジ量
との相関関係を示す曲線図。
FIG. 2 is a curve diagram showing a correlation between a motor acceleration current and a sludge amount in the embodiment.

【図3】遠心清澄機の構成例を示す縦断面図。FIG. 3 is a longitudinal sectional view showing a configuration example of a centrifugal clarifier.

【符号の説明】[Explanation of symbols]

1…しゃへい壁、2…架台、3…モータ、4…カップリ
ング、5…回転軸、6…回転体、7…上部端板、8…開
口部、9…下部端板、10…給液ノズル、11…洗浄ノ
ズル、12…清澄液排出孔、13…ケーシング、14…
受け容器、15…案内板、16…不溶解スラッジ排出
管、17…軸受、18…モータ駆動電源、19…回転
計、20…電流計、21…検出回路、22…判定部。
DESCRIPTION OF SYMBOLS 1 ... Shield wall, 2 ... Stand, 3 ... Motor, 4 ... Coupling, 5 ... Rotating shaft, 6 ... Rotating body, 7 ... Upper end plate, 8 ... Opening, 9 ... Lower end plate, 10 ... Liquid supply nozzle , 11 ... washing nozzle, 12 ... clarified liquid discharge hole, 13 ... casing, 14 ...
Receiving container, 15: guide plate, 16: insoluble sludge discharge pipe, 17: bearing, 18: motor drive power supply, 19: tachometer, 20: ammeter, 21: detection circuit, 22: determination unit.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 モータにより回転体を回転させ、その遠
心力を利用して回転体内のスラッジを清澄液と分離する
遠心清澄機の運転方法において、前記回転体の清澄運転
中に前記モータの回転速度を若干変化させて、そのとき
のモータ電流を検出し、このモータ電流の検出値から予
め求められたモータ電流とスラッジ量の相関関係に基づ
いてスラッジ堆積量を推定しながら前記遠心清澄機を運
転することを特徴とする遠心清澄機の運転方法。
1. A method of operating a centrifugal fining machine in which a rotating body is rotated by a motor and centrifugal force is used to separate sludge from the rotating body from a fining solution. By slightly changing the speed, the motor current at that time is detected, and the centrifugal fining machine is operated while estimating the sludge accumulation amount based on the correlation between the motor current and the sludge amount obtained in advance from the detected value of the motor current. An operation method of a centrifugal fining machine, which is operated.
JP22684291A 1991-09-06 1991-09-06 Operation method of centrifugal clarifier Expired - Lifetime JP2573442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22684291A JP2573442B2 (en) 1991-09-06 1991-09-06 Operation method of centrifugal clarifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22684291A JP2573442B2 (en) 1991-09-06 1991-09-06 Operation method of centrifugal clarifier

Publications (2)

Publication Number Publication Date
JPH0566288A JPH0566288A (en) 1993-03-19
JP2573442B2 true JP2573442B2 (en) 1997-01-22

Family

ID=16851425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22684291A Expired - Lifetime JP2573442B2 (en) 1991-09-06 1991-09-06 Operation method of centrifugal clarifier

Country Status (1)

Country Link
JP (1) JP2573442B2 (en)

Also Published As

Publication number Publication date
JPH0566288A (en) 1993-03-19

Similar Documents

Publication Publication Date Title
EP0314754A1 (en) Method and apparatus for overspeed protection for high speed centrifuges.
JP4546690B2 (en) Method and system for centrifuge energy management and overspeed prevention
GB2196555A (en) High-speed centrifugal extractor having improved weirs
Bernstein et al. A high-capacity annular centrifugal contactor
JP2573442B2 (en) Operation method of centrifugal clarifier
JP2637218B2 (en) Operation method of centrifugal clarifier
WO2002005967A1 (en) Centrifuge unbalance detection system
Bernstein et al. Development and performance of a high-speed annular centrifugal contactor.
JP2009106887A (en) Centrifuge
Leonard 10 Design Principles and Applications of Centrifugal Contactors for Solvent Extraction
Bernstein et al. Development and performance of a high-speed, long-rotor centrifugal contactor for application to reprocessing LMFBR fuels.
Kishbaugh Performance of a Multistage Centrifugal Contactor
JPH06328010A (en) Sludge collected amount detecting method
JPH05104031A (en) Abnormal vibration detector of centrifugal separator
JP2950484B2 (en) Device for measuring and monitoring the amount of collected solid-liquid separator
Sakamoto et al. ICONE23-1165 SLUDGE BEHAVIOR IN CENTRIFUGAL CONTACTOR OPERATION FOR NUCLEAR FUEL REPROCESSING
JPH0679199A (en) Displaying method for remaining time in centrifugal machine
JPS58124997A (en) Clarifying and extracting system in nuclear fuel reprocessing
JPS58223454A (en) Centrifugal separator for retreating nuclear fuel
Strunk et al. Dynamic considerations in the development of centrifugal separators used for reprocessing nuclear fuel
JP2607787Y2 (en) Centrifuge
JPS5753262A (en) Monitor for operation of centrifuge
JPS62294455A (en) Centrifugal clarifier
JPS60194391A (en) Pulse column device
CA2084899A1 (en) Control system for a centrifuge instrument