JP2572912B2 - Method for manufacturing air electrode of solid oxide fuel cell - Google Patents

Method for manufacturing air electrode of solid oxide fuel cell

Info

Publication number
JP2572912B2
JP2572912B2 JP3251655A JP25165591A JP2572912B2 JP 2572912 B2 JP2572912 B2 JP 2572912B2 JP 3251655 A JP3251655 A JP 3251655A JP 25165591 A JP25165591 A JP 25165591A JP 2572912 B2 JP2572912 B2 JP 2572912B2
Authority
JP
Japan
Prior art keywords
powder
air electrode
fuel cell
solid oxide
oxide fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3251655A
Other languages
Japanese (ja)
Other versions
JPH0589881A (en
Inventor
孝夫 飯味
裕丈 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP3251655A priority Critical patent/JP2572912B2/en
Publication of JPH0589881A publication Critical patent/JPH0589881A/en
Application granted granted Critical
Publication of JP2572912B2 publication Critical patent/JP2572912B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質型燃料電池
の自己支持型の多孔質空気極を製造する方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a self-supporting porous air electrode of a solid oxide fuel cell.

【0002】[0002]

【従来の技術】固体電解質型燃料電池(SOFC)は、
発電効率が高い、燃料の多様化が図れる(ナフサ、天然
ガス、メタノール、石炭改質ガス等)、低公害である等
の特徴を有した極めて有望な発電装置として、最近注目
されている。
2. Description of the Related Art Solid oxide fuel cells (SOFCs)
Recently, it has attracted attention as a very promising power generation device having features such as high power generation efficiency, diversification of fuels (such as naphtha, natural gas, methanol, and coal reformed gas), and low pollution.

【0003】この固体電解質型燃料電池において、主要
構成物である薄膜状の電極、電解質は、それ自体では自
己を支持するだけの強度がない。このため、従来は、多
孔質の支持体の上に、プラズマ溶射やスラリーコーティ
ングによって、電極膜、固体電解質膜を形成していた。
[0003] In this solid oxide fuel cell, the thin-film electrode and the electrolyte, which are the main components, do not have sufficient strength to support themselves. For this reason, conventionally, an electrode film and a solid electrolyte film have been formed on a porous support by plasma spraying or slurry coating.

【0004】しかし、上記のように多孔質の支持体の上
に電極膜、電解質膜を形成した場合、支持体のガス拡散
抵抗によって出力の低下が生じる問題があり、また、全
体の構造も複雑であった。このため、多孔質の支持体の
上に電極を設ける代わりに、多孔質電極自体を支持体と
して使用できれば、全体の構造を簡素化でき、製造プロ
セスの簡略化、コストダウンが可能となると共に、ガス
拡散抵抗によるロスをなくして出力を向上させることが
できる。しかし、従来の多孔質電極では、それ自体充分
な強度が得られず、構造支持体材料としては不適当であ
った。
However, when the electrode film and the electrolyte film are formed on the porous support as described above, there is a problem that the output is reduced due to the gas diffusion resistance of the support, and the entire structure is complicated. Met. Therefore, if the porous electrode itself can be used as the support instead of providing the electrode on the porous support, the entire structure can be simplified, the manufacturing process can be simplified, and the cost can be reduced. The output can be improved without loss due to gas diffusion resistance. However, the conventional porous electrode itself did not provide sufficient strength and was not suitable as a structural support material.

【0005】この問題を解決するため、本出願人は、特
開平2−293384号公報において、空気電極としても使用
できる多孔質セラミックス管の製造方法を開示した。こ
の製造方法によって、従来よりも遥かに高強度の管を安
定して製造することができるようになった。
In order to solve this problem, the present applicant has disclosed in Japanese Patent Application Laid-Open No. 2-293384 a method of manufacturing a porous ceramic tube which can be used also as an air electrode. With this manufacturing method, it has become possible to stably manufacture a tube having much higher strength than before.

【0006】[0006]

【発明が解決しようとする課題】しかし、更に研究を進
めていくと、未だ問題が残されていることが新たに判明
した。即ち、出発原料として La2O3、MnO2、SrCO3 粉末
を用い、これらの原料粉末を秤量し、ボールミル中で湿
式混合して混合物を作り、この混合物を成形、乾燥、焼
成して、例えば La0.9Sr0.1MnO3 を合成していた。そし
て、この合成物を一旦解砕して粉末にし、この粉末に水
と有機バインダーと増孔剤とを追加して混練し、この混
練物を成形、焼成して、空気電極管を製造した。
However, as a result of further research, it has been newly found that problems still remain. That is, La 2 O 3 , MnO 2 , and SrCO 3 powders were used as starting materials, these raw material powders were weighed, wet-mixed in a ball mill to form a mixture, and the mixture was molded, dried, and fired. La 0.9 Sr 0.1 MnO 3 was synthesized. The composite was once crushed into powder, water, an organic binder, and a pore-forming agent were added to the powder and kneaded, and the kneaded product was molded and fired to produce an air electrode tube.

【0007】この空気電極管には、様々の相反する要求
が課されている。まず、空気電極管は、円筒型 SOFC 単
電池の構造支持材料であるので、所定の圧環強度を有し
ていなければならない。また、酸化ガスが拡散するもの
であるから、25%以上の開気孔率を有していなければな
らないが、この開気孔率が大きくなりすぎると、空気電
極管の圧環強度が不充分になる。また、SOFC単電池の寸
法が空気電極管の寸法によって決定されるので、単電池
を集合化して集合電池を支障なく構成できるようにする
には、空気電極管の寸法を一定にする必要がある。
Various contradictory requirements are imposed on the air electrode tube. First, since the air electrode tube is a structural support material of the cylindrical SOFC cell, it must have a predetermined radial crushing strength. Further, since the oxidizing gas diffuses, it must have an open porosity of 25% or more. However, if the open porosity is too large, the radial crushing strength of the air electrode tube becomes insufficient. Also, since the dimensions of the SOFC cell are determined by the dimensions of the air electrode tube, the dimensions of the air electrode tube need to be constant in order to assemble the cells and configure the assembled battery without any trouble. .

【0008】しかし、La2O3 粉末は極めて高い吸湿性を
備えていた。このため、La2O3 粉末を一旦焙焼してでき
る限り水分を追い出し、次いで La2O3粉末を真空パック
して工場まで運ぶことにした。ところが、 La2O3粉末を
秤量する段階で、真空パックを開封して秤量すると、こ
の僅かの時間に La2O3粉末が吸水することが解った。具
体的には、La2O3 粉末の重さを正確に秤量したつもりで
あっても、実際には吸水量の分だけ La の量が減り、相
対的に Mn , Srの含有比が増大することになる。このよ
うに Mn の量が上がると、後の焼成段階で焼結が進みす
ぎ、最終製品の気孔率が下がってしまうことが解った。
こうなると、空気電極管内で酸化ガスが拡散しにくくな
り、単電池の出力が低下する。また、上記のように空気
電極管の焼結が進行しすぎると、空気電極管が収縮しす
ぎ、特にその外径寸法が公差の範囲を越えて小さくな
る。こうなると、部品として使用できない。
However, La 2 O 3 powder has extremely high hygroscopicity. For this reason, the La 2 O 3 powder was once roasted to remove as much moisture as possible, and then the La 2 O 3 powder was vacuum-packed and transported to a factory. However, at the stage of weighed La 2 O 3 powder and weighed by opening the vacuum pack, La 2 O 3 powder was found to absorb water this slight time. Specifically, even if it is intended to accurately measure the weight of the La 2 O 3 powder, the amount of La is actually reduced by the amount of water absorption, and the content ratio of Mn and Sr is relatively increased. Will be. It has been found that when the amount of Mn is increased, sintering proceeds too much in the subsequent sintering step, and the porosity of the final product is reduced.
In this case, the oxidizing gas hardly diffuses in the air electrode tube, and the output of the cell decreases. If the sintering of the air electrode tube proceeds too much as described above, the air electrode tube shrinks too much, and particularly its outer diameter becomes smaller than the range of tolerance. In this case, it cannot be used as a part.

【0009】更に、 La2O3粉末の吸湿性が極めて高いこ
とから、別の問題も生じた。即ち、秤量後の La2O3
末、MnO2粉末、SrCO3 粉末をボールミル中で湿式混合す
るが、この混合の過程でLa2O3 が急速に吸水し、猛烈に
発熱する。このため、ボールミル中で混合物の温度が90
℃以上にまで急激に上昇し、ボールミル中の圧力が高ま
るので、爆発するおそれがあった。このため、何らかの
対策を講じる必要があった。
Further, another problem has arisen because the La 2 O 3 powder has an extremely high hygroscopicity. That is, the weighed La 2 O 3 powder, MnO 2 powder, and SrCO 3 powder are wet-mixed in a ball mill. During this mixing process, La 2 O 3 rapidly absorbs water and generates heat violently. For this reason, the temperature of the mixture in the ball mill is 90
The temperature rapidly rose to over ℃ and the pressure in the ball mill increased, which could cause an explosion. For this reason, it was necessary to take some measures.

【0010】本発明の課題は、ランタンマンガネート系
複合酸化物からなるSOFCの自己支持型の多孔質空気
極を製造するのに際し、空気極の気孔率、寸法にバラツ
キが生ずるのを防止し、その歩留りを向上させ、かつラ
ンタンマンガネート系複合酸化物の原料を湿式混合する
際の爆発等のおそれをなくすことである。
[0010] An object of the present invention is to prevent the porosity and size of the air electrode from being varied when producing a self-supporting porous air electrode of an SOFC comprising a lanthanum manganate-based composite oxide. It is an object of the present invention to improve the yield and eliminate the risk of explosion or the like when the raw materials of the lanthanum manganate-based composite oxide are wet-mixed.

【0011】[0011]

【課題を解決するための手段】本発明は、固体電解質型
燃料電池の自己支持型の多孔質の空気極を製造する方法
であって、焼成後に所定組成のランタンマンガネート系
複合酸化物を生成するように、水酸化ランタン粉末と他
の金属化合物粉末とをそれぞれ秤量し、秤量後の水酸化
ランタン粉末と他の金属化合物粉末とを湿式混合し、こ
の混合粉末を成形、焼成してランタンマンガネート系複
合酸化物を合成し、この合成物を粉砕して得た粉末を、
少なくともバインダー、水および造孔剤と共に混練し、
この混練物を成形し、こうして得た成形体を乾燥、焼成
することによって空気極を製造することを特徴とする、
製造方法に係るものである。
SUMMARY OF THE INVENTION The present invention is a method for producing a self-supporting porous air electrode of a solid oxide fuel cell, which comprises producing a lanthanum manganate-based composite oxide having a predetermined composition after firing. Lanthanum hydroxide powder and other metal compound powder are weighed, and the weighed lanthanum hydroxide powder and other metal compound powder are wet-mixed, and the mixed powder is molded and fired to form a lanthanum manganese powder. A powder obtained by synthesizing a carbonate-based composite oxide and pulverizing the synthesized product,
Knead with at least binder, water and pore-forming agent,
This kneaded product is molded, and the molded body thus obtained is dried and fired to produce an air electrode,
It relates to a manufacturing method.

【0012】上記において、ランタンマンガネート系複
合酸化物は、以下の化学式を有する。 La1-xAx MnO3 A:Sr ,Ca ,Mg ,Zn 又はCe X: 0.5以下が好ましく、0.2 以下が更に好ましい。 上記の化学式において、金属Aの占める部位は一部欠損
していてもよい。
In the above, the lanthanum manganate-based composite oxide has the following chemical formula. La 1-x Ax MnO 3 A: Sr, Ca, Mg, Zn or Ce X: preferably 0.5 or less, more preferably 0.2 or less. In the above chemical formula, the site occupied by the metal A may be partially missing.

【0013】SOFCの空気極は、導電性、酸化ガスに
対する耐久性及び耐熱性を要求される。
The air electrode of the SOFC is required to have conductivity, durability against oxidizing gas, and heat resistance.

【0014】上記合成物を粉砕して得た粉末は、少なく
ともバインダーと水と造孔剤と共に混練する。こうした
造孔剤としては、アクリルパウダーやカーボンパウダー
を例示できる。こうした混練物を成形し、こうして得た
成形体を乾燥、焼成して自己支持型の空気極を製造す
る。この焼成温度は1400〜1600℃とすることが好まし
い。
The powder obtained by pulverizing the above synthesized product is kneaded with at least a binder, water and a pore-forming agent. Examples of such pore formers include acrylic powder and carbon powder. The kneaded material is molded, and the molded body thus obtained is dried and fired to produce a self-supporting air electrode. This firing temperature is preferably set to 1400 to 1600 ° C.

【0015】ランタンマンガネート系複合酸化物を合成
する段階では、前記の化学式に示された化学量論比とな
るように、水酸化ランタン粉末と他の金属化合物粉末と
をそれぞれ秤量する。他の金属化合物粉末とは、元素A
を含む化合物粉末と、マンガンを含む化合物粉末とを指
す。これらのうち好ましいものを示す。 元素Aを含む化合物粉末:SrCO3, CaCO3, MgCO3 マンガンを含む化合物粉末:MnO2 、Mn3 4
In the step of synthesizing the lanthanum manganate-based composite oxide, the lanthanum hydroxide powder and the other metal compound powder are weighed so as to have the stoichiometric ratio shown in the above chemical formula. The other metal compound powder is the element A
And a compound powder containing manganese. Preferred examples are shown below. Compound powder containing element A: SrCO 3 , CaCO 3 , MgCO 3 Compound powder containing manganese: MnO 2 , Mn 3 O 4

【0016】[0016]

【作用】本発明者は、La2O3 粉末を正確に秤量するため
にいろいろと工夫を重ねたが、これは非常に困難であっ
た。そこで、発想を全面的に改めて、原料粉末の種類自
体を変えてみた。すると、水酸化ランタン粉末を用いる
と、極めて正確にランタンの量を秤量できることが解っ
た。これは、水酸化ランタン(La(OH)3) の乾燥粉末に結
晶水や付着水が付かないという性質によるものであろ
う。
The present inventor has made various attempts to accurately measure the La 2 O 3 powder, but this has been very difficult. Therefore, I completely changed the idea and changed the type of raw material powder itself. As a result, it was found that the amount of lanthanum can be measured very accurately using the lanthanum hydroxide powder. This may be due to the property that crystallization water and attached water do not adhere to the dry powder of lanthanum hydroxide (La (OH) 3 ).

【0017】この結果、水酸化ランタン粉末を他の金属
化合物粉末と湿式混合し、次いで上記の手順に従って S
OFC 構成材を作製しても、この構成材の気孔率、寸法精
度等の重要な特性にほとんどバラツキが見られなくなっ
た。これにより、常に安定な品質のSOFC構成材を得るこ
とができるようになり、かつSOFC構成材の不良品が少な
くなって歩留りが向上した。しかも、水酸化ランタン粉
末を湿式混合しても、この段階で発熱しないので、ボー
ルミル等の容器内の温度が急激に上昇したり、爆発する
ようなおそれもなくなった。
As a result, the lanthanum hydroxide powder is wet-mixed with the other metal compound powder, and then the S
Even when the OFC component was manufactured, there was almost no variation in important characteristics such as porosity and dimensional accuracy of the component. As a result, a stable quality SOFC component can be always obtained, and the number of defective SOFC components is reduced, thereby improving the yield. Moreover, even if the lanthanum hydroxide powder is wet-mixed, no heat is generated at this stage, so that there is no danger that the temperature in the container such as a ball mill will rise rapidly or explode.

【0018】[0018]

【実施例】以下、SOFC用の空気電極管を製造した例につ
いて述べる。この組成は、La0.9 Sr0.1MnO3 とした。 (本発明の実施例)まず、31.9重量%の MnO2 粉末と、5.
4 重量%の SrCO3粉末と、62.7重量%の水酸化ランタン
粉末とを秤量した。このうち水酸化ランタン粉末は、以
下のようにして製造した。まず、ポリ容器の中に33重量
%の純水を入れ、67重量%の酸化ランタン粉末を徐々に
純水中へと添加し、ゲル状にし、1時間放置した。この
後、ポリ容器内を 100℃に加熱して付着水を蒸発させ、
水酸化ランタンの粉末を得た。この乾燥粉末についてX
線回折分析を行い、100 % La(OH)3であることを確認し
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an example in which an air electrode tube for SOFC is manufactured will be described. This composition was La 0.9 Sr 0.1 MnO 3 . (Example of the present invention) First, 31.9% by weight of MnO 2 powder and 5.
4% by weight of SrCO 3 powder and 62.7% by weight of lanthanum hydroxide powder were weighed. Of these, the lanthanum hydroxide powder was produced as follows. First, 33% by weight of pure water was put in a plastic container, and 67% by weight of lanthanum oxide powder was gradually added to the pure water to form a gel, which was left for 1 hour. After that, the inside of the plastic container is heated to 100 ° C to evaporate the attached water,
A powder of lanthanum hydroxide was obtained. X about this dry powder
A line diffraction analysis was performed to confirm that it was 100% La (OH) 3 .

【0019】次いで、上記の MnO2 粉末、SrCO3 粉末及
び水酸化ランタン粉末を、ボールミル中で湿式混合し
た。この際、水分の重量比は50重量%とし、玉石として
ジルコニア製玉石を用いた。この状態で1時間混合した
が、混合物の温度は20〜30℃程度にしか上昇しなかっ
た。この混合を終えた後、水分が0重量%となるまで混
合物を電気炉内で乾燥し、この乾燥物を1400℃で5時間
焼成し、La0.9Sr0.1MnO3を合成した。この合成物を粉砕
し、粉砕後の粉末 100重量部に対し、セルロース (増孔
剤) を3重量部と、ポリビニルアルコール(有機バイン
ダー)を添加し、水分18重量部を更に加えた。これらを
土練機中で2時間混練した。この混練物を押出成形し、
外径33mm、肉厚2 mm の円筒状成形体を得た。この円筒
状成形体を、電気乾燥器によって調湿乾燥し、円筒状成
形体の水分を10重量%とした。乾燥後の円筒状成形体を
1600℃で焼成し、空気電極管を得た。こうして得た空気
電極管 (バッチNo.1〜5)の気孔率と外径寸法とを測定し
た。この測定結果を表1に示す。
Next, the above MnO 2 powder, SrCO 3 powder and lanthanum hydroxide powder were wet-mixed in a ball mill. At this time, the weight ratio of water was set to 50% by weight, and zirconia cobblestone was used as the cobblestone. After mixing for 1 hour in this state, the temperature of the mixture increased only to about 20 to 30 ° C. After completion of the mixing, the mixture was dried in an electric furnace until the water content became 0% by weight, and the dried product was fired at 1400 ° C. for 5 hours to synthesize La 0.9 Sr 0.1 MnO 3 . This synthesized product was pulverized, and 3 parts by weight of cellulose (a pore-forming agent) and polyvinyl alcohol (organic binder) were added to 100 parts by weight of the pulverized powder, and 18 parts by weight of water was further added. These were kneaded in a kneader for 2 hours. This kneaded material is extruded,
A cylindrical molded body having an outer diameter of 33 mm and a thickness of 2 mm was obtained. The cylindrical molded body was conditioned and dried by an electric dryer to reduce the water content of the cylindrical molded body to 10% by weight. After drying the cylindrical molded body
It was fired at 1600 ° C. to obtain an air electrode tube. The porosity and outer diameter of the thus obtained air electrode tubes (batch Nos. 1 to 5) were measured. Table 1 shows the measurement results.

【0020】[0020]

【表1】 [Table 1]

【0021】このように、本発明に従うことにより、気
孔率の平均値は目標値である 25.0%となり、その標準
偏差σも小さくなった。こうした空気電極管であれば、
酸化ガスの拡散が充分に行われると共に、導電率もあま
り低下しないので、両者が最適化され、発電出力が向上
する。また、外径寸法の平均値も目標値(20.00mm)に近
く、その標準偏差も 0.03mm となった。この空気電極管
の外径寸法の公差は0.1 mmであるので、不良品は発生し
にくい。また、このように気孔率と外径寸法とが安定し
た結果、空気電極管の機械的強度も安定した。 〔比較例1〕次に、上記の実施例と同様にして、バッチ
No.1〜5の空気電極管を製造した。ただし、水酸化ラ
ンタン粉末の代りに、La2O3 粉末を用いた。また、La
0.9Sr 0.1MnO3 の化合量論比に適合させるため、La2O3
粉末の量を 45.3 重量%とし、SrCO3 粉末の量を 8.0重
量%とし、MnO2粉末の量を 46.8 重量%とした。La2O3
粉末については、真空パックから取出した後、空気中で
できるだけ迅速に秤量した。こうして得た空気電極管の
気孔率と外径寸法とを測定した。この結果を表2に示
す。
Thus, according to the present invention,
The average porosity is the target value of 25.0%,
The deviation σ also became smaller. With such an air electrode tube,
The diffusion of oxidizing gas is sufficient and the conductivity is
Not optimized, both are optimized and power generation output is improved
I do. Also, the average value of the outer diameter is close to the target value (20.00mm).
The standard deviation was 0.03 mm. This air electrode tube
The tolerance of the outer diameter of
Hateful. In addition, the porosity and outer diameter are stable in this way.
As a result, the mechanical strength of the air electrode tube was also stabilized. [Comparative Example 1] Next, a batch was prepared in the same manner as in the above embodiment.
 No. 1 to 5 air electrode tubes were manufactured. However,
La instead of tin powderTwoOThreePowder was used. Also, La
0.9Sr 0.1MnOThree To match the stoichiometric ratio ofTwoOThree
The amount of powder was 45.3% by weight, and SrCOThree8.0 weight of powder
% And MnOTwoThe amount of powder was 46.8% by weight. LaTwoOThree
For powder, remove from vacuum pack and in air
Weighed as quickly as possible. The air electrode tube thus obtained
The porosity and the outer diameter were measured. The results are shown in Table 2.
You.

【0022】[0022]

【表2】 [Table 2]

【0023】この結果から解るように、気孔率は目標値
である 25 %から大きく外れているし、しかも標準偏差
が1%近い。このため、空気電極管の機械的強度と導電
率が低下する。また、外径寸法の標準偏差が非常に大き
いので、不良品が増える。 〔比較例2〕比較例1と同じようにしてバッチ No.1〜
5の空気電極管を製造した。ただし、La2O3 粉末を真空
パックから出した後、900 ℃で3時間保持して焙焼し、
次いで冷ましてから秤量した。空気電極管について、気
孔率と外径寸法とを測定した。結果を表3に示す。
As can be seen from the results, the porosity is far from the target value of 25%, and the standard deviation is close to 1%. For this reason, the mechanical strength and electrical conductivity of the air electrode tube decrease. Further, since the standard deviation of the outer diameter dimension is very large, defective products increase. [Comparative Example 2] Batch Nos.
5 air electrode tubes were manufactured. However, after taking out the La 2 O 3 powder from the vacuum pack, it was roasted by holding at 900 ° C. for 3 hours.
It was then cooled and weighed. The porosity and the outer diameter of the air electrode tube were measured. Table 3 shows the results.

【0024】[0024]

【表3】 [Table 3]

【0025】本例でも、比較例1よりは多少改善された
ものの、やはり気孔率が目標値から相当ズレるし、気孔
率、外径寸法共に、かなりのバラツキがある。そのう
え、900 ℃への昇温、900 ℃からの降温などの時間を含
めると、焙焼工程には一日かかるし、消費エネルギーも
大変な無駄になる。
In this example as well, although somewhat improved over Comparative Example 1, the porosity still deviates considerably from the target value, and there is considerable variation in both the porosity and the outer diameter. In addition, when the time for raising the temperature to 900 ° C. and the time for lowering the temperature from 900 ° C. are included, the roasting process takes one day, and energy consumption is very wasteful.

【0026】[0026]

【発明の効果】以上述べたように、本発明によれば、S
OFCの自己支持型の多孔質空気極の気孔率、寸法精度
にバラツキが生じなくなる。これにより、空気極の品質
を一定にし、不良品を減らし、歩留りを向上させること
ができる。しかも、最初に原料粉末と湿式混合する段階
で過大な発熱がなく、ボールミル等の混合容器内の温度
が急激に上昇したり、爆発するようなおそれはなくなっ
た。
As described above, according to the present invention, S
The porosity and dimensional accuracy of the self-supporting porous air electrode of the OFC do not vary. As a result, the quality of the air electrode can be kept constant, defective products can be reduced, and the yield can be improved. In addition, there is no excessive heat generation at the stage of wet mixing with the raw material powder at first, and there is no fear that the temperature in the mixing container such as a ball mill rises rapidly or explodes.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 固体電解質型燃料電池の自己支持型の多
孔質の空気極を製造する方法であって、 焼成後に所定組成のランタンマンガネート系複合酸化物
を生成するように、水酸化ランタン粉末と他の金属化合
物粉末とをそれぞれ秤量し、秤量後の水酸化ランタン粉
末と他の金属化合物粉末とを湿式混合し、この混合粉末
を成形、焼成して前記ランタンマンガネート系複合酸化
物を合成し、この合成物を粉砕して得た粉末を、少なく
ともバインダー、水および造孔剤と共に混練し、この混
練物を成形し、こうして得た成形体を乾燥、焼成するこ
とによって前記空気極を製造することを特徴とする、固
体電解質型燃料電池の空気極の製造方法。
1. A method for producing a self-supporting porous air electrode of a solid oxide fuel cell, comprising the steps of: forming a lanthanum manganate-based composite oxide having a predetermined composition after firing; And the other metal compound powders are weighed respectively, and the weighed lanthanum hydroxide powder and the other metal compound powder are wet-mixed, and the mixed powder is molded and fired to synthesize the lanthanum manganate-based composite oxide. Then, the powder obtained by pulverizing the composite is kneaded with at least a binder, water and a pore-forming agent, the kneaded product is molded, and the molded body thus obtained is dried and fired to produce the air electrode. A method of manufacturing an air electrode of a solid oxide fuel cell.
JP3251655A 1991-09-30 1991-09-30 Method for manufacturing air electrode of solid oxide fuel cell Expired - Lifetime JP2572912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3251655A JP2572912B2 (en) 1991-09-30 1991-09-30 Method for manufacturing air electrode of solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3251655A JP2572912B2 (en) 1991-09-30 1991-09-30 Method for manufacturing air electrode of solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH0589881A JPH0589881A (en) 1993-04-09
JP2572912B2 true JP2572912B2 (en) 1997-01-16

Family

ID=17226054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3251655A Expired - Lifetime JP2572912B2 (en) 1991-09-30 1991-09-30 Method for manufacturing air electrode of solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2572912B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3416422B2 (en) * 1995-11-09 2003-06-16 三菱重工業株式会社 Conductive bonding agent
KR100462950B1 (en) * 2002-03-27 2004-12-23 요업기술원 Solid oxide fuel cell
JP5147573B2 (en) * 2008-02-07 2013-02-20 国立大学法人茨城大学 Method for producing perovskite complex oxide
JP5462639B2 (en) * 2010-01-08 2014-04-02 国立大学法人茨城大学 Method for producing composite oxide powder
KR20130046504A (en) * 2011-10-28 2013-05-08 주식회사 코미코 Methods of manufacturing supporters for solid oxide fuel cells and methods of manufacturing the solid oxide fuel cells
JP5878786B2 (en) 2012-02-21 2016-03-08 株式会社ミクニ Oil pump

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669907B2 (en) * 1989-04-28 1994-09-07 日本碍子株式会社 Method for manufacturing electron conductive porous ceramic tube
JPH0465354A (en) * 1990-07-05 1992-03-02 Nitsukatoo:Kk Production of oxide sintered compact having heat resistance and electric conductivity

Also Published As

Publication number Publication date
JPH0589881A (en) 1993-04-09

Similar Documents

Publication Publication Date Title
US5453330A (en) Air electrode bodies for solid oxide fuel cells, a process for the production thereof, and a production of solid oxide fuel cells
JP5642197B2 (en) Composite ceramic material and method for producing the same
KR101410844B1 (en) Alkali metal titanates and methods for their synthesis
JP2001307546A (en) Ionic conductor
JP2000505593A (en) Low cost and stable air electrode for high temperature solid oxide electrolyte electrochemical cells
EP1497876A1 (en) Complex lithium metal oxides with enhanced cycle life and safety and a process for preparation thereof
CN112573574A (en) Method for preparing garnet type solid electrolyte by regulating and controlling content of lithium vacancy
JP2572912B2 (en) Method for manufacturing air electrode of solid oxide fuel cell
US5356731A (en) Molten cabonate fuel cell with sintered LiCoO2 electrode
JPH09502047A (en) Method for producing electrode layer on solid oxide electrolyte of solid fuel cell
JPH0669907B2 (en) Method for manufacturing electron conductive porous ceramic tube
US5807532A (en) Method of producing spinel type limn204
JP5086910B2 (en) Lithium secondary battery provided with Li-Sn-Mn compound positive electrode thin film, method for producing Li-Sn-Mn compound target, and method for forming positive electrode thin film using the same
CN108682884B (en) Oxygen ion type composite electrolyte of intermediate-temperature solid oxide fuel cell and preparation method thereof
JPH0778611A (en) Preparation of positive electrode for lithium secondary battery
JP6717331B2 (en) Solid oxide fuel cell
JPH07235319A (en) Solid electrolyte type fuel cell
JP2005139024A (en) Mixed conductive ceramic material and solid oxide type fuel cell using this material
JPH09132459A (en) Porous ceramic sintered compact
JP3342571B2 (en) Solid oxide fuel cell
CN111592353B (en) Hydrogen-substituted garnet-type oxide, method for producing sintered body, and method for producing hydrogen-substituted garnet-type oxide
JPH0585859A (en) Method for producing electroconductive porous ceramics pipe
JP3346668B2 (en) Solid oxide fuel cell
JP2529073B2 (en) Porous sintered body and solid oxide fuel cell
JPH0280360A (en) Production of functional ceramics

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 15

EXPY Cancellation because of completion of term