JP2571959B2 - Metal material shearing method - Google Patents

Metal material shearing method

Info

Publication number
JP2571959B2
JP2571959B2 JP63305935A JP30593588A JP2571959B2 JP 2571959 B2 JP2571959 B2 JP 2571959B2 JP 63305935 A JP63305935 A JP 63305935A JP 30593588 A JP30593588 A JP 30593588A JP 2571959 B2 JP2571959 B2 JP 2571959B2
Authority
JP
Japan
Prior art keywords
vibration
metal material
punching
punch
coining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63305935A
Other languages
Japanese (ja)
Other versions
JPH02151321A (en
Inventor
栄司 西本
恒二 中谷
修一 八川
修一 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Fujikoshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoshi KK filed Critical Fujikoshi KK
Priority to JP63305935A priority Critical patent/JP2571959B2/en
Publication of JPH02151321A publication Critical patent/JPH02151321A/en
Application granted granted Critical
Publication of JP2571959B2 publication Critical patent/JP2571959B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • B21D28/16Shoulder or burr prevention, e.g. fine-blanking

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は金属材料に繰り返しの厚み方向の振動を加
えながら精密剪断加工を行い、特に延性金属材料に対し
てはコイニング成形を同時に可能とした金属の剪断加工
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention performs a precision shearing process while repeatedly applying vibrations in the thickness direction to a metal material, and enables simultaneous coining molding, especially for a ductile metal material. The present invention relates to a metal shearing method.

(従来の技術) 従来から行われてきた精密剪断加工方法として、予め
打抜き又は穴明けされた剪断切口面を、再度打抜き工具
で縁を削り取り、平滑な切削面を得るシェービング法が
ある。そして、より平滑な切削面を得るため、「プレス
加工便覧」(日本塑性加工学会編、昭和50年10月25日丸
善発行)第149頁乃至第150頁に振幅0.4mm、振動数20Hz
程度の振動を与えながら振動シェービングを行う方法が
記載されている。振動シェービング法等は「だれ」の少
ない比較的高精度の切口面と破断面のない平滑な切削面
が得られる。しかし、一度打抜いた部品の周面を再度加
工するため、複数の工程を要し、位置合わせが必要で、
自動化が困難である。
(Prior Art) As a conventional precision shearing method, there is a shaving method in which an edge of a previously cut or perforated shearing cut surface is again cut with a punching tool to obtain a smooth cut surface. Then, in order to obtain a smoother cut surface, "Press Handbook" (edited by the Japan Society for Technology of Plasticity, published by Maruzen on October 25, 1975), pages 149 to 150, amplitude 0.4 mm, frequency 20 Hz
A method of performing vibration shaving while giving a degree of vibration is described. The vibration shaving method or the like can obtain a relatively high-precision cut surface with little “slump” and a smooth cut surface without a fractured surface. However, in order to process the peripheral surface of the part once punched again, multiple steps are required and alignment is necessary,
It is difficult to automate.

また、特開昭63−281716号公報においては、板状の金
属材料を一対のダイ及び一対の振動型にて拘束し、金属
材料の厚み方向に同期振動を与えながら所定形状にそっ
て疲労破壊させて打抜くことにより、バリを発生させる
ことなくブランクを切断する方法が開示されている。し
かし、ブランクの上下方向から疲労破壊が進み、ブラン
クの中央側が母材から離れる最終の打抜き時は、ブラン
クを一度に打ち抜いてしまうため、中央部に破断面が残
り、また、バリ等は無くなるが疲労破壊故に疲労破壊開
始線周辺に「だれ」が残るので、さらに、シュービング
加工等による仕上げ工程が必要となる。
In JP-A-63-281716, a plate-shaped metal material is restrained by a pair of dies and a pair of vibrating dies, and is subjected to fatigue fracture along a predetermined shape while giving synchronous vibration in the thickness direction of the metal material. There is disclosed a method of cutting a blank without causing burrs by punching. However, during the final punching in which the fatigue fracture progresses from the top and bottom of the blank and the center side of the blank separates from the base material, the blank is punched at once, leaving a fractured surface in the center and eliminating burrs etc. Since “drain” remains around the fatigue fracture start line due to fatigue fracture, a finishing step such as shoving is required.

一方、コイニング方法としてはプレスにて所望形状の
溝加工を行う場合とエッチングにより溝加工を行う場合
がある。プレスによる場合では1回目のプレスでは目的
の溝深さまで成形できず、プレス加工後の加工硬化した
材料を焼鈍により軟化させ、再度プレス加工を行う。こ
のサイクルを数回繰り返した後にプレスで打抜き加工が
行われる。また、エッチングにより溝加工を行う場合は
「マスキング」、「エッチング」、「マスキング除法」
の工程を行っている。しかし、コイニング法として行わ
れるプレス成形では1回のプレスでは目的の溝深さまで
成形できず、プレス加工後の加工硬化した材料を焼鈍に
より軟化させ、再度プレス加工を行う必要がある。この
サイクルを数回繰り返した後に最終的に打抜き加工が行
われる。この場合、プレス工程毎に高度の位置決め技術
が必要であり、現状では熟練工による技術に頼ってお
り、自動化されにくい。また、エッチングによる場合
は、工数と時間がかかるうえ、打抜き工程は別工程であ
る。また、金、銀などの貴金属材料の加工ではエツチン
グ処理した材料の再生にコストがかかるなど問題が多
く、採用されていない。
On the other hand, as a coining method, there are a case where a groove is formed in a desired shape by a press and a case where a groove is formed by etching. In the case of using a press, the first press cannot form the groove to a desired groove depth, and the work-hardened material after the press working is softened by annealing, and the press working is performed again. After repeating this cycle several times, punching is performed by a press. When performing groove processing by etching, "masking", "etching", "masking removal method"
Of the process. However, in the press forming performed as the coining method, it is not possible to form to the target groove depth by one press, and it is necessary to soften the work-hardened material after the press working by annealing and perform the press working again. After repeating this cycle several times, the punching is finally performed. In this case, a high-level positioning technique is required for each pressing step, and at present it depends on a technique by a skilled worker and is not easily automated. In the case of etching, the number of steps and time are long, and the punching step is a separate step. Further, in the processing of a noble metal material such as gold and silver, there are many problems such as a high cost for regenerating the material subjected to the etching treatment, and it is not employed.

そこで、特開昭56−165527号公報では、電子銃のカソ
ード側グリッドに関するものであるが、薄い板状の金属
材料に超音波振動を付加しながら押圧を行いながらコイ
ニングするようにして転写精度を向上させている。
Japanese Patent Application Laid-Open No. Sho 56-165527 relates to the grid on the cathode side of the electron gun. Coining is performed while applying pressure while applying ultrasonic vibration to a thin plate-shaped metal material to improve transfer accuracy. Have improved.

さらに、特開昭62−166033号公報では、工程を短縮す
るため、コイニングと打抜きを一工程で行うようにした
ものが開示されている。
Further, Japanese Patent Application Laid-Open No. Sho 62-166033 discloses an apparatus in which coining and punching are performed in one step in order to shorten the steps.

従来、板押さえと逆板押さえとで板を押さえ、板押え
面上の三角突起により板を拘束し、静水圧効果により亀
裂を防ぐ精密打抜き(ファインブランキング)法では、
破断面をほぼ無くすことはできるが平面度が悪くコイニ
ング精度が悪い。
Conventionally, the precision punching (fine blanking) method, which holds a plate with a plate holder and a reverse plate holder, restrains the plate with triangular projections on the plate holding surface, and prevents cracks by the hydrostatic pressure effect,
Although the fracture surface can be almost eliminated, the flatness is poor and the coining accuracy is poor.

そこで、特開昭62−166033号公報では、ダイ部の三角
突起部をやめ被加工物の外周部を横方向に微小移動可能
とさせ、コイニング時は上側パンチ下降力に対して下側
のエジェクタ(パンチに相当)の反発力を一時的に与え
ることによって、コイニング精度を向上させた。しか
し、一度に打抜くため、破断面や「だれ」の発生は防止
できない。
Therefore, in Japanese Patent Application Laid-Open No. Sho 62-166033, the triangular projection of the die portion is stopped so that the outer peripheral portion of the workpiece can be moved slightly in the lateral direction, and the lower ejector against the lowering force of the upper punch during coining. Coining accuracy was improved by temporarily applying a repulsive force (equivalent to a punch). However, since punching is performed at one time, the occurrence of a fractured surface or “drowsiness” cannot be prevented.

従って、コイニング時は特開昭56−165527号公報に開
示されているように超音波波振動を与え、さらに打抜き
にあたっては特開昭62−166033号公報のように一度に抜
く、あるいは、特開昭63−281716号公報に開示されてい
るように、振動を与え疲労破壊によって打抜くようにし
ても、依然として破断面や「だれ」が残るので、前述し
たと同様に、さらに、シェービング加工等による仕上げ
工程が必要となる。
Therefore, at the time of coining, ultrasonic wave vibration is applied as disclosed in JP-A-56-165527, and punching is performed at once as in JP-A-62-166033, or in punching, As disclosed in Japanese Unexamined Patent Publication No. 63-281716, even if punching is performed by applying vibration to fatigue fracture, a fractured surface or "slump" still remains. A finishing step is required.

また、特開昭56−165527号公報においては、超音波振
動のためパンチの振幅は大きくとれず、板厚が薄い被加
工物(同公報の実施例では0.13mm)にしか適用できない
という問題があった。また、超音波振動では疲労破壊に
よる打抜きを行うことはできず、打抜き工程を別にする
か、または、100Hz〜超音波振動までの周波数領域まで
振動可能な構造が複雑で大出力を要する装置が必要であ
る。
Further, in JP-A-56-165527, there is a problem that the amplitude of the punch cannot be made large due to the ultrasonic vibration, and it can be applied only to a work having a small thickness (0.13 mm in the embodiment of the publication). there were. In addition, punching due to fatigue failure cannot be performed with ultrasonic vibration, and a separate punching process is required, or a device that has a complex structure that can vibrate in the frequency range from 100 Hz to ultrasonic vibration and requires large output is required It is.

さらに、また、特開昭63−281716号公報においては、
バリは無くなるが被断面及び「だれ」が残るという問題
の他、挟持された金属板を100〜1000Hz程度の振幅を与
え疲労破壊によって破断させるため、例えば、実施例で
は、被加工物の板厚0.5〜1.2mm程度であっても15秒程度
必要とし加工時間がかかる。
Furthermore, in JP-A-63-281716,
In addition to the problem that the burr disappears but the cross-section and the `` whore '' remain, the clamped metal plate is given an amplitude of about 100 to 1000 Hz and is broken by fatigue failure.For example, in the embodiment, the thickness of the workpiece is Even if it is about 0.5 to 1.2 mm, it takes about 15 seconds and takes a long processing time.

(発明が解決しょうとする課題) そこで、抜き出したブランクに振動シェービング加工
をするのではなく、打抜き時に振動シェービングのよう
な振動を与えながら打抜く方法が考えられる。
(Problem to be Solved by the Invention) Therefore, a method of punching while applying vibration like vibration shaving at the time of punching, instead of performing vibration shaving on the extracted blank, is considered.

しかし、振動シェービングは振幅と振動数について記載
されているが、打抜き速度についての開示はない。さら
に、シェービング加工は切削加工であり、そのまま打抜
きに適用できるかどうかは全く示唆も開示もされていな
い。また、特開昭63−281716号公報の振動打抜き法は単
に疲労破壊を与えるだけであり、最終打抜き時の振動に
ついては示唆も開示もされていない。また、コイニング
と打抜きとを一工程で行う特開昭62−166033号公報でも
打抜き速度についての開示がない。
However, while vibration shaving is described in terms of amplitude and frequency, there is no disclosure of punching speed. Further, the shaving process is a cutting process, and there is no suggestion or disclosure as to whether the shaving process can be directly applied to punching. Further, the vibration punching method disclosed in Japanese Patent Application Laid-Open No. 63-281716 merely gives fatigue fracture, and does not suggest or disclose vibration at the time of final punching. Japanese Patent Application Laid-Open No. Sho 62-166033, in which coining and punching are performed in one step, does not disclose the punching speed.

そこで、特開昭63−281716号公報の振動打抜き法に開
示されている振動数を打抜き時にも適用したとして、振
幅を板厚の半分の0.25mmとして計算すると、パンチとダ
イの相対速度は50〜500mm/secとなり、さらに打抜き速
度が加算されることとなる。かかる場合にはダイとパン
チとの間は微少隙間で構成されているので、被加工物の
破断面の微小粉がダイとパンチの間に入り込み焼き付け
やかじりを発生するというおそれがあり、厚い板厚のも
のを加工できない。
Therefore, assuming that the frequency disclosed in the vibration punching method of JP-A-63-281716 is also applied at the time of punching, and the amplitude is calculated as 0.25 mm, which is half the plate thickness, the relative speed between the punch and the die is 50. 500500 mm / sec, and the punching speed is further added. In such a case, since a small gap is formed between the die and the punch, there is a risk that fine powder of the fractured surface of the workpiece may enter between the die and the punch and cause seizure or galling. Thick ones cannot be machined.

そこで、本発明は、打抜きと仕上げ工程を一工程で行
い、さらには、コイニングと打抜きと仕上げとを一工程
で行い、精度の良い、バリ、だれの発生のない、破断面
のない、また、厚い板厚でも、ダイやパンチの焼き付け
やかじりがなく大出力を要しない、自動化の容易な加工
方法を提供することを目的とする。
Therefore, the present invention performs the punching and finishing steps in one step, and further performs the coining, punching and finishing in one step, with high accuracy, no burr, no dripping, no fracture surface, and It is an object of the present invention to provide a processing method that is easy to automate and does not require large output without baking or galling of a die or a punch even with a large plate thickness.

(課題を解決するための手段) 本発明は、板状の金属材料を5〜200kg/mm2の面圧で
一対のダイ及び一対のパンチにて拘束し、次いでこの状
態で金属材料の厚み方向に0.5〜50Hzの振動を与えて、
さらに、同期振動を与えながら金属材料の厚み幅を抜き
切るまで打抜き速度30mm/sec以下で所定形状に一工程で
打抜くことを特徴とする金属材料の剪断加工方法であっ
て、一工程で打抜きと仕上げ加工を行う精密剪断加工を
可能とするものである。
(Means for Solving the Problems) According to the present invention, a plate-shaped metal material is constrained by a pair of dies and a pair of punches at a surface pressure of 5 to 200 kg / mm 2 , and then, in this state, in the thickness direction of the metal material. To a vibration of 0.5-50Hz
Further, a method for shearing a metal material, characterized by punching in a predetermined shape at a punching speed of 30 mm / sec or less until the thickness of the metal material is completely removed while giving synchronous vibration, in a single step. And a precision shearing process for finishing.

さらに、板状の延性金属材料を5〜200kg/mm2の面圧
で一対のダイ及び先端に所定形状の溝が形成された一対
のパンチにて拘束し、次いでこの状態で少なくとも一方
のパンチから金属材料の厚み方向に0.5〜50Hzの振動を
与えて材料表面にコイニング加工を行い、最後に厚み方
向に0.5〜50Hzの同期振動を与えながら金属材料の厚み
幅を抜き切るまで打抜き速度30mm/sec以下で所定形状に
一工程で打抜くことを特徴とする金属材料の剪断加工方
法であって、一工程でコイニングと打抜きと仕上げ加工
を行って加工工程の短縮を可能としたものである。
Further, the plate-like ductile metal material is constrained by a pair of dies and a pair of punches having a predetermined shape groove formed at the tip thereof at a surface pressure of 5 to 200 kg / mm 2 , and then in this state, at least one of the punches is used. Applying 0.5 to 50 Hz vibration in the thickness direction of the metal material to perform coining processing on the material surface, and finally applying synchronous vibration of 0.5 to 50 Hz in the thickness direction, punching speed 30 mm / sec until the thickness width of the metal material is cut out This is a method of shearing a metal material, characterized in that it is punched into a predetermined shape in one step, and the processing steps can be shortened by performing coining, punching and finishing in one step.

(作用) 本発明に係る方法によれば、まず金属材料の板材を一
対のダイ及び一対のパンチにより拘束し、5〜200kg/mm
2の面圧を静水圧によって材料にかけると同時に、油圧
サーボ方式、偏心カム方式、電磁方式などにより0.5〜1
00Hzの上下の同期振動を一対のパンチに与えると、パン
チに挟持された金属材料は圧縮変形され、金属材料がパ
ンチ等の接触表面に密接し表面のだれ等が発生しない。
この振動圧縮状態のまま同期振動を加えて、打抜き速度
30mm/sec以下で打抜きを行うので、金属材料は少しずつ
剪断加工されながら、微小剪断面で分離していき、微少
粉末による焼き付けやかじりも発生しない。また、打抜
き時は金属材料が圧縮された状態のままなので「だれ」
のないシャープな面が保持されながら微少剪断加工され
る。
(Operation) According to the method of the present invention, first, a plate material of a metal material is restrained by a pair of dies and a pair of punches, and 5 to 200 kg / mm.
The surface pressure of 2 is applied to the material by hydrostatic pressure, and at the same time, 0.5 ~ 1 by hydraulic servo system, eccentric cam system, electromagnetic system, etc.
When a synchronous vibration of up and down of 00 Hz is applied to the pair of punches, the metal material sandwiched between the punches is compressed and deformed, and the metal material comes into close contact with the contact surface of the punch and the like, so that the surface does not sag.
Synchronous vibration is applied in this vibration compression state, and the punching speed
Since the punching is performed at a speed of 30 mm / sec or less, the metal material is gradually sheared while being separated at a minute shear surface, so that baking or galling by the fine powder does not occur. Also, when punching, the metal material remains in a compressed state,
It is micro-sheared while maintaining a sharp surface without any.

さらに、他の発明によれば、金、銀、銅などの板状の
遅延金属材料を、一対のダイ及び対向する先端に成形溝
が形成された一対のパンチにより拘束し、5〜200kg/mm
2の面圧を静水圧によって材料にかけると同時に、0.5〜
50Hzの金属材料の厚み方向の振動を少なくとも一方のパ
ンチから付与するので、パンチに挟持された表面が振動
圧縮され、「だれ」のないシャープな転写面が形成され
良好なコイニング加工が行われ、さらに、この転写面を
保持したまま上述したと同様な剪断加工がおこなわれ
る。
Further, according to another invention, a plate-shaped delay metal material such as gold, silver, and copper is restrained by a pair of dies and a pair of punches having a molding groove formed at the opposite end, and 5-200 kg / mm.
The surface pressure of 2 is applied to the material by hydrostatic pressure,
Since the vibration in the thickness direction of the metal material of 50 Hz is applied from at least one of the punches, the surface held between the punches is compressed by vibration, a sharp transfer surface without `` sharpness '' is formed, and good coining processing is performed, Further, the same shearing processing as described above is performed while holding the transfer surface.

(実施例) まず本発明において用いられた装置の概略を第6図に
示す。機台(1)に載置された金型ホルダ(2)には下
ダイ(3)が固定され、上ダイ(4)には第2図に示す
ダイクランプシリンダ(5)が直結され、ダイクランプ
シリンダ(5)により昇降可能とされていて、金型ホル
ダ(2)に案内されて昇降する。また、上パンチの後端
にはパンチクランプシリンダ(9)に連設されている。
下パンチ(10)の一端はコ字形の加振フレーム(12)に
取付けられる。さらに加振フレームはサーボシリンダ
(13)に直結していて、下パンチに振動を加える。下パ
ンチ(10)は下ダイ(3)により昇降可能に案内され
る。パンチクランプシリンダ(9)は加振フレーム(1
2)に直結していて加振フレームと共に振動し、上パン
チ(6)に振動を加える。
(Example) First, an outline of the apparatus used in the present invention is shown in FIG. A lower die (3) is fixed to a mold holder (2) placed on the machine base (1), and a die clamp cylinder (5) shown in FIG. 2 is directly connected to the upper die (4). The clamp cylinder (5) can move up and down, and is guided by the mold holder (2) to move up and down. The rear end of the upper punch is connected to a punch clamp cylinder (9).
One end of the lower punch (10) is attached to a U-shaped excitation frame (12). Further, the vibration frame is directly connected to the servo cylinder (13) and applies vibration to the lower punch. The lower punch (10) is guided by the lower die (3) so as to be able to move up and down. The punch clamp cylinder (9) is
It is directly connected to 2) and vibrates together with the vibration frame to apply vibration to the upper punch (6).

振動源であるサーボ弁(14)は図示しない圧縮源と連
通し、かつ、サーボアンプ(15)からの信号を受けて0.
5〜50Hzの振動を加振フレーム(12)に与える。さらに
サーボアンプはサーボシリンダの端部に設けられた変位
計(16)及び変位測定用アンプ(17)の信号を受けて、
サーボ弁(14)に制御信号を送る。また、サーボアンプ
(15)は関数発生器(11)に連結していて振動開始指令
を受ける。シーケンサ(18)は関数発生器(11)に直結
してこれを作動させると共に、ダイクランプシリンダ
(5)の切換弁(20)およびパンチクランブシリンダ
(9)の切換弁(19)に指令を送り、図示しない圧油源
から圧油を導いて各シリンダを順次作動させるようにな
っている。
The servo valve (14), which is a vibration source, communicates with a compression source (not shown) and receives a signal from the servo amplifier (15).
A vibration of 5 to 50 Hz is applied to the excitation frame (12). Further, the servo amplifier receives signals from the displacement gauge (16) and the displacement measurement amplifier (17) provided at the end of the servo cylinder,
Send a control signal to the servo valve (14). The servo amplifier (15) is connected to the function generator (11) and receives a vibration start command. The sequencer (18) is directly connected to the function generator (11) to operate it, and also issues a command to the switching valve (20) of the die clamp cylinder (5) and the switching valve (19) of the punch crumb cylinder (9). Each cylinder is sequentially operated by feeding the pressure oil from a pressure oil source (not shown).

まず操作盤(図示せず)よりシーケンサ(18)に加工
開始指令を与える。次いで切換弁(20)のダイ用ソレノ
イドに指令が入りダイクランプシリンダ(5)を介し
て、上下ダイ(3),(4)にて金属材料(W)をクラ
ンプする。また、切換弁(19)のパンチソレノイドに指
令が入りパンチクランプシリンダ(9)にてワーク
(W)を加圧する。上パンチ(6)の底部(8)と下パ
ンチ(10)にて材料(W)をクランプする。この際、ク
ランプ力は金属材料に対して圧痕や著しい変形が生じな
い範囲で、できるだけ高い静水圧を加える(第1図
(イ))。
First, a machining start command is given to the sequencer (18) from an operation panel (not shown). Next, a command is input to the die solenoid of the switching valve (20), and the metal material (W) is clamped by the upper and lower dies (3) and (4) via the die clamp cylinder (5). Also, a command is input to the punch solenoid of the switching valve (19), and the work (W) is pressurized by the punch clamp cylinder (9). The material (W) is clamped by the bottom (8) of the upper punch (6) and the lower punch (10). At this time, as high a hydrostatic pressure as possible is applied within a range where no indentation or significant deformation occurs to the metal material (FIG. 1 (a)).

この状態で関数発生器(11)により振動開始指令を与
え0.5〜50Hzの振動を加振フレーム(12)に与える。加
振フレーム(12)に振動を与えると第1図(ロ)に示す
ように上下パンチ(6)、(10)に振動が加わる。これ
は第2図に示す振動波形のa,bの部分でなされるのであ
り、この時の振幅は材料が塑性変形し得る範囲の振幅で
周波数はパンチと材料が融着しない範囲で設定する。こ
の状態において、金属材料は圧縮変形によりパンチ等の
表面に密接するが、打抜きは行われない。
In this state, a vibration start command is given by the function generator (11) and a vibration of 0.5 to 50 Hz is given to the excitation frame (12). When vibration is applied to the excitation frame (12), vibration is applied to the upper and lower punches (6) and (10) as shown in FIG. This is performed at the portions a and b of the vibration waveform shown in FIG. 2, and the amplitude at this time is set within the range where the material can be plastically deformed, and the frequency is set within the range where the punch and the material are not fused. In this state, the metal material comes into close contact with the surface of a punch or the like due to compression deformation, but punching is not performed.

さらに、シーケンサ(18)からの指令を受けて切換弁
(19)が作動してパンチクランプシリンダ(9)が作動
して上パンチ(6)を降下させて下方に圧力を加えて、
第1図(ハ)に示すように材料(W)を打抜く。打抜き
加工中サーボシリンダ(13)にはサーボアンプ(15)か
らの指令でサーボ弁(14)が作動して0.5〜50Hzの振動
が加えられ、第2図に示す振動波形のc部で上下一対の
パンチは振動しながら第1図(ハ)に示す打抜きを行
う。
Further, in response to a command from the sequencer (18), the switching valve (19) is operated, the punch clamp cylinder (9) is operated, the upper punch (6) is lowered, and pressure is applied downward.
The material (W) is punched as shown in FIG. During the punching process, the servo valve (14) is actuated by a command from the servo amplifier (15) to apply a vibration of 0.5 to 50 Hz to the servo cylinder (13). Punching is performed while vibrating, as shown in FIG.

切口端面部はパンチ表面での圧縮力による繰り返しの
圧縮変形が加わることで「だれ」の発生が抑制され、シ
ャープな切口面が形成される。さらに、微少剪断加工を
しながら金属材料を打抜くので、剪断面は破断面のない
平滑な面となる。
The cut end face is subjected to repeated compressive deformation due to the compressive force on the punch surface, thereby suppressing the occurrence of "drip" and forming a sharp cut face. Further, since the metal material is punched while performing the micro-shearing, the shear surface becomes a smooth surface without a fracture surface.

なお、第2図に示す振動波形は打抜き工程であるc部
において振動をパンチに加えながら第1図(ハ)に示す
打抜きを行うのであるが、この時の打抜き速度は30mm/s
ec以下となるように設定する。この速度よりも速くなる
と、焼き付けやかじりが発生したり破断面の割合が多く
なってしまうからである。
The vibration waveform shown in FIG. 2 is obtained by performing the punching shown in FIG. 1 (c) while applying vibration to the punch in the part c which is a punching process. At this time, the punching speed is 30 mm / s.
Set to be less than ec. If the speed is higher than this speed, seizure or galling occurs, and the ratio of the fracture surface increases.

第2図の振動波形のd部はパンチと金属材料またはダ
イと打抜いた試料のこすり合わせ領域を示すが、この時
間は0でも差支えない。加工完了後上ダイ(4)、上・
下パンチ(6),(10)を原位置に復帰させる。
The d portion of the vibration waveform in FIG. 2 indicates a rubbed area between the punch and the metal material or between the die and the punched sample, but this time may be zero. After processing is completed, the upper die (4)
Return the lower punches (6) and (10) to their original positions.

なお、第7図に示すものはサーボ弁の代りに偏心カム
を用いた装置の概略を示す。偏心カム(23)は偏心カム
ベース(26)に載置されたモータ(22)の出力軸(27)
に取付けられる。また偏心カムベース(26)はコントロ
ーラ(21)の指令によって作動する切換弁(24)を経て
圧油が打抜きシリンダ(25)に送られて昇降できる。従
って偏心カムベース(26)の上昇時に偏心カムの回転に
伴って生ずる振動が加振フレーム(12)を振動させて打
抜き加工を行うものである。クランプ方法や加振方法は
上述の実施例とほぼ同様なので詳細説明は省略する。但
し、第2図(a)の振動波形は零である。種々の材質の
板材になされた剪断加工例は第1表に示すとおりであ
る。板厚1mm〜3.5mmまでの加工が10〜30Hzの振動数で加
工可能で、また、加工時間も数秒と少ない。
FIG. 7 schematically shows an apparatus using an eccentric cam in place of the servo valve. The eccentric cam (23) is the output shaft (27) of the motor (22) mounted on the eccentric cam base (26).
Attached to The eccentric cam base (26) can be moved up and down by sending pressure oil to a punching cylinder (25) via a switching valve (24) operated by a command from a controller (21). Therefore, the vibration generated by the rotation of the eccentric cam when the eccentric cam base (26) is raised causes the vibration frame (12) to vibrate to perform the punching process. Since the clamping method and the vibration method are almost the same as those in the above-described embodiment, detailed description will be omitted. However, the vibration waveform in FIG. 2 (a) is zero. Table 1 shows examples of shearing processes performed on plate materials of various materials. Processing up to a plate thickness of 1 mm to 3.5 mm can be performed with a frequency of 10 to 30 Hz, and the processing time is as short as a few seconds.

次に、第6図及び第7図に示した装置を用いて金、
銀、銅、黄銅などの板材にコイニング加工及び剪断加工
を行う場合について説明する。この場合も上述の実施例
と同じく板材を上下パンチ及び上下ダイにて拘束し、静
水圧(面圧5〜200kg/mm2を材料にかけると同時に、上
下パンチに0.5〜50Hzの上下の同期振動を与えながら例
えば第9図に示す装飾ブローチや第10図に示す動圧形ス
ラスト軸受の形状(図に斜線で示した部分)にコイニン
グ加工するのであるが、上述の実施例と相違して第3図
に示すように一対の上下パンチ(6),(10)の対向す
る先端に被加工材(W)の表面に形成されるべき所定形
状の成形溝(28)が設けられている。
Next, using the apparatus shown in FIGS. 6 and 7, gold,
A case in which coining and shearing are performed on a plate material such as silver, copper, or brass will be described. In this case, as in the above-described embodiment, the plate material is constrained by the upper and lower punches and the upper and lower dies, and a hydrostatic pressure (surface pressure of 5 to 200 kg / mm 2) is applied to the material. For example, coining is performed on the shape of the decorative broach shown in FIG. 9 or the shape of the dynamic pressure type thrust bearing shown in FIG. 10 (shaded portion in FIG. 9). As shown in FIG. 3, a pair of upper and lower punches (6) and (10) are provided at opposite ends thereof with molding grooves (28) of a predetermined shape to be formed on the surface of the workpiece (W).

第3図について加工過程を示す。上下パンチ(6),
(10)、上下ダイ(3),(4)にて材料をクランプ
(拘束)する。パンチのクランプ力は材料がコイニング
成形加工可能な限り高い静水圧をかける。ダイのクラン
プは逆に著しい変形が生じない限度内のできるだけ高い
静水圧を材料の剪断線近傍にかける。この状態で上下パ
ンチに同期振動を加えコイニング成形を行う。即ち、第
4図に示す振動波形のa,bの部分で繰返し圧縮変形を与
えることにより、パンチの成形溝形状が材料に転写され
コイニング成形される。なお、コイニング加工のみでよ
いのであれば、この時点で上下パンチ(6),(10)、
上下ダイ(3),(4)のクランプを解除すれば良い。
FIG. 3 shows the working process. Upper and lower punches (6),
(10) The material is clamped (constrained) by the upper and lower dies (3) and (4). The clamping force of the punch applies as high a hydrostatic pressure as the material can be coined. Die clamping conversely applies the highest possible hydrostatic pressure near the shear line of the material without significant deformation occurring. In this state, synchronous vibration is applied to the upper and lower punches to perform coining molding. That is, by repeatedly applying compressive deformation at portions a and b of the vibration waveform shown in FIG. 4, the shape of the forming groove of the punch is transferred to the material and coining is performed. If only coining is sufficient, the upper and lower punches (6), (10),
The clamps on the upper and lower dies (3) and (4) may be released.

第4図に示す振動波形のc部で、コイニング成形状態
のまま、上下一対のパンチは振動しながら、前述した、
第1図の場合と同様に材料(W′)が微少剪断加工によ
り下方に抜かれ、打抜きが行われる。同図の振動波形の
d部では上パンチと材料、あるいは下ダイと抜かれた材
料(W′)の摺り合わせの領域であるが、材料によって
は、この時間は零でもよい。
In the part c of the vibration waveform shown in FIG. 4, the pair of upper and lower punches vibrate while the coining molding state is maintained, as described above.
As in the case of FIG. 1, the material (W ') is pulled down by micro-shearing, and punching is performed. The portion d of the vibration waveform shown in FIG. 6 is a region where the upper punch and the material or the lower die and the removed material (W ') are rubbed, but this time may be zero depending on the material.

なお、材料(W)に初期の拘束による静止水圧が加わ
っている状態で上下パンチ(6),(10)に同期振動を
加えると、振動によって材料を変形させるが、静水圧と
重畳してより高い面圧が材料に繰り返し生ずる。これに
よってコイニングがより鮮明にできる。
When synchronous vibration is applied to the upper and lower punches (6) and (10) in a state where the static water pressure due to the initial restraint is applied to the material (W), the material is deformed by the vibration. High surface pressures repeatedly occur in the material. This makes coining clearer.

さらに、第8図に示すように、図示しないサーボアン
プからの指令により上パンチ(6)を振動するサーボシ
リンダ(13)が上パンチに直結し、下パンチ(10)には
上記の振動と同期せず、単に下パンチを昇降させる下シ
リンダ(29)が直結する装置を用いて、コイニングと剪
断を行った。その動作過程は第5図に示すとおりであ
る。
Further, as shown in FIG. 8, a servo cylinder (13) that vibrates the upper punch (6) in response to a command from a servo amplifier (not shown) is directly connected to the upper punch, and the lower punch (10) is synchronized with the above vibration. Instead, coining and shearing were performed using a device directly connected to a lower cylinder (29) for raising and lowering the lower punch. The operation process is as shown in FIG.

まず、板状延性金属材料(W)を上下ダイ(3),
(4)にて拘束する。この時下パンチ(10)の先端は、
下ダイ(3)の先端と同一位置に下シリンダー(29)で
保持されている。(この場合、下シリンダーは上昇端に
在る。)次いで圧力制御(または位置制御)されたサー
ボシリンダー(13)により、上パンチ(6)を下降させ
材料をクランプする。この時点でサーボシリンダー(1
3)に振動を加え上パンチ(6)を振動させ、コイニン
グ加工を行う。十分にコイニングがなされた時点で、下
シリンダ(29)を下降させる。この際の下降スピード
は、上下パンチ間の圧縮力が著しく低下しない程度にゆ
っくりと下降させる。次いで上ダイ(4),上パンチ
(6)を解除してアンクランプ状態とする。最後に下シ
リンダー(29)を上昇端に戻し材料(W)を取り出す。
コイニング成形加工の実例を第2表に示す。非常にコイ
ニング深さが少ないものでも3〜50Hz程度の振動で加工
できた。
First, the plate-like ductile metal material (W) is put into upper and lower dies (3),
Restrict in (4). At this time, the tip of the lower punch (10)
It is held by the lower cylinder (29) at the same position as the tip of the lower die (3). (In this case, the lower cylinder is at the upper end.) Then, the upper punch (6) is lowered by the pressure-controlled (or position-controlled) servo cylinder (13) to clamp the material. At this point, the servo cylinder (1
Vibration is applied to 3) to vibrate the upper punch (6) to perform coining. When sufficient coining is performed, the lower cylinder (29) is lowered. The descending speed at this time is decreased slowly so that the compressive force between the upper and lower punches does not significantly decrease. Next, the upper die (4) and the upper punch (6) are released to bring them into an unclamped state. Finally, the lower cylinder (29) is returned to the rising end, and the material (W) is taken out.
Table 2 shows an example of coining processing. Even with a very small coining depth, machining was possible with a vibration of about 3 to 50 Hz.

(発明の効果) 本発明によれば、0.5〜50Hz程度の低い振動数および
狭い振動数領域で、金属材料の振動圧縮させ、その圧縮
状態のまま、振動を与えながら打抜くことにより微少の
剪断加工を繰り返して行うようにしたので、金属材料の
切り口面の性状を破断面や「だれ」の無い剪断面のみの
面性状にし、しかも精密剪断を可能にしたので、従来の
ような打抜き工程、仕上げ工程といった複数の工程が省
略され、1回の打抜き工程のみで仕上げまでを可能にす
ることができ、自動化も容易なものとなった。また、同
期振動数を0.5〜50Hzと低く設定し、かつ、打抜き速度
を30mm/sec以下としたので、ダイとパンチ間の焼き付け
や、かじりが発生しにくいものとなった。
(Effects of the Invention) According to the present invention, a metal material is vibrated and compressed at a low frequency of about 0.5 to 50 Hz and a narrow frequency range, and a small shear is obtained by punching while applying vibration in the compressed state. Since the processing was repeated, the cut surface of the metal material was made to have only a fractured surface or a sheared surface with no droop, and it was possible to perform precision shearing. A plurality of steps such as a finishing step are omitted, finishing can be performed only by one punching step, and automation is easy. Further, since the synchronous frequency was set to a low value of 0.5 to 50 Hz and the punching speed was set to 30 mm / sec or less, seizure between the die and the punch and galling were less likely to occur.

また、本発明に係るコイニング法によれば、振動コイ
ニング加工と微少の剪断加工を繰り返して打抜く振動打
抜き加工を連続した一工程で行うようにしたので、比較
的構造の簡単な、出力の小さな装置で、金属材料の切口
面の性状を破断面や「だれ」の無い剪断面の面性状に
し、しかも高精度の精密剪断、コイニング加工を可能に
した。また、コイニング加工と打抜き加工の振動数は同
一、近似な値でよく、振動の制御も簡単になる。従っ
て、従来のようなコイニング工程、打抜き工程、仕上げ
工程といった複数の工程が省略され、1回の振動コイニ
ング、振動打抜き工程のみで仕上げまでを可能にするこ
とができ、大幅に工程を短縮することができる。さらに
自動化も容易でありその効果は多大である。
Further, according to the coining method according to the present invention, the vibration punching process of punching by repeating the vibration coining process and the minute shearing process is performed in one continuous step, so that the structure is relatively simple and the output is small. With the equipment, the cut surface of the metal material was made to have a cut surface with no fractured surface and no dripping, and high-precision precision shearing and coining were enabled. Further, the frequencies of the coining process and the punching process may be the same and approximate values, and the control of the vibration is simplified. Therefore, a plurality of processes such as a conventional coining process, a punching process, and a finishing process are omitted, and it is possible to perform finishing up to only one vibration coining and vibration punching process, thereby greatly reducing the process. Can be. Further, automation is easy and the effect is great.

【図面の簡単な説明】[Brief description of the drawings]

第1図(イ),(ロ),(ハ)は本願発明の剪断工程の
説明図、第2図は同じく振動波形図、第3図(イ),
(ロ),(ハ)は本願発明に係るコイニングを伴う剪断
工程の説明図、第4図は同振動波形図、第5図は同じく
動作過程図、第6図,第7図は本発明に共通して用いら
れた装置の概略図、第8図は本発明のコイニングを伴う
剪断工程に用いられる装置の概略図、第9図はコイニン
グ成形された装飾ブローチの正面図、第10図は同じく動
圧形スラスト軸受の正面図である。 3……下ダイ、4……上ダイ、6……上パンチ、10……
下パンチ。
1 (a), (b) and (c) are explanatory views of the shearing step of the present invention, FIG. 2 is a vibration waveform diagram, and FIGS.
(B) and (c) are explanatory views of the shearing process involving coining according to the present invention, FIG. 4 is the same vibration waveform diagram, FIG. 5 is the same operation process diagram, and FIG. 6 and FIG. FIG. 8 is a schematic view of a commonly used apparatus, FIG. 8 is a schematic view of an apparatus used in a shearing process involving coining of the present invention, FIG. 9 is a front view of a coined molded decorative broach, and FIG. It is a front view of a dynamic pressure type thrust bearing. 3 ... lower die, 4 ... upper die, 6 ... upper punch, 10 ...
Lower punch.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中田 修一 富山県富山市石金20番地 株式会社不二 越内 (56)参考文献 特開 昭63−281716(JP,A) 日本塑性加工学会編「プレス加工便 覧」(昭和50年10月25日発行)丸善P P.149−150 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Shuichi Nakata 20 Ishigane, Toyama City, Toyama Prefecture Fuji Koshiuchi Co., Ltd. Press Processing Handbook ”(issued October 25, 1975), Maruzen P. 149−150

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】板状の金属材料を5〜200kg/mm2の面圧で
一対のダイ及び一対のパンチにて拘束し、次いでこの状
態で前記金属材料の厚み方向に0.5〜50Hzの振動を与え
て、さらに、前記同期振動を与えながら前記金属材料の
厚み幅を抜き切るまで打抜き速度30mm/sec以下で所定形
状に一工程で打抜くことを特徴とする金属材料の剪断加
工方法。
1. A plate-like metal material is constrained by a pair of dies and a pair of punches at a surface pressure of 5 to 200 kg / mm 2 , and in this state, vibration of 0.5 to 50 Hz is applied in the thickness direction of the metal material. Applying the synchronous vibration to the metal material, and punching the metal material into a predetermined shape at a punching speed of 30 mm / sec or less in a single step until the thickness width of the metal material is completely cut out.
【請求項2】板状の延性金属材料を5〜200kg/mm2の面
圧で一対のダイ及び先端に所定形状の成形溝が形成され
た一対のパンチにて拘束し、次いでこの状態で少なくと
も一方のパンチから前記金属材料の厚み方向に0.5〜50H
zの振動を与えて材料表面にコイニング加工を行い、最
後に厚み方向に0.5〜50Hzの同期振動を与えながら前記
金属材料の厚み幅を抜き切るまで打抜き速度30mm/sec以
下で所定形状に一工程で打抜くことを特徴とする金属材
料の剪断加工方法。
2. A plate-like ductile metal material is constrained by a pair of dies and a pair of punches having a predetermined shape forming groove formed at a tip thereof at a surface pressure of 5 to 200 kg / mm 2 , and then in this state, 0.5-50H in the thickness direction of the metal material from one punch
A coining process is performed on the material surface by applying a vibration of z, and finally, a punching speed of 30 mm / sec or less is applied to a predetermined shape until the thickness width of the metal material is completely removed while applying a synchronous vibration of 0.5 to 50 Hz in the thickness direction. A metal material shearing method characterized by punching with a metal.
JP63305935A 1988-12-05 1988-12-05 Metal material shearing method Expired - Lifetime JP2571959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63305935A JP2571959B2 (en) 1988-12-05 1988-12-05 Metal material shearing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63305935A JP2571959B2 (en) 1988-12-05 1988-12-05 Metal material shearing method

Publications (2)

Publication Number Publication Date
JPH02151321A JPH02151321A (en) 1990-06-11
JP2571959B2 true JP2571959B2 (en) 1997-01-16

Family

ID=17951068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63305935A Expired - Lifetime JP2571959B2 (en) 1988-12-05 1988-12-05 Metal material shearing method

Country Status (1)

Country Link
JP (1) JP2571959B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208651A1 (en) * 2018-04-25 2019-10-31 日立金属株式会社 Amorphous metal ribbon, method for processing same, and method for producing laminate

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993009890A1 (en) * 1991-11-12 1993-05-27 The Commonwealth Of Australia Improving fatigue life of holes
US7047786B2 (en) 1998-03-17 2006-05-23 Stresswave, Inc. Method and apparatus for improving the fatigue life of components and structures
US6711928B1 (en) 1998-03-17 2004-03-30 Stresswave, Inc. Method and apparatus for producing beneficial stresses around apertures, and improved fatigue life products made by the method
US6230537B1 (en) 1998-03-17 2001-05-15 Stresswave, Inc. Method and apparatus for producing beneficial stresses around apertures by use of focused stress waves, and improved fatigue life products made by the method
US6615636B2 (en) * 1998-03-17 2003-09-09 Stresswave, Inc. Method and apparatus for improving the fatigue life of components and structures using the stresswave process
WO1999047303A1 (en) 1998-03-17 1999-09-23 Stresswave, Inc. Method and apparatus for producing beneficial stresses around apertures by the use of focused stress waves
ATE421909T1 (en) 2000-02-09 2009-02-15 Stresswave Inc METHOD AND DEVICE FOR PRODUCING OBJECTS WITH IMPROVED MATERIAL FATIGUE
AU2001293061A1 (en) * 2000-09-22 2002-04-02 Stresswave, Inc. Method and apparatus for improving the fatigue life of components and structures
JPWO2005039800A1 (en) * 2003-10-22 2007-02-22 株式会社産学連携機構九州 Drilling device and drilling method
CN103611774B (en) * 2013-11-22 2015-12-09 武汉理工大学 A kind of ultrasonic assistant fine-punching formation technique and mould thereof
DE102016117527B4 (en) 2016-09-16 2018-10-31 creative automation GmbH & Co. KG Processing method, processing machine for carrying out the processing method, processing center with a plurality of such processing machines and movement patterns
CN111451565B (en) * 2020-03-31 2021-04-27 浙江华顺金属材料有限公司 Automatic blanking output equipment of gate type plate shearing machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165527A (en) * 1980-05-26 1981-12-19 Toshiba Corp Coining method
JPS62166033A (en) * 1986-01-16 1987-07-22 Toyota Motor Corp Punching method
JPS63281716A (en) * 1987-05-15 1988-11-18 Mitsubishi Motors Corp Cutting method for sheet metal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
日本塑性加工学会編「プレス加工便覧」(昭和50年10月25日発行)丸善PP.149−150

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208651A1 (en) * 2018-04-25 2019-10-31 日立金属株式会社 Amorphous metal ribbon, method for processing same, and method for producing laminate
JPWO2019208651A1 (en) * 2018-04-25 2021-05-27 日立金属株式会社 Amorphous metal strip, its processing method, and method of manufacturing a laminate
JP7219869B2 (en) 2018-04-25 2023-02-09 株式会社プロテリアル Amorphous metal strip, processing method thereof, and method for manufacturing laminate

Also Published As

Publication number Publication date
JPH02151321A (en) 1990-06-11

Similar Documents

Publication Publication Date Title
JP2571959B2 (en) Metal material shearing method
JPH06190468A (en) Method and device for separating article and molding metal die
US5320013A (en) Method of blanking metal foil on piezoelectric actuator operated press, and die sets for practicing the method
JP2892439B2 (en) Shearing mold
US5692423A (en) Vibration finishing method and apparatus for same
JP2681444B2 (en) Vibration finishing method
JP2942000B2 (en) Vibration coining method
JP2908989B2 (en) Press working method
JP3378191B2 (en) Gate punching method and apparatus
JPH04339525A (en) Coining and shearing working method for metallic plate
JPH01309738A (en) Punching method to pipe
JP2000190035A (en) Drilling method and drilling punch during hydroform processing
JP2776955B2 (en) Method and apparatus for cutting plate-shaped workpiece made of brittle material
JP2592444Y2 (en) Turret punch press and multitasking machine
JP2669035B2 (en) Press punching method
JP2007118045A (en) Method and apparatus for working drawing and punching of sheet metal in the same stage
JPH03247Y2 (en)
JPH07108418B2 (en) Sheet metal work manufacturing method
JP3028643B2 (en) Metal foil punching method and die using piezoelectric actuator applied press
JPH10113726A (en) Shearing punching method in two stages in same direction
JPS5966934A (en) Work punching method
JP3537174B2 (en) Processing method in punch press machine
JPH07116745A (en) Method and device for burring
JP2555665B2 (en) Counter hydraulic pressure drawing method and apparatus
JPH0459975B2 (en)