JP2569418B2 - Manufacturing method of superplastic aluminum nitride particle reinforced aluminum alloy composite material by hot extrusion and hot rolling and its processing method - Google Patents

Manufacturing method of superplastic aluminum nitride particle reinforced aluminum alloy composite material by hot extrusion and hot rolling and its processing method

Info

Publication number
JP2569418B2
JP2569418B2 JP4345637A JP34563792A JP2569418B2 JP 2569418 B2 JP2569418 B2 JP 2569418B2 JP 4345637 A JP4345637 A JP 4345637A JP 34563792 A JP34563792 A JP 34563792A JP 2569418 B2 JP2569418 B2 JP 2569418B2
Authority
JP
Japan
Prior art keywords
superplastic
composite material
temperature
aluminum nitride
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4345637A
Other languages
Japanese (ja)
Other versions
JPH06172892A (en
Inventor
恒道 今井
馬渕  守
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP4345637A priority Critical patent/JP2569418B2/en
Publication of JPH06172892A publication Critical patent/JPH06172892A/en
Application granted granted Critical
Publication of JP2569418B2 publication Critical patent/JP2569418B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】 本発明は窒化アルミニウム粒子を
強化材として含むアルミニウム合金で、しかも、超塑性
変形の特徴を生ずる複合金属材料の製造方法に関する。
[Industrial applications] The present invention relates to aluminum nitride particles.
Aluminum alloy contained as reinforcement, yet superplastic
The present invention relates to a method for producing a composite metal material that causes deformation characteristics.

【0002】 [0002]

【従来の技術】 セラミックスウイスカ又は粒子強化アル
ミニウム複合材料は比弾性率が従来の金属材料の約2
倍、比強度はチタン合金に匹敵する程高く、また、耐熱
性や耐摩耗性、熱的寸法安定性、熱伝導性に優れてお
り、ピストン等の中高温機械部品ばかりでなく航空宇宙
分野での構造物への応用が図られている。又、近年では
半導体等の電子機器のパッケージへの応用も期待されて
いる。
[Prior art] Ceramic whisker or particle reinforced aluminum
Minium composite material has a specific elastic modulus of about 2 which is
Twice the specific strength, comparable to titanium alloy, and heat resistant
Excellent heat resistance, abrasion resistance, thermal dimensional stability, and thermal conductivity.
Aerospace as well as medium and high temperature mechanical parts such as
It is being applied to structures in the field. In recent years,
It is also expected to be applied to packages of electronic devices such as semiconductors
I have.

【0003】 特に、航空宇宙分野等でこの複合材料を利
用するには複雑な形状で表面積が広く、しかも、立体的
な構造物にプレス成形する必要がある。このため、この
複合材料を薄板形状に圧延加工できること、この薄板状
複合材料をプレス成形できること、更に、成形後の材料
性質が加工前に劣らないこと、が必要である。これに対
する技術的解決の一つとして、薄板形状の複合材料に超
塑性を発現させることが試みられている。
[0003] In particular, this composite material is used in the aerospace field, etc.
It has a complex shape, a large surface area, and a three-dimensional shape.
It is necessary to press-mold the structure. Because of this,
The composite material can be rolled into a thin plate shape.
The ability to press-mold composite materials, and the material after molding
It is necessary that the properties are not inferior to those before processing. Against this
One of the technological solutions to
Attempts have been made to develop plasticity.

【0004】従来開発された超塑性セラミックスウイス
カまたは粒子強化アルミニウム複合材料では強化材料と
しては炭化ケイ素SiCや窒化ケイ素Si3 N4 セラミッ
クスウイスカ又は粒子が用いられ、それとアルミニウム
合金粉末とを混合後加圧焼結し、更に、加工熱処理(溶
体化処理ー時効処理ー温間圧延加工ー再結晶処理)によ
りマトリックスの結晶粒を微細化し超塑性が発現されて
いる。例えば、炭化けい素ウイスカ強化2124アル
ミニウム複合材料は、鍛造後圧延加工により板形状にさ
れ、約0.2毎秒で約350%の超塑性伸びを生じてい
る。炭化けい素粒子強化7064アルミニウム複合材
料がと同じ方法で製造され、約0.0001毎秒の歪
速度で約500%の超塑性伸びを生じている。 又、発
明者らは窒化けい素ウイスカ強化2124、606
1、7064アルミニウム複合材料を押し出しのみ、鍛
造後熱間押出し加工、または、押し出し加工後圧延加工
を行い、約0.1毎秒に歪速度で250以上%から60
0%の全伸びを達成した。
Conventionally developed superplastic ceramic whis
Power or particle reinforced aluminum composites with reinforced materials
Is silicon carbide SiC or silicon nitride Si3 N4 Ceramic
Cuswhisker or particles are used, and aluminum
After mixing with the alloy powder, pressure sintering is performed.
(Integral treatment-aging treatment-warm rolling-recrystallization treatment)
The crystal grains of the matrix are refined and superplasticity is developed.
I have. For example, silicon carbide whisker reinforced 2124 al
The minium composite material is formed into a sheet shape by rolling after forging.
About 0.2 About 350% superplastic elongation occurs every second
You. 7064 aluminum composite material reinforced with silicon carbide particles
The ingredients are manufactured in the same manner as.0001 distortion per second
It produces about 500% superplastic elongation at speed. Again
Akira et al. Strengthened silicon nitride whiskers 2124, 606
1, 7064 Aluminum composite material extruded only, forged
Hot extrusion after fabrication or rolling after extrusion
Do about 0.From 250% to 60 at the strain rate per second
A total elongation of 0% was achieved.

【0005】 しかし、従来はSiCとSi3 N4 で強化さ
れた複合材料を除き超塑性が発現することは発見されて
いなかった。従って、超塑性セラミックスウイスカ又は
粒子強化アルミニウム複合材料はそれほど一般的ではな
く、超塑性加工の適用は考えられなかった。
[0005] However, conventionally, SiC and Si3 N4 Enhanced with
Superplasticity has been discovered except for composite materials
did not exist. Therefore, superplastic ceramic whiskers or
Particle reinforced aluminum composites are less common
Therefore, superplastic working could not be applied.

【0006】[0006]

【発明が解決しようとする課題】 アルミニウム基複合材
料の強化材としては炭化けい素SiCや窒化けい素Si
3 N4 ウイスカや粒子以外にも炭化チタンTiC粒子、ア
ルミナ粒子、窒化アルミニウムAlN粒子、ボライドT
iB2 粒子等が用いられている。この内、AlN粒子は
Si3 N4 と同じ窒化物であり、極めて硬く、高温におい
ても安定であり、又、電気絶縁性が高くしかも熱膨張率
が珪素と等しく、又、熱伝導性が高く、半導体用基板へ
の利用も期待されている。AlN粒子強化複合材料は比
弾性率が高く又、高温強度に優れているといわれてお
り、SiCやSi3 N4 ウイスカや粒子強化複合材料に劣
らない高強度複合材料が製造できると期待される。しか
し、セラミックスウイスカや粒子強化複合材料の実用化
への問題点は破壊靱性が低く加工性に劣ることである。
そこで、超塑性を発現させて成形加工が容易な高機能複
合材料を造ることが必要がある。
[Problems to be solved by the invention] Aluminum based composite
Silicon carbide SiC and silicon nitride Si
Three N4 In addition to whiskers and particles, titanium carbide TiC particles,
Lumina particles, aluminum nitride AlN particles, boride T
iB2 Particles and the like are used. Among them, AlN particles
Si3 N4 The same nitride as, very hard and smells hot
Stable, high electrical insulation and thermal expansion coefficient
Is the same as silicon and has high thermal conductivity.
The use of is also expected. AlN particle reinforced composite material
It is said to have a high modulus of elasticity and excellent high-temperature strength.
Or SiC or Si3 N4 Inferior to whisker and particle reinforced composites
It is expected that a high-strength composite material can be manufactured without any problem. Only
Of ceramic whiskers and particle-reinforced composite materials
The problem is that the fracture toughness is low and the workability is poor.
Therefore, a high-performance complex that expresses superplasticity and is easy to form.
It is necessary to make a composite material.

【0007】しかし、これらの複合材料を超塑性発現温
度において超塑性変形させた場合、強化材料とアルミニ
ウムマトリックスとの界面上で滑り変形が起こらないと
この界面で亀裂が生じ、大きな伸びを発生できないこと
になる。従って、この複合材料の超塑性発現にはマトリ
ックスの結晶粒が微細であり、且つこの界面での滑り変
形が重要である。
However, when these composite materials are subjected to superplastic deformation at the temperature at which superplasticity occurs, cracking occurs at the interface between the reinforcing material and the aluminum matrix unless sliding deformation occurs on the interface, and large elongation cannot be generated. Will be. Therefore, for superplasticity of the composite material, the crystal grains of the matrix are fine and the slip deformation at this interface is important.

【0008】[0008]

【課題を解決するための手段】 そこで、本発明では、上
記問題点を解決すべく、窒化アルミニウム粒子を強化材
として含むアルミニウム複合材料に、押し出し後圧延加
工の超塑性発現プロセスを採用する。AlN粒子は窒化
けい素ウイスカや粒子と同じ窒素元素を有するので界面
に滑り変形を可能にする固相温度が低いアルミニウム固
溶体を形成できる化学的条件を備えていると考えられ
る。又、押し出し加工と圧延加工を組合せた加工熱処理
法はマグネシウムMgの濃度が高いアルミニウム固溶体
の薄い相を複合材料の界面に形成させる力学的条件を与
えると考えられる。そして、窒化アルミニウム粒子はア
ルミニウムマトリックスとは反応生成物もないのでクリ
ーンな界面をつくることができる。
[Means for Solving the Problems] Therefore, in the present invention,
In order to solve the above problems, aluminum nitride particles
Extrusion and rolling
Adopt the superplasticity development process of engineering. AlN particles are nitrided
Since it has the same nitrogen element as silicon whiskers and particles, the interface
Aluminum solid with low solidus temperature that enables slip deformation
It is thought that it has chemical conditions that can form a solution
You. In addition, thermomechanical treatment combining extrusion and rolling
The method is an aluminum solid solution with a high concentration of magnesium Mg
Mechanical conditions to form a thin phase at the composite interface
It is thought that it is possible. The aluminum nitride particles are
Since there is no reaction product with the luminium matrix,
A clean interface.

【0009】超塑性発現温度においてこの固溶体の固相
温度は地の母相のそれより低いのでマトリックスが固相
または半溶融状態でも容易に液相になり、この液相界面
でマトリックスと強化粒子との間に容易にすべり変形が
生じる。又、AlN粒子が高い温度において結晶粒の粗
大化を抑制し、マトリックスの結晶粒が微細化する。こ
の二つの効果により、この複合材料に高速度で超塑性が
発現する。
At the superplastic temperature, the solid phase temperature of the solid solution is lower than that of the ground matrix, so that the matrix easily becomes a liquid phase even when the matrix is in a solid or semi-molten state. Slip deformation easily occurs during the heating. Further, at a high temperature of the AlN particles, the coarsening of the crystal grains is suppressed, and the crystal grains of the matrix are refined. Due to these two effects, superplasticity is developed in the composite material at a high speed.

【0010】本発明においては、窒化アルミニウムAl
N粒子と粒度44μm以下の2000系、5000系、
または6000系アルミニウム合金粉末とをAlN粒子
の体積含有率が0.05から0.25になるようにエタ
ノールのごとき有機溶媒中でプラスチックボールと共に
24時間以上均一に混合し、次いで、その混合粉末を真
空中にて温度450℃から600℃の温度で5分間以上
50MPa以上の圧力を加え加圧焼結させた後、温度4
50℃から600℃において、押し出し比10以上で押
し出し加工を加え、更に、この素材を、所定の温度で圧
延加工を加えて薄板とすることにより超塑性複合材料が
製造される。この場合、好適には、上記素材を300℃
から550℃の温度で歪量1.0から4.0で圧延加工
を加え、0.1mm以上の厚さの薄板とする方法が採用
される。また、本発明においては、上記超塑性複合材料
を450℃から600℃の温度で、0.01から10毎
秒の歪速度で引張変形による成形を行い、150%から
500%の全伸びを示す超塑性変形加工することにより
上記超塑性複合材料を超塑性成形加工する。
In the present invention, aluminum nitride Al
N series and 2000 series and 5000 series with particle size of 44 μm or less,
Or 6000 series aluminum alloy powder and AlN particles
So that the volume content of
With plastic balls in an organic solvent such as Knoll
Mix uniformly for at least 24 hours, and then mix the powder.
5 minutes or more at 450 ° C to 600 ° C in air
After applying pressure of 50 MPa or more and sintering under pressure, temperature 4
Pressing at an extrusion ratio of 10 or more from 50 ° C to 600 ° C
The material is extruded, and the material is pressed at a predetermined temperature.
Superplastic composite material can be made
Manufactured. In this case, preferably, the material is heated to 300 ° C.
Rolling at a temperature of from 550 ° C to a strain of 1.0 to 4.0
To make a thin plate with a thickness of 0.1 mm or more
Is done. Further, in the present invention, the superplastic composite material
At a temperature of 450 ° C. to 600 ° C., from 0.01 to 10
Forming by tensile deformation at a strain rate of seconds, from 150%
By superplastic deformation processing showing a total elongation of 500%
The superplastic composite material is subjected to superplastic forming.

【実施例】 以下本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0011】 実施例1 直径40mmの棒状の窒化アルミニウム粒子強化212
4アルミニウム複合材料に対し500℃で押し出し加工
を行い4mmの線材に加工し、更に、この素材を、ステ
ンレスの板と管にくるみ、500℃から580℃の温度
範囲で加熱し、歪量約0.1以下になるような圧下率で
圧延する。これを繰り返し約1mmの厚さにになるまで
圧延を行う。
[0011] Example 1  Rod-like aluminum nitride particle reinforcement 212 having a diameter of 40 mm
Extrusion processing at 500 ° C for 4 aluminum composite material
And process it into a 4 mm wire rod.
Wrapped in stainless steel plates and tubes, at temperatures between 500 ° C and 580 ° C
Heat in the range, strain about 0.With a rolling reduction of 1 or less
To roll. Repeat until the thickness is about 1mm
Perform rolling.

【0012】 図1にその結果を示す。図1から押し出し
加工後圧延加工を加えた窒化アルミニウム粒子強化21
24アルミニウム複合材料の全伸びは歪速度が0.3毎
秒の時160%であった。
[0012] FIG. 1 shows the results. Extrude from Figure 1
Rolled aluminum nitride particles reinforced after processing 21
The total elongation of the 24 aluminum composite has a strain rate of 0.Every 3
It was 160% in seconds.

【0013】実施例2 窒化アルミニウム粒子強化6061アルミニウム複合材
料に対し500℃、押し出し比44で押し出し加工を行
い、更に、実施例1と同じ条件で圧延加工を加え、約0
.1mm以上の厚さの薄板状の複合材料を製造する。
Embodiment 2  Aluminum nitride particle reinforced 6061 aluminum composite
Extrusion at 500 ° C and extrusion ratio of 44
Further, rolling was performed under the same conditions as in
.A thin composite material having a thickness of 1 mm or more is manufactured.

【0014】図2は窒化アルミニウム粒子強化6061
アルミニウム複合材料を600℃で引っ張り試験した場
合の全伸びと歪速度との関係である。図2は0.1から
.0毎秒の速い歪速度で約300%以上の全伸びが得
られたことを示している。
FIG. 2 shows aluminum nitride particle reinforced 6061.
It is a relationship between the total elongation and the strain rate when the aluminum composite material is subjected to a tensile test at 600 ° C. Figure 2 shows 0. 1 to 1.0 to total elongation at a high strain rate of about 300% or more per second was obtained.

【0015】[0015]

【発明の効果】 以上述べた本発明において、薄板状複合
材料を545℃ー600℃で引張試験を行い、0.3か
ら1.0毎秒の著しく速い歪速度で、160%から30
0%以上の高い全伸びの超塑性が発現することが分かっ
た。従って、高比強度・高比弾性率と共に高熱伝導性が
期待される窒化アルミニム粒子強化アルミニウム合金複
合材料を用い自動車のラジエーターや、半導体等に用い
るヒートポンプ等、の熱交換器の部品を容易に成形でき
る。又、この複合材料は高速度で超塑性が発現するの
で、航空宇宙分野の大型構造物を効率的に成形出来ると
考えられる。
【The invention's effect】 In the present invention described above, the sheet-like composite
The material was subjected to a tensile test at 545 ° C..3 or
1.0 With a remarkably high strain rate per second, 160% to 30%
It is found that superplasticity of high total elongation of 0% or more is developed.
Was. Therefore, high thermal conductivity as well as high specific strength and high specific elastic modulus
Expected Aluminum Nitride Particle Reinforced Aluminum Alloy Duplex
Used for automotive radiators, semiconductors, etc. using composite materials
Parts of heat exchangers such as heat pumps
You. Also, this composite material develops superplasticity at high speed.
If it is possible to efficiently mold large structures in the aerospace field,
Conceivable.

【0016】[0016]

【図面の簡単な説明】[Brief description of the drawings]

図1】薄板状の窒化アルミニウム粒子強化2124
アルミニウム複合材料を545℃の温度で引張試験を行
った時の全伸びと歪速度との関係を表すグラフである。
[ FIG. 1 shows a sheet-like aluminum nitride particle reinforced 2124
It is a graph showing the relationship between the total elongation and the strain rate when the aluminum composite material is subjected to a tensile test at a temperature of 545 ° C.

【図2】薄板状の窒化アルミニウム粒子強化6061ア
ルミニウム複合材料を600℃で引っ張り試験を行った
時の全伸びと歪速度との関係を表すグラフである。
FIG. 2 is a graph showing the relationship between total elongation and strain rate when a tensile test is performed on a sheet-like aluminum nitride particle reinforced 6061 aluminum composite material at 600 ° C.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 窒化アルミニウムAlN粒子と粒度44
μm以下の2000系、5000系、または6000系
アルミニウム合金粉末とをAlN粒子の体積含有率が
0.05から0.25になるようにエタノールのごとき
有機溶媒中でプラスチックボールと共に24時間以上均
一に混合し、その混合粉末を真空中にて温度450℃か
ら600℃の温度で5分間以上50MPa以上の圧力を
加え加圧焼結させた後、温度450℃から600℃にお
いて、押し出し比10以上で押し出し加工を加え、更
に、この素材を、所定の温度で圧延加工を加えて薄板と
することを特徴とする超塑性複合材料の製造法。
1. An aluminum nitride AlN particle having a particle size of 44.
2000 μm or 5000 μm or 6000 μm aluminum alloy powder having a particle size of μm or less is uniformly mixed with a plastic ball for at least 24 hours in an organic solvent such as ethanol so that the volume content of AlN particles becomes 0.05 to 0.25. After mixing and sintering the mixed powder by applying a pressure of 50 MPa or more in a vacuum at a temperature of 450 ° C. to 600 ° C. for 5 minutes or more at a temperature of 450 ° C. to 600 ° C., at an extrusion ratio of 10 or more, Add extrusion processing and update
Then, this material is rolled at a predetermined temperature to form a thin plate.
A method for producing a superplastic composite material, comprising:
【請求項2】 素材をステンレス板や管のごとき鉄鋼材
料ではさみ、300℃から550℃の温度で歪量1.0
から4.0で圧延加工を加え、0.1mm以上の厚さの
薄板とする請求項1記載の超塑性複合材料の製造方法。
2. A scissors material in steel materials such as stainless steel plate or tube, strain amount at a temperature of 550 ° C. from 300 ° C. 1.0
The method for producing a superplastic composite material according to claim 1 , wherein rolling is performed at a pressure of 4.0 to 4.0 to obtain a thin plate having a thickness of 0.1 mm or more.
【請求項3】 請求項1または2に記載の方法で製造し
た超塑性複合材料を450℃から600℃の温度で、
0.01から10毎秒の歪速度で引張変形による成形
行い、150%から500%の全伸びを示す超塑性変形
加工することを特徴とする超塑性成形加工方法。
3. The method of claim 1, wherein
The superplastic composite material at a temperature of 450 ° C to 600 ° C,
Superplastic deformation with tensile deformation at a strain rate of 0.01 to 10 per second and a total elongation of 150% to 500%
A superplastic forming method characterized by processing.
JP4345637A 1992-12-01 1992-12-01 Manufacturing method of superplastic aluminum nitride particle reinforced aluminum alloy composite material by hot extrusion and hot rolling and its processing method Expired - Lifetime JP2569418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4345637A JP2569418B2 (en) 1992-12-01 1992-12-01 Manufacturing method of superplastic aluminum nitride particle reinforced aluminum alloy composite material by hot extrusion and hot rolling and its processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4345637A JP2569418B2 (en) 1992-12-01 1992-12-01 Manufacturing method of superplastic aluminum nitride particle reinforced aluminum alloy composite material by hot extrusion and hot rolling and its processing method

Publications (2)

Publication Number Publication Date
JPH06172892A JPH06172892A (en) 1994-06-21
JP2569418B2 true JP2569418B2 (en) 1997-01-08

Family

ID=18377956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4345637A Expired - Lifetime JP2569418B2 (en) 1992-12-01 1992-12-01 Manufacturing method of superplastic aluminum nitride particle reinforced aluminum alloy composite material by hot extrusion and hot rolling and its processing method

Country Status (1)

Country Link
JP (1) JP2569418B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104131196B (en) * 2014-07-21 2017-01-18 昆明理工大学 Preparation method of particle reinforced aluminum matrix composite ultrasonic bell jar
CN105834432B (en) * 2016-04-15 2017-08-25 江苏东方宝泰科技有限公司 A kind of production equipment of aluminum composite plate
WO2019217279A1 (en) * 2018-05-08 2019-11-14 Materion Corporation Methods for heating strip product
JP2021523011A (en) * 2018-05-08 2021-09-02 マテリオン コーポレイション How to Make Metal Matrix Composite Strip Products
CN114107748B (en) * 2020-08-26 2022-09-16 宝山钢铁股份有限公司 Particle-reinforced 6XXX aluminum alloy plate strip and preparation method thereof
CN114107747B (en) * 2020-08-26 2022-09-20 宝山钢铁股份有限公司 Preparation method of high-performance 6XXX aluminum alloy thin strip by jet casting
CN114107746B (en) * 2020-08-26 2022-09-16 宝山钢铁股份有限公司 High-performance wide 6XXX aluminum alloy plate strip and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442504A (en) * 1987-08-10 1989-02-14 Sumitomo Electric Industries Production of sheet parts made of aluminum alloy
JPH0635631B2 (en) * 1989-09-20 1994-05-11 工業技術院長 Manufacturing method of superplastic silicon nitride whisker reinforced aluminum alloy composite material.

Also Published As

Publication number Publication date
JPH06172892A (en) 1994-06-21

Similar Documents

Publication Publication Date Title
CN106967900B (en) A kind of titanium-based metal glass particle reinforced aluminum matrix composites and preparation method thereof
US4699849A (en) Metal matrix composites and method of manufacture
US5198187A (en) Methods for production of surface coated niobium reinforcements for intermetallic matrix composites
JP2569418B2 (en) Manufacturing method of superplastic aluminum nitride particle reinforced aluminum alloy composite material by hot extrusion and hot rolling and its processing method
US5451365A (en) Methods for densifying and strengthening ceramic-ceramic composites by transient plastic phase processing
JPH08104931A (en) Method for imparting superplasticity to ceramic particle reinforced magnesium-base composite material by molten metal stirring method
JP2560234B2 (en) Method for producing foil of ceramic whisker and particle reinforced aluminum alloy composite material
JPH06235032A (en) Method for developing superplasticity of titanium carbide reinforced aluminum alloy composite material
Libin et al. Metal matrix composites in China
US5244621A (en) Process for shaping ceramic composites
CA2480787A1 (en) Nitrided mo alloy worked material having high corrosion resistance, high strength and high toughness and method for production thereof
JP2972836B2 (en) Forming method of composite ceramics
JP3859224B2 (en) Titanium diboride ceramic sintered body and manufacturing method
JPH0742531B2 (en) A method for producing superplastic silicon nitride whisker reinforced aluminum plate composites by hot forging and hot rolling.
JP2657979B2 (en) Forming method for composite ceramics
JPH02270931A (en) Ceramic grains reinforced titanium composite material
JP3359443B2 (en) Alumina sintered body and method for producing the same
Stolin et al. Distinctive Features of the Rheosynthesis of Ceramic and Cermet Materials under Self-Propagating High-Temperature Synthesis Extrusion Conditions
JPH10139548A (en) Molybdenum disilicide-base composite material and its production
JPH0635631B2 (en) Manufacturing method of superplastic silicon nitride whisker reinforced aluminum alloy composite material.
JP2664760B2 (en) Ceramic composite material and method for producing the same
JPH0826837A (en) High-strength and highly tough ceramic composite material and ceramic complex powder and their production
TW425431B (en) Processing routes for producing Al-Alloy/SiC composites exhibiting high strain rate superplasticity
JP3045370B2 (en) High-strength and high-toughness ceramic composite material, ceramic composite powder, and method for producing them
JP2001019550A (en) Crystallite granule silicon carbide sintered compact having superplasticity and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term