JP2560234B2 - Method for producing foil of ceramic whisker and particle reinforced aluminum alloy composite material - Google Patents

Method for producing foil of ceramic whisker and particle reinforced aluminum alloy composite material

Info

Publication number
JP2560234B2
JP2560234B2 JP5177245A JP17724593A JP2560234B2 JP 2560234 B2 JP2560234 B2 JP 2560234B2 JP 5177245 A JP5177245 A JP 5177245A JP 17724593 A JP17724593 A JP 17724593A JP 2560234 B2 JP2560234 B2 JP 2560234B2
Authority
JP
Japan
Prior art keywords
composite material
less
rolling
aluminum alloy
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5177245A
Other languages
Japanese (ja)
Other versions
JPH0711359A (en
Inventor
恒道 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5177245A priority Critical patent/JP2560234B2/en
Publication of JPH0711359A publication Critical patent/JPH0711359A/en
Application granted granted Critical
Publication of JP2560234B2 publication Critical patent/JP2560234B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はセラミックスの炭化けい
素、炭化チタン、窒化けい、窒化アルミニウム、窒化
チタン、ホウ化チタンのウイスカと粒子を強化材として
含むアルミニウム合金で、しかも、高速超塑性圧延加工
法により製造した厚さが10μmから200μm以下の
箔の複合金属材料の製造方法に関する。
The present invention is silicon carbide ceramics BACKGROUND OF THE INVENTION, titanium carbide, silicon nitride, aluminum nitride, an aluminum alloy containing titanium nitride, the whiskers and particles of titanium diboride as reinforcement, moreover, high-speed superplastic The present invention relates to a method for manufacturing a composite metal material of foil having a thickness of 10 μm to 200 μm, which is manufactured by a rolling method.

【0002】[0002]

【従来の技術】セラミックスウイスカ又は粒子強化アル
ミニウム複合材料は比弾性率が従来の金属材料の約2
倍、比強度はチタン合金に匹敵する程高く、また、耐熱
性や耐摩耗性、熱的寸法安定性、熱伝導性に優れてお
り、ピストン等の中高温機械部品ばかりでなく航空宇宙
分野での構造物への応用が図られている。また、半導体
等の電子機器のパッケージへの応用も期待されている。
2. Description of the Related Art Ceramic whiskers or particle reinforced aluminum composite materials have a specific modulus of about 2 that of conventional metal materials.
The strength is twice as high as that of titanium alloy, and it has excellent heat resistance, wear resistance, thermal dimensional stability, and thermal conductivity. Is being applied to structures. Further, it is also expected to be applied to packages of electronic devices such as semiconductors.

【0003】近年、セラミックスウイスカや粒子強化ア
ルミニウム複合材料に約0.1毎秒の高歪速度で超塑性
が発現することが見い出されてきた。そして、この高速
超塑性現象を利用した効率的なニィヤーネットシェイプ
成形により、航空宇宙分野等において、複雑な形状で表
面積が広く、しかも、立体的な構造物を高効率生産でき
る技術の確立が可能になってきた。
In recent years, it has been found that ceramic whiskers and particle-reinforced aluminum composite materials develop superplasticity at a high strain rate of about 0.1 per second. In addition, by the efficient near net shape molding that utilizes this high-speed superplasticity phenomenon, in the aerospace field, etc., the establishment of a technology that can produce a three-dimensional structure with a complicated surface shape and a large surface area with high efficiency has been established. It has become possible.

【0004】しかし、従来開発された超塑性セラミック
スウイスカまたは粒子強化アルミニウム複合材料は素材
の価格や製造コストが高く、自動車等の民生分野への実
用化例はそれほど多くはない。実用化を進めるには、こ
れらの複合材料を素材とする付加価値の高い製品や素材
を造ることを目指す必要がある。
However, the conventionally developed superplastic ceramic whiskers or particle-reinforced aluminum composite materials have high material prices and manufacturing costs, and there are not many practical examples in the consumer field such as automobiles. In order to put them into practical use, it is necessary to aim to create high value-added products and materials made from these composite materials.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

【0005】近年、半導体を始め、様々な分野で金属箔
への関心が高まっている。例えば、装飾用以外にも、半
導体のリード線、面発熱体、制振材料、スピーカ振動板
座素材、高圧ガスの弁、バネ材、X線取り出し窓材、コ
ンデンサ等金属箔の多くの実用化例が報告されている。
そこで、セラミックスウイスカや粒子強化アルミニウム
合金複合材料の箔を造ることができれば、上記の箔の分
野での利用が可能になり、その民生分野での実用化の拡
大が期待される。
In recent years, interest in metal foils has increased in various fields including semiconductors. For example, in addition to decorations, many practical applications of semiconductor lead wires, surface heating elements, damping materials, speaker diaphragm seat materials, high-pressure gas valves, spring materials, X-ray extraction window materials, metal foils such as capacitors. Examples have been reported.
Therefore, if a foil of a ceramic whisker or a particle-reinforced aluminum alloy composite material can be manufactured, it can be used in the field of the above-mentioned foil, and its practical application in the consumer field is expected to expand.

【課題を解決するための手段】[Means for Solving the Problems]

【0006】セラミックスウイスカ(粒子)強化アルミ
ニウム合金複合材料は延性や破壊靭性が低く、室温で圧
延することばかりでなく200μm以下に加工すること
はかなり困難である。しかし、アルミニウムマトリック
スの固相温度付近で高歪速度で超塑性が発現するので、
超塑性圧延加工により箔状複合材料の製造は可能と考え
られる。また、従来、アルミニウムやステンレスなどの
金属では室温で4段から6段以上の多段圧延機により2
00μm以下の箔が造られている。そこで、発明者らが
特許申請中である熱間押し出し加工と熱間圧延加工を組
み合わせた高速超塑性圧延加工において複合材料を多段
に重ね圧延する方法より箔の製造を考えた。
The ceramic whisker (particle) reinforced aluminum alloy composite material has low ductility and fracture toughness, and it is considerably difficult not only to roll it at room temperature but also to process it to 200 μm or less. However, since superplasticity develops at a high strain rate near the solid phase temperature of the aluminum matrix,
It is considered possible to manufacture a foil-like composite material by superplastic rolling. In addition, conventionally, metal such as aluminum and stainless steel has a multi-stage rolling mill with 4 to 6 or more rolls at room temperature.
A foil having a thickness of 00 μm or less is produced. Therefore, the inventors considered manufacturing a foil by a method of stacking a composite material in multiple stages in high-speed superplastic rolling, which is a combination of hot extrusion and hot rolling, for which a patent is being applied.

【0007】超塑性圧延を可能にするには、複合材料の
マトリックスの結晶粒径が3μm前後と微細であること
と、超塑性発現温度において強化材料とアルミニウムマ
トリックスとの界面上で滑り変形が起こることである。
複合材料に超塑性発現が可能な微細組織を造るには、
間押し出し、圧延加工、或いはこれらを組み合わせた塑
性加工を行うことである。即ち、アルミニウムマトリッ
クスは熱間塑性加工により、高い温度と塑性変形で結晶
粒が潰されると共に粒界等を起点に微細な新しい結晶粒
が形成される。アルミニウム単体では、高い温度ではこ
の新しい結晶は成長し粒径が大きくなるが 複合材料の
場合にはセラミックスが安定的に存在するので結晶粒の
成長が抑制される。セラミックスの体積含有率が10%
以上の場合には強化材料の間隔は約3μm以下になるの
で、複合材料のマトリックス中に3μm以下の微細な結
晶粒が形成されることになる。この場合、冷間圧延機に
より複合材料を熱間圧延加工するには、複合材料をステ
ンレス管と板の間に挟み、超塑性が発現する温度に加熱
し、ロールと接触するステンレスを介し、圧延中での複
合材料の温度を保持することである。
In order to enable superplastic rolling, the crystal grain size of the matrix of the composite material is as fine as about 3 μm, and sliding deformation occurs at the interface between the reinforcing material and the aluminum matrix at the superplasticity temperature. That is.
The composite material to produce a microstructure capable of superplastic expression fever
Extrusion, rolling, or a combination of these
It is to perform sexual processing . That is, the aluminum matrix
Cus crystallizes at high temperature and plastic deformation due to hot plastic working
Fine new crystal grains starting from grain boundaries as the grains are crushed
Is formed. Aluminum alone does not work at high temperatures.
New crystals grow and the grain size increases, but
In this case, since the ceramics exist stably,
Growth is suppressed. Volume content of ceramics is 10%
In the above case, the space between the reinforcing materials will be about 3 μm or less.
With fine particles of 3 μm or less in the matrix of the composite material.
Crystal grains will be formed. In this case, in order to hot-roll the composite material with a cold rolling mill, the composite material is sandwiched between a stainless pipe and a plate, heated to a temperature at which superplasticity is developed, and rolled through stainless steel in contact with a roll. To maintain the temperature of the composite material.

【0008】そして、複合材料の箔を造るには、高歪速
度で圧延加工を行うことが必要である。高歪速度で圧延
加工を行うには、10m毎分で回転する直径100mm
のロールを用い、圧延歪量を0.1以下の小さくすると
複合材料を約0.1毎秒の歪速度で圧延加工することが
可能になる。図1に示す様に、約1mm以下に圧延した
複合材料をステンレスの板の間に挟み、それらを重ねた
ものを更にステンレス管でパックし、これを、超塑性が
発現する温度(450℃から630℃の間)に加熱保持
し、圧延−加熱を繰り返すことにより200μm以下の
厚さまで圧延加工を加える。このときの1パスごとの圧
延量は0.1以下である。2段ロール圧延機、又は、4
段ロール圧延機を用いることににより箔を製造すること
が可能である。
In order to produce a composite material foil, it is necessary to carry out rolling at a high strain rate. To perform rolling at a high strain rate, a diameter of 100 mm rotating at 10 m / min
If the rolling strain amount is reduced to 0.1 or less using the roll No. 1, the composite material can be rolled at a strain rate of about 0.1 per second. As shown in FIG. 1, the composite material rolled to about 1 mm or less is sandwiched between stainless steel plates, and the stacked products are further packed in a stainless steel tube, and this is packed at a temperature (450 ° C. to 630 ° C.) at which superplasticity is exhibited. During heating), the material is rolled and heated to a thickness of 200 μm or less by repeating rolling and heating. At this time, the rolling amount for each pass is 0.1 or less. Two-high rolling mill, or 4
It is possible to produce foil by using a multi-roll mill.

【実施例】以下本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0009】実施例1 平均粒子径が45μm以下の6061アルミニウム合金
粉に対し炭化チタンTiC粒子をその体積含有率が0.
15になるように混合し、粉末冶金法で直径40mmの
棒状のTiC粒子強化6061アルミニウム複合材料を
造る。これに対し500℃、押し出し比44で押し出し
加工を行い6mmの線材に加工し、更に、この素材を、
ステンレスの板と管にくるみ、560℃の温度に加熱
し、歪量約0.1以下の小さな圧下率で何度も圧延す
る。この加熱−圧延の繰り返しで約1mmの厚さの超塑
性板状複合材料を造る。その後、長さ約40mmの板状
超塑性複合材料に潤滑材を塗り、2枚ずつ130mmの
長さのステンレス板の間に挟み積層状の圧延素材とす
る。これらを直径58mm厚さ1.5mm長さ130m
mのステンレス管でパックし、560℃で歪量0.1以
下での圧延と加熱を繰り返し、その厚さが200μm以
下になるまで、圧延加工を行った結果、150−200
μmの厚さの複合材料ができた。
Example 1 A 6061 aluminum alloy powder having an average particle size of 45 μm or less contained titanium carbide TiC particles in a volume content of 0.
15 and mixed to prepare a rod-shaped TiC particle-reinforced 6061 aluminum composite material having a diameter of 40 mm by powder metallurgy. On the other hand, extrusion processing is performed at 500 ° C and an extrusion ratio of 44 to form a 6 mm wire rod.
It is wrapped in a stainless steel plate and tube, heated to a temperature of 560 ° C., and rolled many times with a small rolling reduction with a strain amount of about 0.1 or less. By repeating this heating-rolling, a superplastic plate-like composite material having a thickness of about 1 mm is produced. After that, a lubricant is applied to the plate-shaped superplastic composite material having a length of about 40 mm, and two sheets are sandwiched between two stainless steel plates having a length of 130 mm to form a laminated rolling material. These are diameter 58mm thickness 1.5mm length 130m
m-stainless steel tube, repeated rolling and heating at 560 ° C. with a strain amount of 0.1 or less, and performing rolling until the thickness becomes 200 μm or less.
A composite material with a thickness of μm was produced.

【0010】実施例2 実施例1と同様に平均粒子径が45μm以下の2014
アルミニウム合金粉末とTiC粒子とを体積含有率が
0.15になるように混合し、粉末冶金法で造った複合
材料を押し出し後圧延加工を行い、複合材料の厚さが2
00μm以下になるまで、加熱−圧延を繰り返す。その
結果、150μmと200μmの箔を製造することがで
きた。
Example 2 As in Example 1, 2014 with an average particle size of 45 μm or less
Aluminum alloy powder and TiC particles were mixed so that the volume content was 0.15, and the composite material produced by the powder metallurgy method was extruded and then rolled to obtain a composite material having a thickness of 2
The heating-rolling is repeated until it becomes 00 μm or less. As a result, 150 μm and 200 μm foils could be manufactured.

【0011】実施例3 実施例1及び2と同様に平均粒子径が45μm以下の6
061アルミニウム合金粉末とSi3N4ウイスカとを
体積含有率が0.20になるように混合し、粉末冶金法
で造った複合材料を押し出し後圧延加工を行い、複合材
料の厚さが200μm以下になるまで、加熱−圧延を繰
り返す。その結果、200μmの箔を製造することがで
きた。
Example 3 As in Examples 1 and 2, 6 having an average particle size of 45 μm or less was used.
061 aluminum alloy powder and Si3N4 whiskers
Powder metallurgy by mixing to a volume content of 0.20
After extruding the composite material made in
Heating-rolling is repeated until the material thickness is 200 μm or less.
Return. As a result, 200 μm foil can be produced.
Came.

【0012】[0012]

【発明の効果】以上述べた方法により造った150−2
00μm以下の厚さの箔状複合材料機械的性質を調べる
ため室温から400℃で引っ張り試験を行った。図2に
はTiC/6061とTiC/2014アルミニウム合
金複合材料の箔の引っ張り強度を示す。TiC/201
4Al複合材料は室温で440PMaの引っ張り強度を
持ち、TiC/6061Al複合材料は300MPaの
引っ張り強度があることが分かった。TiC/2014
Al複合材料はステンレス箔に劣らない強度があり、実
用的に用いることが可能である。
EFFECT OF THE INVENTION 150-2 produced by the method described above
Tensile tests were conducted from room temperature to 400 ° C. to investigate the mechanical properties of foil-like composite materials with a thickness of 00 μm or less. FIG. 2 shows the tensile strength of the foils of TiC / 6061 and TiC / 2014 aluminum alloy composite material. TiC / 201
It was found that the 4Al composite material had a tensile strength of 440 PMa at room temperature and the TiC / 6061Al composite material had a tensile strength of 300 MPa. TiC / 2014
The Al composite material has strength not inferior to that of the stainless steel foil and can be practically used.

【0013】 又、図3はTiC/2014Al複合材料
の超塑性特性を示す。試験温度は545℃である。Ti
C/2014Al複合材料は0.5S−1の歪速度で約
200%の全伸びを生ずることが分かった。これは、箔
状複合材料を複雑な形状に成形できることを示してい
る。
[0013] Also, FIG. 3 shows the superplastic properties of TiC / 2014Al composites. The test temperature is 545 ° C. Ti
The C / 2014 Al composite was found to produce about 200% total elongation at a strain rate of 0.5 S -1 . This indicates that the foil composite material can be formed into a complicated shape.

【0014】更に、図4はSiFurther, FIG. 4 shows Si Three N 4 /6061Al複/ 6061Al compound
合材料の超塑性特性を示す。試験温度は複合材料の厚さThe superplastic property of the composite material is shown. Test temperature is composite material thickness
が0.7mmと0.9mmの場合580℃であり、厚さIs 0.7 mm and 0.9 mm, the temperature is 580 ° C and the thickness is
が0.2mmの箔の場合には600℃である。箔の場合Is 600 ° C. for a foil having a thickness of 0.2 mm. For foil
にも、150%の全伸びを示しており,超塑性成形が可In addition, it shows a total elongation of 150%, making superplastic forming possible.
能であることが分かる。It turns out that it is Noh.

【0015】 箔に加工することにより、この複合材料を
半導体の基盤・パッケージ等やマイクロマシンなどの部
品に用いることが期待される。又、箔状複合材料をセラ
ミックス長繊維と重ね、ホットプレスにより加圧成形
し、マトリックスが超塑性が発現する長繊維複合材料の
製造も可能になり、長繊維強化複合材料に対する超塑性
成形で複雑形状の長繊維複合材料航空機部品や構造物の
製造が期待できる。
[0015] By working in a foil, it is expected that use of this composite material parts such as semiconductor based packages like or micromachines. It is also possible to fabricate a long-fiber composite material in which the matrix exhibits superplasticity by stacking a foil-shaped composite material with ceramic long fibers and pressing with hot pressing, which is complicated by superplastic forming for a long-fiber reinforced composite material. It can be expected to manufacture shaped long fiber composite material aircraft parts and structures.

【図面の簡単な説明】[Brief description of drawings]

【図1】約1mm以下の薄板状複合材料を約1.5mm
のステンレス板に2枚ずつ挟み、それを数枚重ね、ステ
ンレス管に挟んだ圧延用の素材を示す。
FIG. 1 shows a thin plate-like composite material of about 1 mm or less about 1.5 mm.
The following shows a material for rolling, which is sandwiched between two stainless steel plates, and several stainless steel tubes are stacked.

【図2】TiC/6061とTiC/2014Al複合
材料の引っ張り強度を示している。
FIG. 2 shows the tensile strength of TiC / 6061 and TiC / 2014Al composites.

【図3】TiC/2014Al複合材料の545℃にお
ける全伸びと歪速度との関係を示す。
FIG. 3 shows the relationship between total elongation and strain rate at 545 ° C. of TiC / 2014Al composite material.

【図4】FIG. 4 SiC/6061Al複合材料の580℃と6SiC / 6061Al composite material at 580 ° C and 6
00℃における全伸びと歪速度との関係を示す。The relationship between the total elongation at 00 ° C and the strain rate is shown.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22F 1/04 C22F 1/04 A Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display area C22F 1/04 C22F 1/04 A

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粒度45μm以下のセラミックスの炭化
物(炭化けい素,炭化チタン)、窒化物(窒化けい素,
窒化アルミニウム,窒化チタン)、ほう化物(ほう化チ
タン)の内少なくとも一種類以上と粒度45μm以下の
2000系、6000系、5000系、7000系及び
8000系アルミニウム合金粉末の内の一種類とをセラ
ミックスの体積含有率が0.10から0.30になるよ
うに均一に混合した粉末を真空ホットプレス中にて加圧
焼結させて造った複合材料に対し、温度450℃から6
00℃の温度で、押し出し比10以上で押し出し加工を
加える、この複合材料ビレットをステンレス管と板に挟
み450℃から600℃の温度に加熱し、1パスごとの
歪量が0.1以下の圧延加工、と圧延温度での5分以上
加熱保持とを繰り返し、約1mmの板状複合材料にす
る、更に、この板状複合材料をステンレス薄板の間に2
枚ずつ挟んだものを数枚重ね、前記と同じ条件で圧延一
加熱を繰り返し、200μm以下の厚さに加工した複合
材料の箔の製造方法
1. A ceramic carbide (silicon carbide, titanium carbide) or nitride (silicon nitride, having a grain size of 45 μm or less).
Aluminum nitride, titanium nitride), borides (titanium boride) at least one or more and a particle size 45μm or less of the 2000 series of the 6000 series, 5000 series, 7000 series and 8000 series one type and a ceramic of the aluminum alloy powder Of powder mixed uniformly so as to have a volume content of 0.10 to 0.30 was pressure-sintered in a vacuum hot press to produce a composite material at a temperature of 450 ° C to 6 ° C.
Extrusion is applied at a temperature of 00 ° C. with an extrusion ratio of 10 or more. This composite material billet is sandwiched between a stainless tube and a plate and heated to a temperature of 450 ° C. to 600 ° C., and the strain amount per pass is 0.1 or less. The rolling process and the heating and holding at the rolling temperature for 5 minutes or more are repeated to form a plate-shaped composite material of about 1 mm.
A method for producing a foil of a composite material, in which several sheets sandwiched one by one are stacked, rolling and heating are repeated under the same conditions as described above, and processed into a thickness of 200 μm or less.
【請求項2】 炭化けい素(SiC)ウイスカ、窒化け
い素(Si)ウイスカのプリフォームと2000
系、6000系、5000系、7000系及び8000
系アルミニウム合金を用い、溶湯鍛造法により造った複
合材料に対し請求項1と同じ条件で押し出し加工と圧延
加工を行ったセラミックスウイスカ強化アルミニウム合
金複合材料の箔(200μm以下の厚さの複合材料)
製造方法。
2. A silicon carbide (SiC) whisker, a silicon nitride (Si 3 N 4 ) whisker preform and 2000
System, 6000 system, 5000 system, 7000 system and 8000 system
A foil of a ceramic whisker reinforced aluminum alloy composite material (composite material having a thickness of 200 μm or less) obtained by subjecting a composite material produced by a molten metal forging method using a system aluminum alloy to the extrusion and rolling under the same conditions as in claim 1. of
Production method.
JP5177245A 1993-06-23 1993-06-23 Method for producing foil of ceramic whisker and particle reinforced aluminum alloy composite material Expired - Lifetime JP2560234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5177245A JP2560234B2 (en) 1993-06-23 1993-06-23 Method for producing foil of ceramic whisker and particle reinforced aluminum alloy composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5177245A JP2560234B2 (en) 1993-06-23 1993-06-23 Method for producing foil of ceramic whisker and particle reinforced aluminum alloy composite material

Publications (2)

Publication Number Publication Date
JPH0711359A JPH0711359A (en) 1995-01-13
JP2560234B2 true JP2560234B2 (en) 1996-12-04

Family

ID=16027696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5177245A Expired - Lifetime JP2560234B2 (en) 1993-06-23 1993-06-23 Method for producing foil of ceramic whisker and particle reinforced aluminum alloy composite material

Country Status (1)

Country Link
JP (1) JP2560234B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102744408A (en) * 2012-07-25 2012-10-24 哈尔滨工业大学 Preparation method of titanium aluminum-based laminated composite material plate

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5779811B2 (en) 2013-11-20 2015-09-16 株式会社潤工社 Composite cable
CN103710648B (en) * 2014-01-16 2015-07-29 徐茂航 A kind of long carbon fiber strengthens titanium alloy composite material
CN106945307B (en) * 2017-04-01 2019-01-04 中南大学 The method that a kind of pair of absorbing material carries out composite heating
CN110016597A (en) * 2019-04-19 2019-07-16 大连科天新材料有限公司 A kind of TiB2Particle enhances ultra-high-strength aluminum alloy composite material and homogenizes preparation method
CN113846250A (en) * 2021-09-30 2021-12-28 武汉轻工大学 TiB2Reinforced aluminum-based composite material and preparation method thereof
CN113930635B (en) * 2021-10-13 2022-08-09 广东昭信照明科技有限公司 Stainless steel reinforced aluminum silicon carbide composite material and preparation method thereof
CN116219330B (en) * 2023-05-04 2023-06-30 合肥工业大学 In-situ growth multilayer whisker and particle multi-synergetic reinforced aluminum-based composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102744408A (en) * 2012-07-25 2012-10-24 哈尔滨工业大学 Preparation method of titanium aluminum-based laminated composite material plate

Also Published As

Publication number Publication date
JPH0711359A (en) 1995-01-13

Similar Documents

Publication Publication Date Title
Salishchev et al. Development of Ti–6Al–4V sheet with low temperature superplastic properties
JP4890262B2 (en) Titanium alloy microstructure refinement method and superplastic formation of titanium alloy at high temperature and high strain rate
JP3559717B2 (en) Manufacturing method of engine valve
Cornwall et al. The equal channel angular extrusion process for materials processing
Lu et al. Synthesis of a TiBw/Ti6Al4V composite by powder compact extrusion using a blended powder mixture
CN102134664A (en) Uniformly-dispersed particle reinforced metal-based composite material and preparation method thereof
US4733816A (en) Method to produce metal matrix composite articles from alpha-beta titanium alloys
JP2560234B2 (en) Method for producing foil of ceramic whisker and particle reinforced aluminum alloy composite material
US4797155A (en) Method for making metal matrix composites
Agarwal et al. Comparison of different methods of Severe Plastic Deformation for grain refinement
Rai et al. Forming Behaviour of Al-TiC In Situ Composites
US20060147333A1 (en) Process of direct powder rolling of blended titanium alloys, titanium matrix composites, and titanium aluminides
JP2866917B2 (en) Superplasticity Development Method for Ceramic Particle Reinforced Magnesium Matrix Composite by Melt Stirring Method
JP2569418B2 (en) Manufacturing method of superplastic aluminum nitride particle reinforced aluminum alloy composite material by hot extrusion and hot rolling and its processing method
JPH06501744A (en) Metallurgical products improved by deformation treatment
JPH093503A (en) Method for reactive sintering of intermetallic material molding
US6540130B1 (en) Process for producing a composite material
Zhang et al. Deformation properties and bending/diffusion bonding processing of a P/M Ti-22Al-25Nb alloy at elevated temperature
JP3838803B2 (en) Composite high strength material and manufacturing method thereof
US3390985A (en) Consolidation and forming by high-energy-rate extrusion of powder material
JPH06235032A (en) Method for developing superplasticity of titanium carbide reinforced aluminum alloy composite material
Mabuchi et al. Production of superplastic aluminium composites reinforced with Si 3 N 4 by powder metallurgy
JPH06306508A (en) Production of low anisotropy and high fatigue strength titanium base composite material
Mabuchi et al. Superplastic-like behavior in Al Mg Si composites reinforced with α-Si3N4 or β-Si3N4 whiskers
Queheillalt et al. Temperature dependent creep expansion of Ti-6Al-4V low density core sandwich structures

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term