JP2569406B2 - Manufacturing method of liquid crystal alignment film using laser - Google Patents

Manufacturing method of liquid crystal alignment film using laser

Info

Publication number
JP2569406B2
JP2569406B2 JP1015556A JP1555689A JP2569406B2 JP 2569406 B2 JP2569406 B2 JP 2569406B2 JP 1015556 A JP1015556 A JP 1015556A JP 1555689 A JP1555689 A JP 1555689A JP 2569406 B2 JP2569406 B2 JP 2569406B2
Authority
JP
Japan
Prior art keywords
liquid crystal
laser
polymer film
alignment film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1015556A
Other languages
Japanese (ja)
Other versions
JPH02196219A (en
Inventor
弘之 新納
明 矢部
康治郎 川端
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP1015556A priority Critical patent/JP2569406B2/en
Publication of JPH02196219A publication Critical patent/JPH02196219A/en
Application granted granted Critical
Publication of JP2569406B2 publication Critical patent/JP2569406B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133765Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers without a surface treatment

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】 〔発明の目的と利用分野〕 本発明は液晶配向膜の作製方法に係り、特に液晶表示
電極基板上の高分子フィルムの表面改質を、エネルギー
源としてエネルギー及び位置制御性にすぐれた紫外レー
ザーを用いて、高分子表面の構造特性を向上させること
で、液晶分子の配向制御に好適な高分子フィルムを作製
する方法に関するものである。
The present invention relates to a method for producing a liquid crystal alignment film, and in particular, to control the energy and position of a polymer film on a liquid crystal display electrode substrate by using the surface modification of the polymer film as an energy source. The present invention relates to a method for producing a polymer film suitable for controlling the alignment of liquid crystal molecules by improving the structural characteristics of the polymer surface using an ultraviolet laser having excellent properties.

液晶を用いた平面型表示装置は、従来のブラウン管を
用いたものと比較して、軽量平面型で容積が小さい、動
作電圧が低く消費電流が少ない等の特長を備えており、
今後、急速にかつ広範囲に普及するものと考えられる。
本発明は、この液晶表示装置の表示画質の改善や大面積
表示化等の改良に関するものである。
Flat-panel display devices using liquid crystal have features such as a light-weight, flat-panel display, small volume, low operating voltage, and low current consumption, compared to those using conventional cathode ray tubes.
It is expected that it will spread rapidly and widely in the future.
The present invention relates to an improvement in display quality of the liquid crystal display device and an improvement in a large area display.

〔発明の背景〕[Background of the Invention]

近年、高度情報化社会への変革に支えられて、電子計
算機等の電子機器の発達が急速に進んでいる。これら電
子機器の出入力装置である表示装置は、業務の多様化、
複雑化に伴い、多機能化が要求されている。表示装置に
は、現在、主としてブラウン管が用いられ、容積の小型
化ならびに消費電力の省力化について検討が進められて
いる。また、液晶を用いた表示素子は、平面型で容積が
小さく、動作電圧が低く消費電流が少ない等の特長を備
えている。しかし、ブラウン管に比べ、表示画質や表示
面積が劣っており、この問題点を解決するために、液晶
分子の配向制御方法や高速化等の改良が進められてい
る。液晶表示素子は、2枚の電極基板(高分子フィルム
で被覆されている)で液晶物質を層状に挟持した構造を
基本とし、その特性は、電極基板との界面層における液
晶分子配向状態に強く依存する。したがって、液晶分子
の配向制御方法は、表示素子としての特性を決める上で
重要な役割を果たしている。液晶分子の配向制御方法と
しては、現在、電極基板上の分子フィルムをナイロン布
等で一定方向に機械的に擦る、ラビングという手法が用
いられる(岡野光治、小林俊介、液晶:応用編、p.79
(1985),培風館)。しかしながら、この手法では、フ
ィルム上の静電気の発生、制御性、埃の付着や効果の均
一性に関する問題が指摘されている。また、最近ホログ
ラフィックグレーディングの方法を用いて、高分子表面
に形態学的な凹凸を形成させ、液晶分子を配向させるこ
とが検討されている(戸田清、渡辺典子、竹本敏夫、シ
ャープ技報、Vol.39,67(1988).)。この方法は、リ
ソグラフィ技術を用いるために、光学装置が大規模にな
り、その工程もレジストの塗布、露光、現像等の複数の
高度な工程を含み、コストが大きくなる欠点がある。
2. Description of the Related Art In recent years, the development of electronic devices such as electronic computers has been rapidly progressing, supported by the change to the advanced information society. Display devices, which are input / output devices for these electronic devices, are used to diversify business,
With the increase in complexity, multifunctionality is required. Currently, a cathode-ray tube is mainly used for the display device, and studies are being made on reducing the volume and saving power consumption. A display element using a liquid crystal has features such as a planar type, a small volume, a low operating voltage, and low current consumption. However, the display quality and display area are inferior to those of cathode ray tubes, and in order to solve these problems, improvements have been made in methods for controlling the alignment of liquid crystal molecules and in increasing the speed. A liquid crystal display element has a basic structure in which a liquid crystal material is sandwiched between two electrode substrates (covered with a polymer film), and its characteristics are strong in the state of alignment of liquid crystal molecules in an interface layer with the electrode substrate. Dependent. Therefore, the method of controlling the alignment of liquid crystal molecules plays an important role in determining the characteristics as a display element. As a method for controlling the alignment of liquid crystal molecules, a method called rubbing, in which a molecular film on an electrode substrate is mechanically rubbed in a certain direction with a nylon cloth or the like, is currently used (Koji Okano, Shunsuke Kobayashi, Liquid Crystal: Application, p. 79
(1985), Baifukan). However, in this method, problems relating to generation of static electricity on the film, controllability, adhesion of dust and uniformity of the effect have been pointed out. Recently, it has been studied to form morphological irregularities on a polymer surface and align liquid crystal molecules using a holographic grading method (Kiyoshi Toda, Noriko Watanabe, Toshio Takemoto, Sharp Technical Report, Vol.39,67 (1988).). This method has a disadvantage that the optical device becomes large-scale due to the use of the lithography technology, the process also includes a plurality of advanced processes such as resist coating, exposure, and development, and the cost is increased.

さらに、H.イケノ等は、ラングミュア−ブロジェット
法(LB法)を用い、ポリイミド配向薄膜を得ているが
(H.Ikeno,A。Oh−saki,M.Nitta,N.Ozaki,Y.Yokoyama,
K.Nakaya,S.Kobayashi,Jpn.J.Appl.Phys.,Vol.27,L475
(1988).)、LB法による配向膜作製では、工程が湿式
であること、あるいは大面積化や効果の再現性について
の問題が残されている。
Further, H. Ikeno et al. Obtained a polyimide oriented thin film using the Langmuir-Blodgett method (LB method) (H. Ikeno, A. Oh-saki, M. Nitta, N. Ozaki, Y. Yokoyama). ,
K.Nakaya, S.Kobayashi, Jpn.J.Appl.Phys., Vol.27, L475
(1988). ), In the preparation of an alignment film by the LB method, there are problems that the process is a wet process, or that the area is increased and the effect is reproducible.

〔発明の概要〕[Summary of the Invention]

本発明は、液晶分子の配向制御技術に関して、液晶表
示素子の優れた特性を低下させることなしに、紫外レー
ザーを用いて電極基板上の高分子フィルムに周期的な模
様を形成させる等の表面改質を簡便に行い、これによ
り、液晶分子を配向制御し、液晶表示装置の表示画質の
改善や大面積表示化等の改良が効果的に図れる方法を提
供する。
The present invention relates to a technique for controlling the alignment of liquid crystal molecules, such as forming a periodic pattern on a polymer film on an electrode substrate using an ultraviolet laser without deteriorating the excellent characteristics of the liquid crystal display element. The present invention provides a method for easily controlling the quality of liquid crystal molecules, thereby controlling the alignment of liquid crystal molecules, and effectively improving the display quality of a liquid crystal display device and improving the display of a large area.

S.ラザレ等(S.Lazare,R.Srinivasan,J.Phys.Chem.,V
ol.90,2124(1986).)は、高分子フィルムの表面を、
エキシマーレーザーなどの高強度紫外レーザーで特定部
位を照射すると、照射直後に容易に照射部表面が改質さ
れ、現像工程等の後処理を行うことなく、直後に形態学
的な凹凸が形成されることを報告している。この紫外レ
ーザーによる高分子表面の乾式エッチングは、その表面
状態を観察するのに迅速で簡便な方法であるとしてい
る。しかし、彼らは、そのエッチングの工業的な有用
性、活用策には何等の提案も行っていない。本発明者ら
は、この紫外レーザー高分子乾式エッチング法における
高分子の表面形態変化について鋭意研究を重ねた結果、
特定の方法で特定の高分子フィルム上にレーザー照射を
行って同期的な模用を形成すると、その照射面は、安定
で、液晶分子等の有機分子を配向制御するのに極めて適
した表面となっていることを見出し、この知見に基づい
て本発明をなすにいたった。
S. Lazare, R. Srinivasan, J. Phys. Chem., V
ol. 90, 2124 (1986). ), The surface of the polymer film,
When a specific site is irradiated with a high-intensity ultraviolet laser such as an excimer laser, the surface of the irradiated portion is easily modified immediately after irradiation, and morphological irregularities are formed immediately without performing post-processing such as a development process. Have reported that. The dry etching of the polymer surface by the ultraviolet laser is a quick and simple method for observing the surface state. However, they have not made any proposals on the industrial utility and utilization of the etching. The present inventors have conducted intensive studies on changes in the surface morphology of polymers in this ultraviolet laser polymer dry etching method,
When laser irradiation is performed on a specific polymer film by a specific method to form a synchronous imitation, the irradiation surface is stable and a surface that is extremely suitable for controlling the alignment of organic molecules such as liquid crystal molecules. And found the present invention based on this finding.

〔課題を解決するための手段〕[Means for solving the problem]

すなわち本発明は (1)液晶表示装置の液晶配向膜を作製するに当り、電
極基板上の、芳香族ポリエーテルスルホン、芳香族ポリ
イミド及び芳香族ポリエステルから選ばれた高分子フィ
ルムに、高強度、単一の紫外レーザービームを、パルス
状で、前記高分子フィルム面に対する垂直方向に対して
傾斜した方向から照射することにより周期的な模様を形
成させることを特徴とする液晶配向膜の作製方法、 (2)紫外レーザーがXeF、XeCl、KrF、ArFあるいはF2
エキシマーレーザーであることを特徴とする(1)項記
載の液晶配向膜の作製方法、及び (3)液晶表示電極基板を構成する高分子フィルムが芳
香族ポリエーテルスルホンであり紫外レーザーがXeClエ
キシマーレーザーであることを特徴とする(1)項又は
(2)項記載の液晶配向膜の作製方法 を提供するものである。さらに、本発明は、高分子フィ
ルムの改質したい部位に相当するマスク(金属板製パタ
ーンなど)を通過させたレーザービームを照射すること
で、希望する照射部分のみに、直接に周期的な模様を形
成させることが可能である。一方、エキシマレーザーの
ビームは、ヘリウム−ネオンレーザー、アルゴン及びク
リプトンイオンレーザーやNd+:YAGレーザー等の他のレ
ーザーのビームと比較して、ビーム形状は大きく、ビー
ムの走査させ、任意の形状の改質すべき部位を照射する
ことで、大面積化にも容易に対応できる。特に、本発明
は、紫外レーザーによる非熱的な光化学反応により、高
分子化合物が反応するので、照射部位以外の周辺には何
等の熱的損傷を伴わず、かつ、レーザーにより切削され
た断片は、高エネルギーを有したフラグメントとして、
周囲に高速で飛散していくので、それらの断片が周囲に
は付着しておらず洗浄する必要もない極めて効果的な処
理である。本発明は、従来のラビング法、ホログラフィ
ックグレーティング法やLB法と比べ、配向膜の性能やコ
ストの点で有利なものである。また、レーザーエッチン
グ反応は、高分子フィルムのみで起こり、電極等の素子
に対する損傷は全く観測されなかった。模様の形状、大
きさ、及び除去されるフィルムの量、すなわち切削され
る深さは、照射するレーザーの波長、フルエンス、パル
ス数により制御できる。また、本方法は通常の空気中、
常温常圧雰囲気中での作業で良く、極めて容易な工程で
あり、作業雰囲気も減圧下、活性ガス、不活性ガス中と
変えることも可能である。こうして、レーザー照射部分
の高分子フィルム表面上では、形態学的には周期的な、
物理的、化学的に安定な凹凸(畝)が生まれている。
That is, the present invention provides (1) a method for producing a liquid crystal alignment film of a liquid crystal display device, in which a polymer film selected from aromatic polyethersulfone, aromatic polyimide, and aromatic polyester on an electrode substrate has high strength, A method for producing a liquid crystal alignment film, characterized by forming a periodic pattern by irradiating a single ultraviolet laser beam in a pulsed manner from a direction inclined with respect to a direction perpendicular to the polymer film surface, (2) UV laser is XeF, XeCl, KrF, ArF or F 2
(1) The method for producing a liquid crystal alignment film according to (1), wherein the polymer film constituting the liquid crystal display electrode substrate is an aromatic polyether sulfone, and the ultraviolet laser is a XeCl excimer laser. It is intended to provide a method for producing a liquid crystal alignment film according to the above mode (1) or (2). In addition, the present invention irradiates a laser beam that has passed through a mask (a metal plate pattern, etc.) corresponding to a portion of the polymer film to be modified, so that only the desired irradiated portion is directly exposed to a periodic pattern. Can be formed. On the other hand, the beam of an excimer laser is larger than other laser beams such as a helium-neon laser, an argon and krypton ion laser, and a Nd + : YAG laser, and the beam is scanned. By irradiating a portion to be modified, it is possible to easily cope with an increase in area. In particular, in the present invention, the polymer compound reacts by a non-thermal photochemical reaction by an ultraviolet laser, so that there is no thermal damage to the periphery other than the irradiation site, and the fragments cut by the laser are , As a fragment with high energy,
Since the particles are scattered around at high speed, the fragments are not adhered to the periphery and need not be cleaned, which is an extremely effective treatment. The present invention is more advantageous in terms of the performance and cost of the alignment film than the conventional rubbing method, holographic grating method and LB method. Further, the laser etching reaction occurred only in the polymer film, and no damage to elements such as electrodes was observed at all. The shape, size, and amount of the film to be removed, that is, the cutting depth, can be controlled by the wavelength, fluence, and pulse number of the laser to be irradiated. In addition, this method is used in ordinary air,
The process can be carried out in a normal temperature and normal pressure atmosphere, which is an extremely easy process. The working atmosphere can be changed to an active gas or an inert gas under reduced pressure. Thus, on the polymer film surface of the laser irradiation part, morphologically periodic,
Physically and chemically stable irregularities (ridges) are created.

本発明におけるレーザーとしては、紫外レーザーが適
しており、特に好適には、XeF(351nm),XeCl(308n
m),KrF(248nm),ArF(193nm)あるいはF2(157nm)エ
キシマーレーザーである。また、Nd+:YAG,色素レーザ
ー、Krイオンレーザー、Arイオンレーザーあるいは銅蒸
気レーザーの基本発振波長光を非線形光学素子などによ
り、紫外光領域のレーザーに変換したものも有効であ
る。レーザーのフルエンスとしては、素材により異なる
が、約0.1mJ/cm2/パルス以上の高輝度レーザーが望まし
い。
As the laser in the present invention, an ultraviolet laser is suitable, and particularly preferably, XeF (351 nm), XeCl (308n)
m), KrF (248 nm), ArF (193 nm) or F 2 (157 nm) excimer laser. It is also effective to use Nd + : YAG, a dye laser, a Kr ion laser, an Ar ion laser, or a laser beam in the fundamental oscillation wavelength of a copper vapor laser, which is converted into a laser in the ultraviolet region by a nonlinear optical element or the like. The fluence of the laser depends on the material, but a high-brightness laser of about 0.1 mJ / cm 2 / pulse or more is desirable.

なお、本発明において、対象となる高分子フィルム
は、芳香族ポリエーテルスルホン、芳香族ポリイミド及
び芳香族ポリエステルから選ばれる。
In the present invention, the target polymer film is selected from aromatic polyether sulfone, aromatic polyimide, and aromatic polyester.

〔発明の効果〕〔The invention's effect〕

本発明方法によれば単一のレーザービームを用いレー
ザービームの光軸を傾斜させてパルス状で照射すること
により、レーザービームに偏光性が与えられ、芳香族ポ
リエーテルスルホン、芳香族ポリイミド、又は芳香族ポ
リエステルフィルム表面上に特異的な光化学反応が非熱
的に生起されるとともに、これにより、液晶配向に適し
た周期的な微細構造が照射面全体に、均一に形成される
という優れた作用効果を奏する。本発明方法によれば、
光化学反応により高分子化合物が反応するので、照射部
位以外の周辺には何等の熱的損傷を伴わず、レーザーに
より切削された断片は、周囲には付着しておらず洗浄す
る必要もなく、極めて効果的でコストが低いという利点
を有する。
According to the method of the present invention, by irradiating the laser beam in a pulsed manner by tilting the optical axis of the laser beam using a single laser beam, the laser beam is given a polarization property, aromatic polyether sulfone, aromatic polyimide, or A unique photochemical reaction is caused non-thermally on the surface of the aromatic polyester film, and as a result, a periodic fine structure suitable for liquid crystal alignment is uniformly formed on the entire irradiated surface. It works. According to the method of the present invention,
Since the polymer compound reacts by photochemical reaction, there is no thermal damage around the area other than the irradiation site, and the fragments cut by the laser do not adhere to the surroundings and do not need to be cleaned, It has the advantage of being effective and low cost.

〔実施例〕〔Example〕

次に本発明を実施例によりさらに詳細に説明する。 Next, the present invention will be described in more detail with reference to examples.

実施例1 芳香族ポリエーテルスルホンフィルムの平滑な面に、
45゜方向からXeClエキシマーレーザーをエネルギー密度
750mJ/cm2で30ショット照射させ、表面に間隔1μmの
周期的な模様を形成させた、この2枚のフィルムで液晶
物質を層状に挟持し、偏光顕微鏡で観察したところ、レ
ーザー照射部分の液晶分子は、単結晶液晶化を形成して
いることが分かった。
Example 1 On a smooth surface of an aromatic polyether sulfone film,
Energy density of XeCl excimer laser from 45 ° direction
The film was irradiated with 30 shots at 750 mJ / cm 2 , and a periodic pattern of 1 μm was formed on the surface. The liquid crystal material was sandwiched in layers between these two films and observed with a polarizing microscope. The molecules were found to form a single crystal liquid crystal.

実施例2 芳香族ポリエーテルスルホンフィルムの平滑な面に、
45゜方向からXeClエキシマーレーザーをエネルギー密度
750mJ/cm2で30ショット照射させ、表面に間隔約1μm
の周期的な模様を形成させた、この2枚のフィルムで二
色性色素を1重量%混入した液晶物質を層状に挟持し、
偏光顕微鏡、及び、偏光可視スペクトル法で観察したと
ころ、レーザー照射部分の液晶分子は、高分子フィルム
上の模様の方向と同一方向に配向し、単結晶液晶化を形
成していることが分かった。
Example 2 On a smooth surface of an aromatic polyether sulfone film,
Energy density of XeCl excimer laser from 45 ° direction
Irradiate 30 shots at 750mJ / cm 2 , spacing about 1μm on the surface
A liquid crystal material mixed with 1% by weight of a dichroic dye is sandwiched between these two films in a periodic pattern.
Observation with a polarizing microscope and a polarization visible spectrum method revealed that the laser-irradiated liquid crystal molecules were oriented in the same direction as the pattern on the polymer film, forming a single-crystal liquid crystal. .

実施例3 芳香族ポリエーテルスルホンフィルムの平滑な面に、
45゜方向からXeClエキシマーレーザーをエネルギー密度
750mJ/cm2で100ショット照射させ、表面に間隔約1μm
の周期的な模様を形成させた、この2枚のフィルムで二
色性色素を1重量%混入した液晶物質を層状に挟持し、
偏光顕微鏡、及び、偏光可視スペクトル法で観察したと
ころ、レーザー照射部分の液晶分子は、高分子フィルム
上の模様の方向と同一方向に配向し、単結晶液晶化を形
成していることが分かった。
Example 3 On a smooth surface of an aromatic polyether sulfone film,
Energy density of XeCl excimer laser from 45 ° direction
Irradiate 100 shots at 750mJ / cm 2 , spacing about 1μm on the surface
A liquid crystal material mixed with 1% by weight of a dichroic dye is sandwiched between these two films in a periodic pattern.
Observation with a polarizing microscope and a polarization visible spectrum method revealed that the laser-irradiated liquid crystal molecules were oriented in the same direction as the pattern on the polymer film, forming a single-crystal liquid crystal. .

実施例4 芳香族ポリエーテルスルホンフィルムの平滑な面に、
45゜方向からXeClエキシマーレーザーをエネルギー密度
750mJ/cm2で1ショット照射させ、表面に間隔約1μm
の周期的な模様を形成させた、この2枚のフィルムで二
色性色素を1重量%混入した液晶物質を層状に挟持し、
偏光顕微鏡、及び、偏光可視スペクトル法で観察したと
ころ、レーザー照射部分の液晶分子は、実施例2と比較
して配向性はやや低いが、単結晶液晶化を形成している
ことが分かった。
Example 4 On a smooth surface of an aromatic polyether sulfone film,
Energy density of XeCl excimer laser from 45 ° direction
Irradiate one shot at 750mJ / cm 2 , spacing about 1μm on the surface
A liquid crystal material mixed with 1% by weight of a dichroic dye is sandwiched between these two films in a periodic pattern.
Observation with a polarizing microscope and a polarization visible spectrum method revealed that the liquid crystal molecules irradiated with the laser had a slightly lower orientation than in Example 2, but formed single-crystal liquid crystal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川端 康治郎 茨城県つくば市東1丁目1番地 工業技 術院化学技術研究所内 (56)参考文献 特開 昭63−142327(JP,A) 特開 昭54−50350(JP,A) ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kojiro Kawabata 1-1, Higashi, Tsukuba, Ibaraki Pref., Institute of Chemical Technology, Industrial Technology Institute (56) References JP-A-63-142327 (JP, A) JP-A-54 -50350 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】液晶表示装置の液晶配向膜を作製するに当
り、電極基板上の、芳香族ポリエーテルスルホン、芳香
族ポリイミド及び芳香族ポリエステルから選ばれた高分
子フィルムに、高強度、単一の紫外レーザービームを、
パルス状で、前記高分子フィルム面に対する垂直方向に
対して傾斜した方向から照射することにより周期的な模
様を形成させることを特徴とする液晶配向膜の作製方
法。
In producing a liquid crystal alignment film for a liquid crystal display device, a high-strength, single-strength polymer film selected from aromatic polyethersulfone, aromatic polyimide and aromatic polyester on an electrode substrate is used. UV laser beam,
A method for producing a liquid crystal alignment film, wherein a periodic pattern is formed by irradiating in a pulsed manner from a direction inclined with respect to a direction perpendicular to the polymer film surface.
【請求項2】紫外レーザーがXeF、XeCl、KrF、ArFある
いはF2エキシマーレーザーであることを特徴とする請求
項1記載の液晶配向膜の作製方法。
2. The method according to claim 1, wherein the ultraviolet laser is a XeF, XeCl, KrF, ArF or F 2 excimer laser.
【請求項3】液晶表示電極基板を構成する高分子フィル
ムが芳香族ポリエーテルスルホンであり紫外レーザーが
XeClエキシマーレーザーであることを特徴とする請求項
1又は2記載の液晶配向膜の作製方法。
3. The polymer film constituting the liquid crystal display electrode substrate is an aromatic polyether sulfone, and the ultraviolet laser is
3. The method according to claim 1, wherein the method is a XeCl excimer laser.
JP1015556A 1989-01-25 1989-01-25 Manufacturing method of liquid crystal alignment film using laser Expired - Lifetime JP2569406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1015556A JP2569406B2 (en) 1989-01-25 1989-01-25 Manufacturing method of liquid crystal alignment film using laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1015556A JP2569406B2 (en) 1989-01-25 1989-01-25 Manufacturing method of liquid crystal alignment film using laser

Publications (2)

Publication Number Publication Date
JPH02196219A JPH02196219A (en) 1990-08-02
JP2569406B2 true JP2569406B2 (en) 1997-01-08

Family

ID=11892044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1015556A Expired - Lifetime JP2569406B2 (en) 1989-01-25 1989-01-25 Manufacturing method of liquid crystal alignment film using laser

Country Status (1)

Country Link
JP (1) JP2569406B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0525478B1 (en) * 1991-07-26 1997-06-11 F. Hoffmann-La Roche Ag Liquid crystal display cell
JP2994853B2 (en) * 1992-05-13 1999-12-27 シャープ株式会社 Liquid crystal display device defect repair method
JP3216869B2 (en) 1995-02-17 2001-10-09 シャープ株式会社 Liquid crystal display device and method of manufacturing the same
JPH08328005A (en) * 1995-05-26 1996-12-13 Hitachi Chem Co Ltd Liquid crystal oriented film, treatment of liquid crystal oriented film, liquid crystal holding substrate, liquid crystal display element, production of liquid crystal display element and material for liquid crystal oriented film
GB2318119B (en) * 1996-08-20 2000-05-24 Peter Jonathan Samuel Foot Laser processed conducting polymers
DE69831186T2 (en) 1997-04-30 2006-06-08 Jsr Corp. Orientation layer for liquid crystal and process for its preparation
TW522260B (en) 2000-04-03 2003-03-01 Konishiroku Photo Ind Optical compensation sheet and liquid crystal display
JP4459417B2 (en) * 2000-09-08 2010-04-28 Jsr株式会社 Liquid crystal alignment treatment method and liquid crystal display element
JP4549833B2 (en) * 2004-12-13 2010-09-22 富士フイルム株式会社 Alignment film, manufacturing technique thereof, and liquid crystal device
JP2010152004A (en) * 2008-12-24 2010-07-08 Jsr Corp Optical member substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450350A (en) * 1977-09-27 1979-04-20 Sharp Corp Liquid crystal display device
JPS63142327A (en) * 1986-12-04 1988-06-14 Semiconductor Energy Lab Co Ltd Method for orienting liquid crystal molecule

Also Published As

Publication number Publication date
JPH02196219A (en) 1990-08-02

Similar Documents

Publication Publication Date Title
US7767555B2 (en) Method for cutting substrate using femtosecond laser
JP2569406B2 (en) Manufacturing method of liquid crystal alignment film using laser
US4608117A (en) Maskless growth of patterned films
CN100557513C (en) Film etching method and the method for using this method manufacturing liquid crystal display device
US7326876B2 (en) Sequential lateral solidification device
US8173930B2 (en) Apparatus for cutting substrate
TWI282295B (en) Substrate working device and substrate working method
JPS6384789A (en) Light working method
JP2002082340A (en) Method for manufacturing flat panel display
RU2204179C1 (en) Method for shaping nanotopography on film surface
JPS6189636A (en) Optical processing
JP3738990B2 (en) Liquid crystal alignment film, method for manufacturing the liquid crystal alignment film, liquid crystal panel, and liquid crystal display device
JPH09265095A (en) Production of alignment film for liquid crystal molecule
JPH0756172A (en) Production of liquid crystal display
JPH02309321A (en) Orientation treating device
Yabe et al. Polymer ablation with excimer lasers
JPH01210932A (en) Orientation of liquid crystal display device
JPH06130390A (en) Orientation treatment of oriented film
JP2004230458A (en) Laser beam machining device
Tsai et al. Laser patterning indium tin oxide (ITO) coated on PET substrate
JPH0655846B2 (en) Etching method for polymer moldings
JPH0651314A (en) Production of liquid crystal display panel
JPS6376438A (en) Pattern formation
JP3163357B2 (en) Liquid crystal tilt alignment film, liquid crystal alignment processing method, and liquid crystal cell
JPH04180624A (en) Formation of pattern

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term