JP2567708B2 - High current density gas shielded arc welding steel wire - Google Patents

High current density gas shielded arc welding steel wire

Info

Publication number
JP2567708B2
JP2567708B2 JP1238869A JP23886989A JP2567708B2 JP 2567708 B2 JP2567708 B2 JP 2567708B2 JP 1238869 A JP1238869 A JP 1238869A JP 23886989 A JP23886989 A JP 23886989A JP 2567708 B2 JP2567708 B2 JP 2567708B2
Authority
JP
Japan
Prior art keywords
wire
welding
current density
transfer
high current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1238869A
Other languages
Japanese (ja)
Other versions
JPH03106592A (en
Inventor
礦三 山下
汎司 小山
一師 須田
仁 河辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP1238869A priority Critical patent/JP2567708B2/en
Publication of JPH03106592A publication Critical patent/JPH03106592A/en
Application granted granted Critical
Publication of JP2567708B2 publication Critical patent/JP2567708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ガスシールドアーク溶接用鋼ワイヤに係
り、さらに詳しくは高電流密度溶接において安定な溶滴
移行性および良好な溶込み形状が得られる鋼ワイヤに関
するものである。
Description: TECHNICAL FIELD The present invention relates to a steel wire for gas shielded arc welding, and more specifically, it provides stable droplet transferability and good penetration shape in high current density welding. Steel wire used.

(従来の技術) 最近、溶接の自動化,高能率化に伴い、ガスシールド
アーク溶接法はますます広く使用されている。高能率化
の手段として電流密度を高めてワイヤの溶融速度(溶着
量)を増加させることが一般的に採られている。しか
し、高電流密度溶接ではスパッタの多発,耐気孔性,耐
われ性,融合不良性等の低下など多くの問題が生ずる。
(Prior Art) Recently, the gas shielded arc welding method is more and more widely used due to the automation and high efficiency of welding. As a means for increasing efficiency, it is generally adopted to increase the current density to increase the melting rate (deposition amount) of the wire. However, in high current density welding, many problems occur, such as frequent occurrence of spatter, deterioration of porosity resistance, crack resistance and fusion failure.

即ち、シールドガスに炭酸ガスを使用するCO2溶接で
は、電流密度を高めるとスパッタ量が急増する。スパッ
タ発生量の少ないAr−CO2混合ガス溶接では電流密度が
一定以上になると、ピンチ力によって中央部に過大な溶
込みを形成する、いわゆる“フィンガー状”の溶込み形
状を呈する。この溶込み中央部は冷却速度が速いため
に、凝固われが生じ易いばかりでなく、ガスも残存し易
くブロホールの一因となる。
That is, in CO 2 welding in which carbon dioxide is used as the shielding gas, the amount of spatter increases sharply when the current density is increased. In Ar-CO 2 mixed gas welding where the amount of spatter generated is small, when the current density exceeds a certain level, a so-called "finger-like" penetration shape is formed in which excessive penetration is formed in the center by the pinch force. Since the central portion of the penetration has a high cooling rate, not only solidification and cracking easily occur but also gas easily remains, which is one of the causes of blowholes.

また積層溶接や突合せ継ぎ手の溶接では、溶込み幅が
小さいためにしばしば融合不良などの形状欠陥が発生す
るなどの問題点があった。
In addition, in the lamination welding and the welding of butt joints, there is a problem that a shape defect such as fusion failure often occurs due to a small penetration width.

これらの問題はいずれも溶込み形状をフィンガー状か
ら円形状の溶込みにすることで改善されるものであり、
解決手段としてシールドガスにHeを添加した、例えば特
開昭59−45084号公報にはAr−He−CO2−O2の4種混合ガ
スによる溶接方法が提案されている。
All of these problems are ameliorated by changing the penetration shape from a finger shape to a circular shape,
As a solution, a welding method in which He is added to a shield gas, for example, Japanese Patent Laid-Open No. 59-45084, proposes a welding method using a mixed gas of four kinds of Ar—He—CO 2 —O 2 .

しかしこの方法はHeを25〜60%も含むため、安定した
円形状の溶込みを得るには電流値を非常に高く保つ必要
があり、その結果過大な溶接入熱が投入されるため溶接
部の結晶粒が粗大化し衝撃靭性が低下するばかりでな
く、選定できる条件範囲が狭いなどの実用上の制限に加
え、特に我国ではガスコストが高くなることから、経済
的な課題を残すものであった。
However, since this method also contains 25-60% of He, it is necessary to keep the current value extremely high in order to obtain a stable circular penetration, and as a result, excessive welding heat input is applied, resulting in a weld zone. In addition to the fact that the crystal grains of Co become coarse and the impact toughness decreases, and in addition to practical restrictions such as the narrow range of conditions that can be selected, especially in Japan, the gas cost becomes high, so it leaves an economic problem. It was

このように溶接方法に関しては幾分かの検討がなされ
ているが、鋼ワイヤについては従来ほとんど検討がなさ
れておらず、高電流密度溶接に適したワイヤが強く要望
されている。
Thus, although some studies have been made on the welding method, almost no studies have been made on steel wires in the past, and there is a strong demand for wires suitable for high current density welding.

(発明が解決しようとする課題) 本発明は、このような従来の高電流密度溶接の諸問題
点を解決したもので、比較的低電流でも溶滴の回転細粒
移行性が良好で安定した円形状溶込みがえられ、かつ耐
ブロホール性に優れた高電流密度溶接用鋼ワイヤを提供
するものである。
(Problems to be Solved by the Invention) The present invention solves various problems of the conventional high current density welding, and the rotational fine grain transferability of droplets is good and stable even at a relatively low current. It is intended to provide a steel wire for high current density welding, which has a circular shape penetration and is excellent in the resistance to blowholes.

(課題を解決するための手段) 本発明の要旨とするところは、Ti(重量%、以下同
じ):0.050〜0.35%、S:0.010〜0.040%を含有し、常温
におけるワイヤの電気比抵抗(ρ)が25〜65(μΩcm)
でかつ次式で示すパラメータKが20〜40である高電流密
度ガスシールドアーク溶接用鋼ワイヤ(ただしK=505
・S(%)+0.41・ρ(μΩcm))にある。
(Means for Solving the Problems) The gist of the present invention is that Ti (weight%, the same applies hereinafter): 0.050 to 0.35%, S: 0.010 to 0.040% are contained, and the electrical resistivity of the wire at room temperature ( ρ) is 25 to 65 (μΩcm)
Steel wire for high current density gas shielded arc welding (where K = 505
・ S (%) + 0.41 ・ ρ (μΩcm))

(作用) 一般にマグ溶接の溶滴移行形態は溶接電流を高めてい
くと、第1図に示すように(イ)粒状移行,(ロ)細粒
移行,(ハ)回転細粒移行と3種の形態を示すことが知
られている。即ち、低電流領域の移行形態である(イ)
粒状移行ではワイヤ1の先端の溶滴2aはアーク3の押上
力が弱いため大粒に成長して溶融プール4へ移行する。
電流が増加するとピンチ力によりアーク3は絞られ、溶
滴2bは細粒となり(ロ)細粒移行となる。さらに電流が
増すと、アークの押上力により溶滴2c,2c′は回転し始
め(ハ)回転細粒移行となる。
(Operation) Generally, when the welding current is increased in the droplet transfer form of MAG welding, as shown in Fig. 1, (a) granular transfer, (b) fine particle transfer, (c) rotary fine particle transfer and three types It is known to exhibit the form of That is, it is a transition form of the low current region (a)
In the granular transfer, the droplet 2a at the tip of the wire 1 grows into large particles and transfers to the molten pool 4 because the pushing force of the arc 3 is weak.
When the current is increased, the arc 3 is squeezed by the pinch force, and the droplet 2b becomes fine particles (b), which is fine particle transfer. When the electric current further increases, the droplet pushing force of the arc causes the droplets 2c and 2c 'to start to rotate (c), which results in the transfer of rotating fine particles.

本発明における高電流密度溶接は、このうちの(ハ)
回転細粒移行を示す範囲をいう。回転細粒移行はワイヤ
先端の軟化部と溶滴とがアーク力によりワイヤ鉛直軸を
回転軸に回転しながら、溶滴移行するものである。
The high current density welding in the present invention includes (c)
It refers to the range showing rotational fine grain transfer. The rotary fine grain transfer is a transfer of droplets while the softening portion at the tip of the wire and the droplet rotate about the wire vertical axis as a rotation axis by an arc force.

本発明者らは、このような高電流密度溶接において、
細粒移行から回転細粒移行へと溶滴移行形態が変化する
現象を安定化するには、溶滴に作用するアークによる押
上力が一定していることが重要であり、溶滴先端にお
けるアーク発生点が安定していること、ワイヤ先端の
軟化部が安定して生成されること、溶滴移行が安定し
て行われることの3点に着目し、溶滴移行特性とワイヤ
特性について詳細に種々検討を行った。
The present inventors, in such high current density welding,
In order to stabilize the phenomenon that the droplet transfer morphology changes from fine grain transfer to rotating fine grain transfer, it is important that the pushing force due to the arc acting on the droplet be constant, and the arc at the droplet tip is Focusing on three points, that is, the generation point is stable, the softened portion at the tip of the wire is stably generated, and the droplet transfer is performed stably, the droplet transfer characteristics and the wire characteristics will be described in detail. Various studies were conducted.

その結果、Ti含有量を限定するとともに、比抵抗とS
量とを一定の範囲に制限することにより高電流密度溶接
に適した鋼ワイヤに到達し、本発明をなすに至った。
As a result, the Ti content is limited, and the resistivity and S
By limiting the amount and a certain range, a steel wire suitable for high current density welding was reached, and the present invention was completed.

即ち、本発明の最大の特徴はワイヤの比抵抗を限定す
ることによるワイヤ先端の軟化部の安定化、さらにS,Ti
の調整による溶滴移行性の改善をバランス良く計ること
により高電流密度溶接において最大の効果を発揮する点
にある。
That is, the greatest feature of the present invention is stabilization of the softened portion of the wire tip by limiting the specific resistance of the wire, and further S, Ti
The best effect in high current density welding is to be achieved by measuring the well-balanced improvement of droplet transferability by adjusting.

以下に本発明における限定理由を述べる。 The reasons for limitation in the present invention will be described below.

ワイヤの比抵抗(ρ)が25(μΩcm)未満になると遷
移電流値が急激に増加する。また65(μΩcm)を越える
ときは遷移電流値の低減効果が顕著でなく、ワイヤ先端
の軟化部の重量が一定とならず、回転に伴って飛散する
現象が強まるために大粒のスパッタが多発する。
When the specific resistance (ρ) of the wire is less than 25 (μΩcm), the transition current value increases rapidly. Also, when it exceeds 65 (μΩcm), the effect of reducing the transition current value is not remarkable, the weight of the softened part at the wire tip is not constant, and the phenomenon of scattering with rotation is intensified, resulting in frequent occurrence of large spatter. .

ワイヤのS量は遷移電流値の低下および遷移電流幅の
減少および溶滴の大きさを適度に保持する効果がある。
0.010%未満ではこのような効果が得られず、0.040%を
超えると溶接金属の耐われ性を著しく低下するなどの弊
害があるため0.040%を上限とした。
The S content of the wire has the effects of lowering the transition current value, reducing the transition current width, and maintaining the droplet size appropriately.
If it is less than 0.010%, such an effect cannot be obtained, and if it exceeds 0.040%, there is an adverse effect such as a marked decrease in the weld metal's resistance to wear, so 0.040% was made the upper limit.

さらに、ワイヤの比抵抗ρおよびS含有量が上記範囲
内であっても、ρ,Sの低い場合あるいは高い場合のある
条件内においては安定な回転細粒移行が行われない場合
があることがわかり、さらに詳細な検討を加えた結果、
505×S(%)+0.41×ρ(μΩcm)を20〜40の範囲に
制限する必要のあることが分かった。
Further, even if the specific resistance ρ and S content of the wire are within the above ranges, stable rotary fine grain transfer may not be performed under certain conditions where ρ and S are low or high. Understand, and as a result of further detailed examination,
It was found necessary to limit 505 × S (%) + 0.41 × ρ (μΩcm) to the range of 20-40.

Tiは溶滴上のアーク点を安定化し、極めて微量の添加
により細粒移行から回転細粒移行へ移行形態が変化する
遷移電流値および電流幅の減少に顕著な作用を及ぼす。
Ti stabilizes the arc point on the droplet and exerts a remarkable effect on the reduction of the transition current value and the current width in which the transition morphology changes from the fine grain transition to the rotary fine grain transition by the addition of an extremely small amount.

第2図は検討結果の一例としてワイヤのTi含有量と溶
滴移行形態が細粒移行から回転細粒移行に変化する遷移
電流との関係について、高速ビデオによるアーク観察結
果を示したものである。同図からTi含有量が0.050%以
上で遷移電流が急激に低下すると共に、細粒移行から回
転粒移行へと変化する遷移電流値の幅が狭くなり、回転
細粒移行が安定することが分かる。しかし、Ti量が0.15
%程度以上ではこのような遷移電流への効果は飽和の傾
向を示すと共に、Ti量が0.35%を超えるとむしろ溶接金
属の引張強度が高くなり過ぎるばかりでなく、その衝撃
靭性が急激に低下する等の弊害が顕著になるため0.35%
を上限とした。
FIG. 2 shows an arc observation result by a high-speed video about the relationship between the Ti content of the wire and the transition current in which the droplet transfer form changes from the fine grain transfer to the rotating fine particle transfer as an example of the examination result. . From the figure, it can be seen that when the Ti content is 0.050% or more, the transition current sharply decreases, and the width of the transition current value that changes from the fine grain transition to the rotary grain transition becomes narrow, and the rotary fine grain transition becomes stable. . However, the Ti amount is 0.15
%, The effect on the transition current tends to be saturated, and when the Ti content exceeds 0.35%, not only the tensile strength of the weld metal becomes too high, but also its impact toughness decreases sharply. 0.35% because the harmful effects such as
Was set as the upper limit.

遷移電流値は周辺条件、例えばシールドガス組成、ワ
イヤ径あるいはワイヤ突出し長さや溶接速度等により影
響を受けて変化するものであるが、このような条件変化
に対しても前述のTiの遷移電流低減効果は発揮される。
The transition current value changes depending on the peripheral conditions such as the shield gas composition, wire diameter or wire protrusion length, welding speed, etc. The effect is demonstrated.

尚、この場合ワイヤの成分系は、0.07〜0.09%C−0.
7〜0.9%Si−1.4〜0.6%Mn−0.015〜0.020%Sであり、
ワイヤ径は1.2mmφ、シールドガス:Ar−10%CO2(流量:
25/min)、溶接姿勢は下向き平板、チップ−母材間距
離(Ext):25mm、溶接速度40cm/minの溶接条件で行って
いる。
In this case, the composition system of the wire is 0.07 to 0.09% C-0.
7-0.9% Si-1.4-0.6% Mn-0.015-0.020% S,
Wire diameter is 1.2 mmφ, shielding gas: Ar-10% CO 2 (Flow rate:
25 / min), the welding position is downward flat plate, the distance between the tip and the base metal (Ext): 25 mm, and the welding speed is 40 cm / min.

次に実施例により本発明の効果を具体的に説明する。 Next, the effects of the present invention will be specifically described with reference to examples.

(実施例) 実施例1 第1表に示す組成の鋼を溶製し、鍛造・伸線・めっき
・伸線の各工程を経て1.2mmφのワイヤに仕上げたの
ち、第3図に示す方法により電気抵抗を測定した。第3
図において長さ10mのワイヤ1の両端に定電流発生装置
5により一定電流の電圧を印加して、スイッチ9により
ワイヤ1側に接続して、その時の電圧値(V)および電
流値(I)をそれぞれ電圧計7および電流計8で読み取
り記録し、その結果とワイヤ直径〔D(cm)〕の測定値
とから次式により比抵抗(ρ)を算出した。尚、これら
の測定は常温(20℃)で行い、標準抵抗6は電圧値、電
流値のチェックのために用いた。
(Example) Example 1 Steel having the composition shown in Table 1 was melted, and after forging, wire drawing, plating, and wire drawing to finish a wire of 1.2 mmφ, the method shown in FIG. 3 was used. The electrical resistance was measured. Third
In the figure, a constant current voltage is applied by a constant current generator 5 to both ends of a wire 1 having a length of 10 m, and a switch 9 is connected to the wire 1 side to obtain a voltage value (V) and a current value (I) at that time. Was read and recorded by a voltmeter 7 and an ammeter 8, respectively, and the specific resistance (ρ) was calculated from the result and the measured value of the wire diameter [D (cm)] by the following formula. These measurements were performed at room temperature (20 ° C.), and the standard resistance 6 was used for checking the voltage value and current value.

比抵抗(ρ)=106・π・V・D2/400・I〔μΩcm〕 これらの各ワイヤを第2表に示す溶接条件で溶接を行
い、そのアーク状態を高速ビデオカメラ(1/1000秒)で
観察して、溶滴の移行状態を測定し、第3表の結果を得
た。
Perform welding by welding condition indicating specific resistance (ρ) = 10 6 · π · V · D 2/400 · I [μΩcm] Each of these wires in Table 2, high-speed video camera that arc condition (1/1000 Second, the droplet transfer state was measured, and the results shown in Table 3 were obtained.

溶滴移行性はビデオ画像から、1m sec毎の各500点の
データの10m sec毎の回転移行回数〔第1図(ハ)の2c
→2c′→2cへと変わる回数〕を測定して各50点のデータ
の平均回転回数とその標準偏差を求め、あらかじめ求め
た安定して回転細粒移行が行われる電流値での平均回転
数との比を回転移行率として、これが50%以下を不良と
判定した。
From the video image, the droplet transfer property is the number of rotation transfer times of every 10 msec of the data of 500 points every 1 msec [2c in Fig. 1 (c)].
→ 2c '→ number of changes to 2c] to obtain the average number of rotations of the data at each 50 points and its standard deviation, and the average number of rotations at the current value for which stable fine grain transfer is performed in advance. The ratio of the rotation speed was 50% or less, and it was determined to be defective.

ビードのX線透過試験ではフィルムの欠陥数、気孔数
を測定してJIS等級の3級以下を不合格とした。また溶
込み形状およびビードの断面マクロを採取してその溶込
形状を測定した。溶込み形状では第4図に示すように、
最大溶込み深さの1/2位置における溶込み幅が最大溶込
み幅の50%以上を良好と判定した。
In the bead X-ray transmission test, the number of defects and the number of pores of the film were measured, and JIS grade 3 or lower was determined to be unacceptable. The penetration shape and the bead cross-section macro were sampled to measure the penetration shape. In the penetration shape, as shown in Fig. 4,
It was judged that the penetration width at half the maximum penetration depth was 50% or more of the maximum penetration width.

スパッタ発生量は第5図に示すように、表面の酸化ス
ケール層を除去した母材12上に溶接ビード11を置くビー
ドオンプレート溶接を行い、その際発生するスパッタを
トーチノズル10とビード11近傍とを覆う銅製の捕集容器
(200mm w×150mm h×600mm l)に各々3回の溶接(溶
接時間は各々1分間)により採取したスパッタを秤量し
てその平均値で評価し、その値が2.5(g/min)以下を良
好と判定した。
As shown in Fig. 5, the bead-on-plate welding in which the welding bead 11 is placed on the base material 12 from which the oxide scale layer on the surface is removed is performed by the bead-on-plate welding. Welding spatter collected by welding 3 times (1 min each for welding time) into a copper collection container (200 mm w x 150 mm h x 600 mm l) covering the weight, and evaluating the average value, the value is 2.5 (G / min) or less was judged to be good.

尚、トーチ10の内面および母材12に付着したものは対
象外とした。
It should be noted that those attached to the inner surface of the torch 10 and the base material 12 were excluded.

第3表において、ワイヤNo.9およびNo.12はK値が本
発明の限定範囲を外れたワイヤである。No.9は回転移行
およびX線性能、溶込み形状ともに良好であるが、スパ
ッタ発生量が多い。No.12はスパッタ発生量は少ないも
のの回転移行、X線性能および溶込み形状が悪い。この
ようにTi量、S量および比抵抗が制限範囲内であって
も、K値が制限範囲を満足しないものは良好な性能を得
ることが出来ない。
In Table 3, wires No. 9 and No. 12 are wires whose K value is out of the limited range of the present invention. No. 9 is good in rotation transfer, X-ray performance, and penetration shape, but a large amount of spatter is generated. No. 12 has a small amount of spatter generation, but has poor rotational transfer, X-ray performance and penetration shape. Thus, even if the Ti amount, the S amount, and the specific resistance are within the limit ranges, good performance cannot be obtained if the K value does not satisfy the limit range.

ワイヤNo.11,13はS量が本発明の範囲外にある。S量
の高いNo.11では平均回転移行率は比較的高いものの安
定性に欠ける。したがってX線および溶込み形状に問題
があり、No.13ではS量が低すぎるために、回転移行性
およびX線性能,溶込み形状が劣る。なお、フィンガー
部中央に割れが認められた。
Wire Nos. 11 and 13 have an S content outside the range of the present invention. No. 11, which has a high S content, has a relatively high average rotation transfer rate, but lacks stability. Therefore, there are problems in the X-ray and the penetration shape, and in No. 13, the S content is too low, so the rotational transferability, the X-ray performance, and the penetration shape are poor. A crack was found in the center of the finger portion.

ワイヤNo.15,18はTi量が本発明の限定範囲を外れたも
のである。Tiの低いNo.15では、回転移行が殆ど行われ
ず、したがってフィンガー状の溶込み形状を呈して、そ
の先端部近傍にはブロホールが認められた。また微細な
スパッタが多数発生した。またTi含有量の高いNo.18で
は回転移行が激しすぎるため、溶滴の回転に伴い大粒の
スパッタが周囲に飛散する現象が認められ、スパッタ発
生量が非常に多い。
Wires Nos. 15 and 18 have Ti contents outside the range of the present invention. In No. 15 with low Ti, almost no rotational transfer was performed, so that it had a finger-like penetration shape, and broholes were observed in the vicinity of its tip. Also, many fine spatters were generated. Further, in No. 18 having a high Ti content, since the rotational transition is too violent, a phenomenon in which large-sized spatters are scattered around due to the rotation of the droplets is observed, and the spatter generation amount is very large.

ワイヤNo.14,16は比抵抗(ρ)が本発明の限定範囲外
のワイヤである。比抵抗の低いNo.14はスパッタ量は比
較的少ないものの、回転移行が不十分であり、これに伴
なってX線性能、溶込み形状共に悪い。一方、比抵抗の
高すぎるNo.16は回転移行率は50%を越えるが安定性に
欠けて、アーク長さの変動も大きく、大粒のスパッタが
多発する。ワイヤNo.10はTi量と比抵抗が、No.20はS量
と比抵抗がそれぞれ本発明の限定範囲を外れている。こ
のためワイヤNo.10の溶込み形状以外の総ての項目で良
好な結果が得られない。ワイヤNo.19はS量,Ti量,K値が
本発明の限定範囲外にあり、回転移行性が極めて不安定
で、特に溶滴先端の形状が一定せず、回転に伴い周囲に
飛散して大粒のスパッタが発生する。
The wire Nos. 14 and 16 are wires whose specific resistance (ρ) is out of the limit range of the present invention. No. 14, which has a low specific resistance, has a relatively small amount of spatter, but the rotation transfer is insufficient, and as a result, both the X-ray performance and the penetration shape are poor. On the other hand, No. 16, which has too high specific resistance, has a rotational transfer rate of over 50% but lacks stability, the arc length fluctuates greatly, and large spatters frequently occur. Wire No. 10 has a Ti content and a specific resistance, and No. 20 has an S content and a specific resistance, which are outside the limits of the present invention. Therefore, good results cannot be obtained in all items except the penetration shape of wire No. 10. Wire No. 19 had S content, Ti content, and K value outside the limits of the present invention, and the rotational transferability was extremely unstable. Especially, the shape of the droplet tip was not constant and scattered around as it rotated. Large spatter is generated.

ワイヤNo.17はS量,Ti量,比抵抗,K値の総てが本発明
の限定範囲を外れており、回転細粒移行は殆ど行われ
ず、溶込み形状は著しいフィンガー状を呈してX線性能
も悪い。このように本発明の限定範囲を満足しないワイ
ヤはいずれも良好な高電流密度溶接性能を得ることが出
来ないものである。
Wire No. 17 had all the amounts of S, Ti, specific resistance, and K value outside the limits of the present invention, almost no transfer of rotary fine particles was observed, and the penetration shape showed a remarkable finger shape and X The line performance is also poor. As described above, any wire that does not satisfy the limited range of the present invention cannot obtain good high current density welding performance.

これに対して、本発明ワイヤNo.1〜8はいずれもすべ
ての項目において良好な性能を示して、安定した高電流
密度溶接が行われる。
On the other hand, the wire Nos. 1 to 8 of the present invention all show good performance in all items, and stable high current density welding is performed.

実施例2 第1表のワイヤの内、No.1およびNo.15を用いてシー
ルドガス組成を種々変化して回転細粒移行率を第2表の
溶接条件で実施例1と同様な手法により検討した結果を
第4表に示す。
Example 2 Among the wires in Table 1, No. 1 and No. 15 were used to variously change the shielding gas composition and the rotary fine particle transfer rate was changed under the welding conditions in Table 2 by the same method as in Example 1. The examined results are shown in Table 4.

本発明のワイヤNo.1は、比較ワイヤNo.15にくらべて
いずれのシールドガス組成においても低電流で安定した
回転細粒移行を示し、適用電流範囲が広いことが分か
る。
Wire No. 1 of the present invention shows stable rotary fine grain transfer at low current in any shield gas composition as compared with Comparative Wire No. 15, and it can be seen that the applicable current range is wide.

実施例3 第1表のワイヤの内、No.1およびNo.10を用いて、第
6図に示す鋼板および開先形状と第5表に示す溶接条件
とにより溶着金属の機械的性質を検討して、第6表に示
す結果を得た。尚、これら試験はJIS Z 3312に準拠して
行った。
Example 3 Using No. 1 and No. 10 of the wires in Table 1, the mechanical properties of the deposited metal were examined by the steel plate and groove shape shown in FIG. 6 and the welding conditions shown in Table 5. The results shown in Table 6 were obtained. Incidentally, these tests were carried out according to JIS Z 3312.

本発明のワイヤNo.1はいずれの高電流密度溶接条件に
おいても優れた溶着金属の機械的性能を示している。
The wire No. 1 of the present invention shows excellent mechanical performance of the deposited metal under any high current density welding condition.

(発明の効果) 以上示したように、本発明ワイヤによれば、安定した
回転移行が行われ、その結果良好な溶込み形状,耐気孔
性,スパッタ発生量の極めて少なく、また広い溶接条件
範囲を有し、良好な性能の溶接金属が得られる高電流密
度溶接が行われる。
(Effects of the Invention) As described above, according to the wire of the present invention, a stable rotation transfer is performed, and as a result, a good penetration shape, porosity resistance, an extremely small amount of spatter are generated, and a wide welding condition range. And high current density welding is performed, which results in a weld metal having good performance.

【図面の簡単な説明】[Brief description of drawings]

第1図は溶滴の移行形態を示す模式図、第2図はワイヤ
のTi量と遷移電流との関係を示す図、第3図はワイヤの
電気抵抗測定方法を示す図、第4図はビードの溶込み形
状を示す図、第5図はスパッタの採取方法を示す図、第
6図は溶着金属試験の開先形状を示す図である。 1……ワイヤ、2a,2b,2c,2c′……溶滴、3……アー
ク、4……溶融プール、5……定電流発生装置、6……
標準抵抗、7……電圧計、8……電流計、9……スイッ
チ、10……トーチノズル、11……ビード、12……母材、
13……銅製捕集箱。
FIG. 1 is a schematic diagram showing the migration form of droplets, FIG. 2 is a diagram showing the relationship between the Ti amount of the wire and the transition current, FIG. 3 is a diagram showing a method for measuring the electric resistance of the wire, and FIG. The figure which shows the penetration shape of a bead, FIG. 5 is a figure which shows the sampling method of spatter, and FIG. 6 is a figure which shows the groove shape of a weld metal test. 1 ... Wire, 2a, 2b, 2c, 2c '... Droplet, 3 ... Arc, 4 ... Melting pool, 5 ... Constant current generator, 6 ...
Standard resistance, 7 ... voltmeter, 8 ... ammeter, 9 ... switch, 10 ... torch nozzle, 11 ... bead, 12 ... base metal,
13 ... Copper collection box.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河辺 仁 東京都中央区築地3丁目5番4号 日鐵 溶接工業株式会社研究所内 (56)参考文献 特開 平3−35881(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hitoshi Kawabe 3-5-4 Tsukiji, Chuo-ku, Tokyo Inside Nittetsu Welding Industry Co., Ltd. (56) Reference JP-A-3-35881 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Ti(重量%、以下同じ):0.050〜0.35%、
S:0.010〜0.040%を含有し、常温におけるワイヤの電気
比抵抗(ρ)(以下単に比抵抗)が25〜65(μΩcm)で
かつ次式で示すパラメータKが20〜40であることを特徴
とする高電流密度ガスシールドアーク溶接用鋼ワイヤ。 ただしK=505・S(%)+0.41・ρ(μΩcm)
1. Ti (% by weight, the same applies hereinafter): 0.050 to 0.35%,
S: Contains 0.010 to 0.040%, the electrical resistivity (ρ) of the wire at room temperature (hereinafter simply referred to as the specific resistance) is 25 to 65 (μΩcm), and the parameter K shown in the following equation is 20 to 40 High current density gas shielded arc welding steel wire. However, K = 505 · S (%) + 0.41 · ρ (μΩcm)
JP1238869A 1989-09-14 1989-09-14 High current density gas shielded arc welding steel wire Expired - Fee Related JP2567708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1238869A JP2567708B2 (en) 1989-09-14 1989-09-14 High current density gas shielded arc welding steel wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1238869A JP2567708B2 (en) 1989-09-14 1989-09-14 High current density gas shielded arc welding steel wire

Publications (2)

Publication Number Publication Date
JPH03106592A JPH03106592A (en) 1991-05-07
JP2567708B2 true JP2567708B2 (en) 1996-12-25

Family

ID=17036467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1238869A Expired - Fee Related JP2567708B2 (en) 1989-09-14 1989-09-14 High current density gas shielded arc welding steel wire

Country Status (1)

Country Link
JP (1) JP2567708B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100326873B1 (en) * 1998-12-02 2002-03-13 구자홍 Door Device in Disc Driving Apparatus

Also Published As

Publication number Publication date
JPH03106592A (en) 1991-05-07

Similar Documents

Publication Publication Date Title
US5225661A (en) Basic metal cored electrode
US5132514A (en) Basic metal cored electrode
US4149063A (en) Flux cored wire for welding Ni-Cr-Fe alloys
US3542998A (en) Cored electrode for welding in air
US5903814A (en) Flux cored wires for gas shielded arc welding
CN103223563B (en) Solder for single-surface submerged-arc welding
US3585352A (en) Arc welding process and electrode for stainless steel
EP0231570B1 (en) Weld bead composition and electrode for producing same
US8664569B2 (en) Low carbon, high speed metal core wire
KR20190019020A (en) Electrodes for forming austenitic and duplex steel weld metal
JP2567708B2 (en) High current density gas shielded arc welding steel wire
US4229643A (en) Consumable welding electrode
CN110539105B (en) Flux-cored wire
US7180030B2 (en) Method for rating and/or ranking welding electrodes
WO2020012925A1 (en) Flux-cored wire for two-phase stainless steel welding, welding method and welding metal
JP2000254796A (en) Flux cored wire for welding
JPS62296993A (en) Steel wire for mag pulse high speed welding
JPH0521677B2 (en)
US4228342A (en) Electroslag weld deposit
US3557340A (en) Selenium bearing wire for steel welding
Slania et al. Welding of austenitic, acid-resistant steels with flux-cored wires in shields of gas mixtures
JPH0335881A (en) High current density welding method
Wang et al. Influence of flux composition on the performance of a nickel-based alloy covered electrode for 9% Ni steel welding
JP4697693B2 (en) Two-electrode vertical electrogas arc welding method for extra heavy steel
AU2021299003C1 (en) Gas shielded arc welding method, structure object production method, and shielding gas

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees