JP2567595B2 - Bone prosthesis member - Google Patents

Bone prosthesis member

Info

Publication number
JP2567595B2
JP2567595B2 JP62014801A JP1480187A JP2567595B2 JP 2567595 B2 JP2567595 B2 JP 2567595B2 JP 62014801 A JP62014801 A JP 62014801A JP 1480187 A JP1480187 A JP 1480187A JP 2567595 B2 JP2567595 B2 JP 2567595B2
Authority
JP
Japan
Prior art keywords
polylactic acid
bone
porous
calcium phosphate
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62014801A
Other languages
Japanese (ja)
Other versions
JPS63181756A (en
Inventor
経裕 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP62014801A priority Critical patent/JP2567595B2/en
Publication of JPS63181756A publication Critical patent/JPS63181756A/en
Application granted granted Critical
Publication of JP2567595B2 publication Critical patent/JP2567595B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は整形外科、口腔外科等の外科医療の分野にお
いて、骨の切除手術などを行った骨欠損部を充填した
り、補綴するための部材に関するものである。
Description: [Industrial field of application] The present invention relates to filling or prosthesis of a bone defect portion that has undergone bone resection surgery in the field of surgical medicine such as orthopedic surgery and oral surgery. It relates to members.

さらに、詳しく言えば本発明は多孔質リン酸カルシウ
ム材料の強度向上を図るものである。
More specifically, the present invention aims to improve the strength of the porous calcium phosphate material.

〔従来の技術〕[Conventional technology]

近年、医療産業の進歩とともに、交通事故や骨腫瘍の
ような疾患により失われた部位の骨を補綴するための人
工骨材の研究が盛んに行われるようになっている。
In recent years, with the progress of the medical industry, research on artificial aggregates for prosthesis of bones at sites lost due to diseases such as traffic accidents and bone tumors has been actively conducted.

この場合、生体内に人工材料を埋入するに際しては、
毒性がなく、安全を有し、かつ生体組織と結合し易い材
料を選択することが必要であり、さらにこの材料が生体
内で自然に吸収されて消失し、新生骨と置換するのが好
ましいとされている。
In this case, when implanting the artificial material in the living body,
It is necessary to select a material that is non-toxic, safe, and easily binds to biological tissue. Furthermore, it is preferable that this material be naturally absorbed and eliminated in the living body and replaced with new bone. Has been done.

このような材料として、リン酸三カルシウム、水酸ア
パタイト等きリン酸カルシウム系材料が注目されてい
る。また骨補綴部材を体内に埋入したときに生体組織と
結合し易くなるためには、多孔質化し、生体組織が細孔
に入り込み固定することが必要である。この目的の為
に、100μm以上の孔径が必要であることも知られ、そ
の為に多孔質リン酸カルシウム系材料から成り、平均孔
径400μm以下でかつ気孔率が60%以下の骨補綴部材が
現在臨床で使用されている。
As such materials, calcium phosphate-based materials such as tricalcium phosphate and hydroxyapatite have been attracting attention. Further, in order to facilitate the bonding with the biological tissue when the bone prosthesis member is embedded in the body, it is necessary that the bone prosthetic member is made porous and the biological tissue enters the pores and is fixed. For this purpose, it is also known that a pore size of 100 μm or more is required. Therefore, a bone prosthesis member made of porous calcium phosphate-based material and having an average pore size of 400 μm or less and a porosity of 60% or less is currently clinically used. in use.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところが、リン酸カルシウム系材料を多孔質化すると
著しく機械的強度が低下する。特に平均孔径が500μm
以上で、かつ気孔率が70%以上の多孔質体では、強度が
極めて小さく、そのため手術時に所望形状に成形加工す
るときや、骨欠損部へ充填するときにこわれ易く、成形
加工性と操作取扱性に問題があった。
However, when the calcium phosphate-based material is made porous, the mechanical strength is significantly reduced. Especially the average pore size is 500μm
Above, and with a porosity of 70% or more, the strength is extremely low, so it easily breaks when it is molded into the desired shape during surgery or when it is filled into the bone defect part, molding processability and operation handling There was a problem with sex.

本発明の目的は、機械強度を改善し、成形加工性や操
作取扱性を向上した多孔質リン酸カルシウム材から成る
骨補綴部材を提供することにある。
An object of the present invention is to provide a bone prosthesis member made of a porous calcium phosphate material, which has improved mechanical strength and improved moldability and handleability.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題点を解決する為に、平均孔径0.1〜2.0mmで
かつ気孔率が70〜96%の多孔質リン酸カルシウム系材料
の網状骨格表面に生体内で分解吸収される高分子のポリ
乳酸被膜層を30〜200μmコートすることによって多孔
質リン酸カルシウム材料の機械的強度をあげ、成形加工
性や操作取扱性を改善する。
In order to solve the above problems, a polylactic acid coating layer of a polymer that is decomposed and absorbed in vivo on the surface of the network skeleton of a porous calcium phosphate-based material having an average pore diameter of 0.1 to 2.0 mm and a porosity of 70 to 96% The coating of 30 to 200 μm increases the mechanical strength of the porous calcium phosphate material and improves the molding processability and handling and handling.

〔発明の構成〕[Structure of Invention]

多孔質リン酸カルシウム系材料は、従来から知られて
いる方法にて作製する。すなわち、軟質ウレタンフォー
ムのスポンジに泥漿を含浸させて、乾燥し、焼成工程を
経て得られる。またポリ乳酸は市販のDL乳酸、L乳酸を
用いて脱水し縮合を行い合成する。
The porous calcium phosphate-based material is produced by a conventionally known method. That is, it is obtained by impregnating a sponge of soft urethane foam with sludge, drying it, and baking it. Polylactic acid is synthesized by dehydrating and condensing using commercially available DL lactic acid and L lactic acid.

多孔質リン酸カルシウム系材料の網状骨格表面へのポ
リ乳酸のコートは、ポリ乳酸をガラス転移点以上に高温
に加熱し、多孔質リン酸カルシウム材料に含浸させる。
ポリ乳酸を含浸させた多孔体を高速回転させ、気孔中の
ポリ乳酸を遠心的に除去し、多孔質体の骨格のみにポリ
乳酸被膜層をコートする。
To coat the surface of the network skeleton of the porous calcium phosphate-based material with polylactic acid, the polylactic acid is heated to a temperature higher than the glass transition point and impregnated into the porous calcium phosphate material.
The porous body impregnated with polylactic acid is rotated at high speed to centrifugally remove the polylactic acid in the pores, and only the skeleton of the porous body is coated with the polylactic acid coating layer.

〔実施例〕〔Example〕

湿式合成された非晶質リン酸カルシウム材料を900℃
にて焼成し、水酸アパタイトに転換した。この材料をボ
ールミルにて泥漿にし、日本工業規格に基づく#6,#1
3,#20,#50の軟質ウレタンフォームに含浸させて1300
℃にて焼成し、約10mm×10mm×10mmの多孔質アパタイト
の材料を作製した。モノマーの出発原料として市販のDL
乳酸、L乳酸を用いて脱水縮合し、平均分子量2000〜40
00、ガラス転移点30〜50℃、粘度400〜10,000(ポア
ズ)のポリ乳酸を合成した。粘度(ポアズ)が400,1,00
0,4,000,10,000の各ポリ乳酸を用いて、上記の多孔質ア
パタイトに含浸させた。数百回転/分の回転を与えて、
気孔内のポリ乳酸を遠心的に除去した。ポリ乳酸被膜層
は、断面の写真より測定した。
Wet-synthesized amorphous calcium phosphate material at 900 ℃
Then, it was burned at and converted into hydroxyapatite. This material is made into slurry with a ball mill, and based on Japanese Industrial Standards # 6, # 1
1300 by impregnating 3, # 20, # 50 soft urethane foam
By firing at ℃, a material of about 10 mm × 10 mm × 10 mm porous apatite was produced. Commercially available DL as starting material for monomers
Dehydrated and condensed with lactic acid and L-lactic acid, average molecular weight 2000-40
A polylactic acid having a glass transition point of 30 to 50 ° C and a viscosity of 400 to 10,000 (poise) was synthesized. Viscosity (poise) is 400,1,00
The above porous apatite was impregnated with 0, 4,000 and 10,000 polylactic acid. Give a few hundred rotations / minute rotation,
The polylactic acid in the pores was removed by centrifugation. The polylactic acid coating layer was measured from the photograph of the cross section.

第1表にはポリ乳酸被膜層をコートしていないものの
特性を示し、第2〜5表にはポリ乳酸の粘度(ポアズ)
が400,1,000,4,000,10,000でコートした多孔質アパタイ
トの物性値を示す。
Table 1 shows the characteristics of those without a polylactic acid coating layer, and Tables 2-5 show the viscosity of polylactic acid (poise).
Shows the physical properties of porous apatite coated with 400, 1,000, 4,000, 10,000.

以上のように、ポリ乳酸の粘度(ポアズ)が400以下
では、被膜層の厚さが26μm以下となり、圧縮強度の改
善はみられなかった。またポリ乳酸の粘度が1000(ポア
ズ)から4000(ポアズ)では被膜層の厚さが50μmから
200μmとなり、圧縮強度が3.8〜5.4倍と改善された。
ポリ乳酸の粘度が10,000(ポアズ)以上では気孔率が50
%以下となり、多孔質体の性質がなくなってきている。
As described above, when the viscosity (poise) of polylactic acid was 400 or less, the thickness of the coating layer was 26 μm or less, and the compression strength was not improved. When the viscosity of polylactic acid is 1000 (poise) to 4000 (poise), the thickness of the coating layer is 50 μm
It was 200 μm, and the compressive strength was improved to 3.8 to 5.4 times.
When the viscosity of polylactic acid is 10,000 (poise) or more, the porosity is 50.
% Or less, and the properties of the porous body are disappearing.

以上のようにポリ乳酸の粘度1000(ポアズ)〜4000
(ポアズ)、50〜200μmの厚さのポリ乳酸被膜層を網
状骨格表面にコートしたことによって多孔質リン酸カル
シウム系材料の、特に圧縮強度の向上が顕著であること
が確認された。
As described above, the viscosity of polylactic acid is 1000 (Poise) to 4000
(Poise), it was confirmed that the polylactic acid coating layer having a thickness of 50 to 200 μm was coated on the surface of the reticular skeleton to remarkably improve the compressive strength of the porous calcium phosphate-based material.

〔動物埋入実験〕[Animal implantation experiment]

ポリ乳酸被膜層を200μmの厚さにコートした多孔質
アパタイトとポリ乳酸をコートしない多孔質アパタイト
の双方を用いて動物実験を行った。試料として2..5×2.
5×2.5(mm)の大きさのブロック体をビーグル犬の大腿
骨に埋入し、経時的に観察を行った。
Animal experiments were carried out using both a porous apatite coated with a polylactic acid coating layer having a thickness of 200 μm and a porous apatite not coated with polylactic acid. 2.5.2 as a sample
A block body having a size of 5 × 2.5 (mm) was embedded in the femur of a beagle dog and observed over time.

1週目ではポリ乳酸被膜層をコートしたものは材料が
膨化し、多孔質の細孔中への細胞の浸入はずかであっ
た。2週目ではポリ乳酸被膜層が吸収され、細胞の浸入
が進み骨が形成されつつあった。
In the first week, the material coated with the polylactic acid coating layer swelled, and the cells were supposed to invade into the porous pores. At the second week, the polylactic acid coating layer was absorbed, cells infiltrated and bone was being formed.

8週目ではポリ乳酸は完全に吸収され骨梁の形成が認
められ、正常の状態に回復した。一方、ポリ乳酸被膜層
を有しない多孔質アパタイトにおいても同様の骨の増生
が認められ、両者ともに骨との癒合性には差違が認めら
れなかった。
At the 8th week, polylactic acid was completely absorbed, trabecular bone formation was observed, and the state was restored to normal. On the other hand, similar bone growth was also observed in the porous apatite having no polylactic acid coating layer, and no difference was observed in the fusion property with bone in both cases.

〔発明の効果〕〔The invention's effect〕

上述した如く、本発明によれば、多孔質リン酸カルシ
ウム系材料の網状骨格にポリ乳酸被膜層を50〜200μm
コートすることによって、多孔質リン酸カルシウム系材
料のもっている骨の増生効果を失うことなく、機械的強
度が向上し、手術に際しての成形加工性、操作取扱性が
改善された骨補綴部材をもたらすことができる。
As described above, according to the present invention, a polylactic acid coating layer is added to the network structure of the porous calcium phosphate-based material in an amount of 50 to 200 μm.
By coating, it is possible to provide a bone prosthesis member with improved mechanical strength without losing the bone-proliferating effect of the porous calcium phosphate-based material, and with improved moldability and operation handling during surgery. it can.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】骨の増成を許容する内部連通孔の平均径が
0.1〜2.0mm、気孔率が70〜96%である多孔質リン酸カル
シウム材料からなる網状骨格表面に、層厚さ30〜200μ
mのポリ乳酸被膜層がコートされていることを特徴とす
る骨補綴部材。
1. The average diameter of the internal communication holes that allow bone augmentation
Layer thickness 30-200μ on the surface of reticulated skeleton made of porous calcium phosphate material with 0.1-2.0mm and porosity 70-96%
A bone prosthesis member characterized by being coated with a polylactic acid coating layer of m.
JP62014801A 1987-01-23 1987-01-23 Bone prosthesis member Expired - Fee Related JP2567595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62014801A JP2567595B2 (en) 1987-01-23 1987-01-23 Bone prosthesis member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62014801A JP2567595B2 (en) 1987-01-23 1987-01-23 Bone prosthesis member

Publications (2)

Publication Number Publication Date
JPS63181756A JPS63181756A (en) 1988-07-26
JP2567595B2 true JP2567595B2 (en) 1996-12-25

Family

ID=11871144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62014801A Expired - Fee Related JP2567595B2 (en) 1987-01-23 1987-01-23 Bone prosthesis member

Country Status (1)

Country Link
JP (1) JP2567595B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100892906B1 (en) * 2003-11-27 2009-04-15 호야 가부시키가이샤 Porous calcium phosphate ceramic and method for producing same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3826915A1 (en) * 1988-08-09 1990-02-15 Henkel Kgaa NEW MATERIALS FOR BONE REPLACEMENT AND BONE OR PROSTHESIS COMPOSITION
JPH02241460A (en) * 1989-03-16 1990-09-26 Asahi Optical Co Ltd Composite material for recovering bone
ATE139126T1 (en) * 1990-09-10 1996-06-15 Synthes Ag MEMBRANE FOR BONE REGENERATION
ATE359836T1 (en) 2001-09-24 2007-05-15 Millenium Biologix Inc POROUS CERAMIC COMPOSITE BONE IMPLANTS
JP3931134B2 (en) * 2002-10-31 2007-06-13 泰彦 田畑 Implant for living tissue regeneration and method for producing the same
EP1433489A1 (en) * 2002-12-23 2004-06-30 Degradable Solutions AG Biodegradable porous bone implant with a barrier membrane sealed thereto
JP2012016517A (en) * 2010-07-09 2012-01-26 Inoac Gijutsu Kenkyusho:Kk Bone regeneration material and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100892906B1 (en) * 2003-11-27 2009-04-15 호야 가부시키가이샤 Porous calcium phosphate ceramic and method for producing same

Also Published As

Publication number Publication date
JPS63181756A (en) 1988-07-26

Similar Documents

Publication Publication Date Title
US8287915B2 (en) Bone restorative carrier mediums
CA2271884C (en) Improved porous biomaterials and methods for their manufacture
Yuan et al. Osteoinduction by calcium phosphate biomaterials
Gauthier et al. Macroporous biphasic calcium phosphate ceramics versus injectable bone substitute: a comparative study 3 and 8 weeks after implantation in rabbit bone
US6511510B1 (en) Osteoinductive ceramic materials
US9198936B2 (en) Devices and methods for the regeneration of bony defects
JP2003501217A (en) Biomaterials based on insolubilized dextran derivatives and growth factors
US9642934B2 (en) Bone regeneration material kit, paste-like bone regeneration material, bone regeneration material, and bone bonding material
JP2567595B2 (en) Bone prosthesis member
AU775040B2 (en) Composites
Herath et al. Porous hydroxyapatite ceramics for tissue engineering
Jyoti et al. Initial in vitro biocompatibility of a bone cement composite containing a poly-ε-caprolactone microspheres
AU2012244219B2 (en) Bone graft substitute
EP2814519B1 (en) Bone repair material
CN117547654A (en) Bionic supported rhBMP-2 bone repair material and preparation method and application thereof
Bracci et al. In vivo and in vitro response to a gelatin/α-tricalcium phosphate bone cement
JP2002011090A (en) Absorbing vital material and its manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees