JP2565259B2 - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JP2565259B2
JP2565259B2 JP62247099A JP24709987A JP2565259B2 JP 2565259 B2 JP2565259 B2 JP 2565259B2 JP 62247099 A JP62247099 A JP 62247099A JP 24709987 A JP24709987 A JP 24709987A JP 2565259 B2 JP2565259 B2 JP 2565259B2
Authority
JP
Japan
Prior art keywords
active material
electrode active
positive electrode
manganese dioxide
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62247099A
Other languages
Japanese (ja)
Other versions
JPS6489261A (en
Inventor
亨 永浦
政幸 永峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP62247099A priority Critical patent/JP2565259B2/en
Publication of JPS6489261A publication Critical patent/JPS6489261A/en
Application granted granted Critical
Publication of JP2565259B2 publication Critical patent/JP2565259B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、正極活物質として二酸化マンガンを、負極
活物質としてリチウムもしくはリチウム合金を、電解液
に有機電解質溶液を用いた有機電解質電池に関するもの
であり、特に正極活物質の改良に関するものである。
TECHNICAL FIELD The present invention relates to an organic electrolyte battery using manganese dioxide as a positive electrode active material, lithium or a lithium alloy as a negative electrode active material, and an organic electrolyte solution as an electrolytic solution. And particularly relates to improvement of the positive electrode active material.

〔発明の概要〕 本発明は、二酸化マンガンを主体とする正極活物質と
リチウムもしくはリチウム合金を主体とする負極活物質
と有機電解溶液よりなる有機電解質電池において、前記
正極活物質に比表面積の大きな化学合成二酸化マンガン
を使用し、正極活物質に対する負極活物質の重量比を規
制することにより、特に重負荷特性に優れ放電容量の大
きな有機電解質電池を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention is an organic electrolyte battery comprising a positive electrode active material mainly composed of manganese dioxide, a negative electrode active material mainly composed of lithium or a lithium alloy, and an organic electrolytic solution, wherein the positive electrode active material has a large specific surface area. By using chemically synthesized manganese dioxide and controlling the weight ratio of the negative electrode active material to the positive electrode active material, it is intended to provide an organic electrolyte battery having excellent heavy load characteristics and a large discharge capacity.

〔従来の技術〕[Conventional technology]

リチウムもしくはリチウム合金等の軽合金を負極活物
質として用い、電解液に有機電解液を用いた、いわゆる
有機電解質電池は、エネルギ密度が高いこと、自己放電
が少ないこと、耐漏液性が良いこと等各種の優れた特徴
を有し電卓や時計等各種の小型電子機器のメモリーバッ
クアップ用電源として広く実用化されている。
A so-called organic electrolyte battery that uses a light alloy such as lithium or a lithium alloy as a negative electrode active material and an organic electrolyte solution as an electrolyte solution has high energy density, low self-discharge, good leakage resistance, etc. It has various excellent features and is widely used as a memory backup power source for various small electronic devices such as calculators and watches.

ところで、この種の有機電解質電池の分野では正極活
物質として一般にMnO2、CFx、FeS2、CuO、CuFeS2等を使
用した電池が実用化されている。なかでも、電圧が高い
こと、放電電圧が平坦であること、材料費が安価である
こと等の点から、二酸化マンガン(MnO2)を使用したリ
チウムマンガン電池は優れた電池系であると言え、従来
正極活物質に電解二酸化マンガンを使用した有機電解質
電池が実用化に供されている。
By the way, in the field of this type of organic electrolyte battery, a battery using MnO 2 , CF x , FeS 2 , CuO, CuFeS 2 or the like as a positive electrode active material is generally put into practical use. Among them, the lithium manganese battery using manganese dioxide (MnO 2 ) is an excellent battery system because of its high voltage, flat discharge voltage, and low material cost. Conventionally, an organic electrolyte battery using electrolytic manganese dioxide as a positive electrode active material has been put to practical use.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、有機電解質溶液は水溶液系電解液に比
べ溶液の導電率が低く液抵抗が高いことから、有機電解
質電池の用途は一般に軽負荷放電を行うものに限られて
おり、ラジオ等のように比較的重負荷での放電(数mA放
電)が要求される用途には不向きであった。例えば、カ
ードラジオにおいてFM放送を受信する場合、5〜7mA程
度での放電が要求され、従来の電解二酸化マンガンを使
用した有機電解質電池が使えないのが現状である。
However, since the organic electrolyte solution has a low conductivity and a high liquid resistance as compared with the aqueous electrolyte solution, the application of the organic electrolyte battery is generally limited to those that perform light load discharge, and compared with the radio etc. It was unsuitable for applications that require static heavy load discharge (several mA discharge). For example, when receiving an FM broadcast on a card radio, it is required to discharge at about 5 to 7 mA, and it is the current situation that the conventional organic electrolyte battery using electrolytic manganese dioxide cannot be used.

そこで、本発明は上述の実情に鑑みて提案されたもの
であって、重負荷特性に優れ放電容量の大きな有機電解
質電池を提供することを目的とするものである。
Therefore, the present invention has been proposed in view of the above circumstances, and an object thereof is to provide an organic electrolyte battery having excellent heavy load characteristics and a large discharge capacity.

〔問題点を解決するための手段〕[Means for solving problems]

有機電解質電池における重負荷用途対策としては、正
極と負極との対向面積を大きくとること、電解液組成と
塩濃度との関係の検討、正極活物質の組成の検討等が試
みられてきたが、本発明者等が鋭意研究を重ねた結果、
電解液と正極活物質との界面での電極反応が重負荷特性
に与える影響が非常に大きいものであるとの知見を得る
に至った。
As measures against heavy loads in organic electrolyte batteries, attempts have been made to increase the facing area between the positive electrode and the negative electrode, study the relationship between the electrolyte composition and salt concentration, study the composition of the positive electrode active material, etc. As a result of earnest studies by the present inventors,
It has been found that the electrode reaction at the interface between the electrolytic solution and the positive electrode active material has a great influence on the heavy load characteristics.

本発明は、実用的な粒子径でも比表面積の大きな粒子
が得られるという点に着目し、正極活物質として比表面
積の大きな化学合成二酸化マンガンを用いることにより
電解液と正極活物質との界面の電気化学的反応面積を増
大させ、電池反応を円滑に行わせることを可能にし、重
負荷放電時の活物質利用率を向上させることを可能とす
るものである。
The present invention focuses on the fact that particles having a large specific surface area can be obtained even with a practical particle size, and by using chemically synthesized manganese dioxide having a large specific surface area as the positive electrode active material, the interface between the electrolytic solution and the positive electrode active material is It is possible to increase the electrochemical reaction area, make it possible to smoothly carry out a battery reaction, and improve the active material utilization rate during heavy load discharge.

本発明の有機電解質電池は、かかる知見に基づいて完
成されたものであって、二酸化マンガンを主体とする正
極活物質とリチウムもしくはリチウム合金を主体とする
負極活物質と有機電解質溶液よりなる有機電解質電池に
おいて、前記正極活物質の二酸化マンガンが比表面積50
〜90m2/gの化学合成二酸化マンガンであり、正極活物質
に対する負極活物質の重量比が0.030〜0.054であること
を特徴とするものである。
The organic electrolyte battery of the present invention has been completed based on such findings, and is an organic electrolyte comprising a positive electrode active material mainly containing manganese dioxide, a negative electrode active material mainly containing lithium or a lithium alloy, and an organic electrolyte solution. In the battery, the positive electrode active material manganese dioxide has a specific surface area of 50
Chemically synthesized manganese dioxide of about 90 m 2 / g, characterized in that the weight ratio of the negative electrode active material to the positive electrode active material is 0.030 to 0.054.

本発明において、正極活物質として使用される化学合
成二酸化マンガンは公知の合成方法により化学合成され
たものがいずれも使用でき、例えば硫酸マンガンを出発
原料とし、これを炭酸マンガンとした後、水酸化反応、
酸化反応等を経てマンガン低級酸化物を合成し、さらに
クロレート反応により重質化を行うことによって得られ
るものが使用可能である。得られる化学合成二酸化マン
ガンは、電解二酸化マンガンと比較して非常にポーラス
であるため、実用的な粒子径でも非常に大きな比表面積
を有するものである。また、この化学合成二酸化マンガ
ンは、非常に安価に得られ、優れた性能を有し、製造コ
ストの面からも優れた特性を示す材料である。
In the present invention, as the chemically synthesized manganese dioxide used as the positive electrode active material, any of those chemically synthesized by a known synthesis method can be used. For example, manganese sulfate is used as a starting material, and manganese carbonate is used as the manganese carbonate. reaction,
It is possible to use those obtained by synthesizing a lower manganese oxide through an oxidation reaction or the like, and then making it heavy by a chlorate reaction. The obtained chemically synthesized manganese dioxide is extremely porous as compared with electrolytic manganese dioxide, and therefore has a very large specific surface area even with a practical particle size. In addition, this chemically synthesized manganese dioxide is a material that is obtained at a very low cost, has excellent performance, and exhibits excellent characteristics in terms of manufacturing cost.

このように大きな比表面積を有する化学合成二酸化マ
ンガンは、電解液との接触面積が拡大し、電解液と該化
学合成二酸化マンガンとの界面の電気化学的反応面積を
増大させ電極反応を円滑に行わせることを可能にし活物
質利用率が向上する。ここで、本発明では化学合成二酸
化マンガンの比表面積は50〜90m2/gとしている。これは
比表面積が50m2/gより小さい場合には電解液との接触面
積が減少してしまい良好な電池反応が進行しなくなるた
めである。また比表面積が90m2/gより大きい場合には実
質的に充填される二酸化マンガンの充填率が減少してい
まい容量を確保することが難しくなるためである。
In the chemically synthesized manganese dioxide having such a large specific surface area, the contact area with the electrolytic solution is expanded, and the electrochemical reaction area of the interface between the electrolytic solution and the chemically synthesized manganese dioxide is increased to smoothly perform the electrode reaction. And the utilization rate of the active material is improved. Here, in the present invention, the specific surface area of the chemically synthesized manganese dioxide is 50 to 90 m 2 / g. This is because when the specific surface area is smaller than 50 m 2 / g, the contact area with the electrolytic solution is reduced and a good battery reaction does not proceed. Further, when the specific surface area is larger than 90 m 2 / g, the filling rate of manganese dioxide that is substantially filled decreases and it becomes difficult to secure the capacity.

一方、負極活物質はリチウムもしくはリチウム合金、
Li-Al等を主体とするもので、リチウム単独で負極活物
質として使用してもよく、又リチウムに鉛,錫,ビスマ
ス,カドミウム,銅,鉄等のうち一種以上を添加した合
金を負極活物質として使用してもよい。尚、リチウムと
上記他の金属との合金を負極活物質として使用する場合
には、リチウム本来の電位を大幅に変化させない程度に
上記他の金属を添加させることが好ましい。
On the other hand, the negative electrode active material is lithium or a lithium alloy,
Li-Al is the main component, and lithium may be used alone as the negative electrode active material. Alternatively, an alloy obtained by adding one or more of lead, tin, bismuth, cadmium, copper, iron, etc. to lithium can be used as the negative electrode active material. It may be used as a substance. When an alloy of lithium and the other metal is used as the negative electrode active material, it is preferable to add the other metal to the extent that the original potential of lithium is not significantly changed.

ここで、上記有機電解質二次電池に使用される正極活
物質と負極活物質との重量比(Li/MnO2)は、0.030〜0.
054に規制する。正極活物質に対する負極活物質の重量
比をこの範囲とすることで放電容量が増大する。
Here, the weight ratio (Li / MnO 2 ) of the positive electrode active material and the negative electrode active material used in the organic electrolyte secondary battery is 0.030 to 0.
Restrict to 054. By setting the weight ratio of the negative electrode active material to the positive electrode active material within this range, the discharge capacity increases.

上記有機電解質二次電池に使用される電解液は、リチ
ウム塩を電解質とし、これを有機溶剤に溶解した非水系
の有機電解質溶液が使用される。
As the electrolytic solution used for the organic electrolyte secondary battery, a non-aqueous organic electrolyte solution in which a lithium salt is used as an electrolyte and is dissolved in an organic solvent is used.

ここで、有機溶剤としては、エステル類,エーテル
類,3置換−2−オキサゾリジノン類及びこれらの二種以
上の混合溶剤が挙げられる。
Here, examples of the organic solvent include esters, ethers, 3-substituted-2-oxazolidinones, and mixed solvents of two or more of these.

エステル類としては、アルキレンカーボネート(エチ
レンカーボネート,プロピレンカーボネート,γ−ブチ
ルラクトン,2−メチル−γ−ブチルラクトン等)等が挙
げられる。
Examples of the esters include alkylene carbonate (ethylene carbonate, propylene carbonate, γ-butyl lactone, 2-methyl-γ-butyl lactone, etc.) and the like.

エーテル類としては、ジエチルエーテル、環状エーテ
ル,例えば5員環を有するエーテル〔テトラヒドロフラ
ン;置換(アルキル,アルコキシ)テトラヒドロフラン
例えば2−メチルテトラヒドロフラン,2,5−ジメチルテ
トラヒドロフラン,2−エチルテトラヒドロフラン,2,2′
−ジメチルテトラヒドロフラン,2−メトキシテトラヒド
ロフラン,2,5−ジメトキシテトラヒドロフラン等;ジオ
キソラン等〕,6員環を有するエーテル〔1,4−ジオキサ
ン,ピラン,ジヒドロピラン,テトラヒドロピラン〕,
ジメトキシエタン等が挙げられる。
Examples of ethers include diethyl ether, cyclic ethers such as ethers having a 5-membered ring [tetrahydrofuran; substituted (alkyl, alkoxy) tetrahydrofuran such as 2-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, 2-ethyltetrahydrofuran, 2,2 '.
-Dimethyltetrahydrofuran, 2-methoxytetrahydrofuran, 2,5-dimethoxytetrahydrofuran, etc .; dioxolane, etc.], ether having a 6-membered ring [1,4-dioxane, pyran, dihydropyran, tetrahydropyran],
Dimethoxyethane and the like can be mentioned.

3置換−2−オキサゾリジノン類としては、3−アル
キル−2−オキサゾリジノン(3−メチル−2−オキサ
ゾリジノン,3−エチル−2−オキサゾリジノン類),3−
シクロアルキル−2−オキサゾリジノン(3−シクロヘ
キシル−2−オキサゾリジノン類),3−アラルキル−2
−オキサゾリジノン(3−ベンジル−2−オキサゾリジ
ノン等),3−アリール−2−オキサゾリジノン(3−フ
ェニル−2−オキサゾリジノン等)が挙げられる。
The 3-substituted-2-oxazolidinones include 3-alkyl-2-oxazolidinones (3-methyl-2-oxazolidinones, 3-ethyl-2-oxazolidinones), 3-
Cycloalkyl-2-oxazolidinones (3-cyclohexyl-2-oxazolidinones), 3-aralkyl-2
Examples include -oxazolidinone (3-benzyl-2-oxazolidinone and the like) and 3-aryl-2-oxazolidinone (3-phenyl-2-oxazolidinone and the like).

なかでも、プロピレンカーボネートや5員環を有する
エーテル(特にテトラヒドロフラン,2−メチルテトラヒ
ドロフラン,2−エチルテトラヒドロフラン,2,5−ジメト
キシテトラヒドロフラン,2−メトキシテトラヒドロフラ
ン),3−メチル−2−オキサゾリジノン等が好ましい。
Among them, propylene carbonate, ether having a 5-membered ring (particularly tetrahydrofuran, 2-methyltetrahydrofuran, 2-ethyltetrahydrofuran, 2,5-dimethoxytetrahydrofuran, 2-methoxytetrahydrofuran), 3-methyl-2-oxazolidinone and the like are preferable.

電解質としては、過塩素酸リチウム,ホウフッ化リチ
ウム,リンフッ化リチウム,塩化アルミン酸リチウム,
ハロゲン化リチウム,トリフルオロメタンスルホン酸リ
チウム等が使用可能であり、過塩素酸リチウム,ホウフ
ッ化リチウム等が好ましい。
As the electrolyte, lithium perchlorate, lithium borofluoride, lithium phosphorus fluoride, lithium chloroaluminate,
Lithium halide, lithium trifluoromethanesulfonate, etc. can be used, and lithium perchlorate, lithium borofluoride, etc. are preferable.

〔作用〕[Action]

従来、リチウム・マンガン電池用正極活物質としては
電解二酸化マンガンが使用されていた。この電解二酸化
マンガンは、電解生成する際に電極上に緻密に堆積した
二酸化マンガンを機械的に粉砕することによって得られ
るもので、その比表面積は到達した平均粒子径によって
決定されるため、実用的な粒子径のものでは比較的小さ
な値となる。
Conventionally, electrolytic manganese dioxide has been used as a positive electrode active material for lithium-manganese batteries. This electrolytic manganese dioxide is obtained by mechanically pulverizing densely deposited manganese dioxide on the electrode during electrolysis, and its specific surface area is determined by the average particle size that has reached, so it is practical. It has a relatively small value for particles with different particle sizes.

一方、これに対して、化学合成法により合成された化
学合成二酸化マンガンは、その合成条件を選択すること
により、ポーラスな粒子状態のものとして得られるた
め、細孔容積を大きくすることができ、実用的な粒子径
でも比表面積の大きな粒子が得られるものである。
On the other hand, chemically synthesized manganese dioxide synthesized by the chemical synthesis method, on the other hand, can be obtained in a porous particle state by selecting the synthesis conditions, so that the pore volume can be increased, It is possible to obtain particles having a large specific surface area even with a practical particle size.

したがって、正極活物質として比表面積が50〜90m2/g
の化学合成二酸化マンガンを用い、負極活物質としてリ
チウムを使用した有機電解質電池では、電解液と上記正
極活物質との界面の電気化学的反応面積を増大させ、電
極反応を円滑に行わせることができるため、重負荷放電
時の活物質利用率が向上する。
Therefore, the specific surface area of the positive electrode active material is 50 to 90 m 2 / g.
In the organic electrolyte battery using the chemically synthesized manganese dioxide and using lithium as the negative electrode active material, it is possible to increase the electrochemical reaction area at the interface between the electrolytic solution and the positive electrode active material, and smoothly perform the electrode reaction. Therefore, the active material utilization rate at the time of heavy load discharge is improved.

また、正極活物質として使用する化学合成二酸化マン
ガンは、材料価格が非常に安価であり、入手も容易であ
るため、製造に際して有利であるとともに電池のコスト
ダウンも図れる。
In addition, the chemically synthesized manganese dioxide used as the positive electrode active material is very inexpensive in terms of material cost and easily available, which is advantageous in manufacturing as well as cost reduction of the battery.

さらに、この正極活物質に対する負極活物質の重量比
を0.030〜0.054に設定すると、放電容量が増大する。
Further, when the weight ratio of the negative electrode active material to the positive electrode active material is set to 0.030 to 0.054, the discharge capacity increases.

〔実施例〕〔Example〕

以下、本発明を適用した有機電解質電池の具体的な実
施例について図面を参照して説明する。
Hereinafter, specific examples of the organic electrolyte battery to which the present invention is applied will be described with reference to the drawings.

先ず、本発明に係る有機電解質電池の正極活物質とし
て使用される化学合成二酸化マンガンを合成した。
First, chemically synthesized manganese dioxide used as a positive electrode active material of the organic electrolyte battery according to the present invention was synthesized.

合成例1 3モル/lの硫酸マンガン水溶液及び3モル/lの炭酸ア
ンモニウム水溶液各0.4lを60℃に保持された水の中に0.
1/hrの速度で同時に滴下して炭酸マンガンを得た。得
られた炭酸マンガンは、1.2モル/l水酸化ナトリウム水
溶液2.2l中で窒素ガスを吹き込みながら40℃で15時間水
酸化反応を行った後、吹き込みガスを空気に替て、1.5
時間の酸化反応を行った。次いで、液温を50℃に保持し
た水に替え、塩素ガスを空気とともに吹き込み3時間の
追加酸化反応を行った。
Synthesis Example 1 0.4 mol each of a 3 mol / l manganese sulfate aqueous solution and a 3 mol / l ammonium carbonate aqueous solution in water kept at 60 ° C.
Manganese carbonate was obtained by dropping simultaneously at a rate of 1 / hr. The obtained manganese carbonate was subjected to a hydroxylation reaction at 40 ° C. for 15 hours while blowing nitrogen gas in 1.2 mol / l sodium hydroxide aqueous solution 2.2 l, and then the blowing gas was changed to air to give 1.5
Oxidation reaction of time was performed. Then, the liquid temperature was changed to water held at 50 ° C., and chlorine gas was blown in together with air to carry out an additional oxidation reaction for 3 hours.

この反応物を濾過,水洗後、0.5モル/lの硝酸マンガ
ン及び0.5モル/lの硝酸の混合溶液1中に移し、塩素
酸ナトリウム58gを加え、85℃,2時間加熱反応させ、マ
ンガン低級酸化物の溶解とともにクロレート反応による
重質化を行い二酸化マンガン試料Aを得た。なお、上記
反応は全て充分な攪拌下で行った。
The reaction product was filtered, washed with water, transferred to a mixed solution 1 of 0.5 mol / l manganese nitrate and 0.5 mol / l nitric acid, 58 g of sodium chlorate was added, and the mixture was heated at 85 ° C. for 2 hours to lower-oxidize manganese. A manganese dioxide sample A was obtained by dissolving the substance and making it heavy by the chlorate reaction. All the above reactions were carried out under sufficient stirring.

合成例2 炭酸マンガンの合成温度を25℃、またマンガン低級酸
化物の溶解及びクロレート反応による重質化工程におけ
る0.5モル/lの硝酸マンガン及び0.5モル/lの硝酸の混合
溶液量を0.8l、塩素酸ナトリウム添加量を24gとし、他
は合成例1と同様な方法により二酸化マンガン試料Bを
得た。
Synthesis Example 2 The synthesis temperature of manganese carbonate was 25 ° C., and the mixed solution amount of 0.5 mol / l manganese nitrate and 0.5 mol / l nitric acid in the heavy step by dissolution of manganese lower oxide and chlorate reaction was 0.8 l. A manganese dioxide sample B was obtained in the same manner as in Synthesis Example 1 except that the amount of sodium chlorate added was 24 g.

合成例3 クロレート反応による重質化工程で添加する塩素酸ナ
トリウム量を5gとし、他は合成例2と同様な方法により
二酸化マンガン試料Cを得た。
Synthetic Example 3 A manganese dioxide sample C was obtained in the same manner as in Synthetic Example 2 except that the amount of sodium chlorate added in the step of making heavy by the chlorate reaction was 5 g.

合成例4 炭酸マンガン合成温度を15℃とし、他は合成例3と同
様の方法で二酸化マンガン試料Dを得た。
Synthesis Example 4 Manganese dioxide sample D was obtained in the same manner as in Synthesis Example 3 except that the synthesis temperature of manganese carbonate was 15 ° C.

合成例5 炭酸マンガン合成温度を10℃とし、他は合成例3と同
様の方法で二酸化マンガン試料Eを得た。
Synthesis Example 5 Manganese dioxide sample E was obtained in the same manner as in Synthesis Example 3 except that the synthesis temperature of manganese carbonate was 10 ° C.

合成例6 塩素による追加酸化反応工程まで合成例5と同様の方
法で行い、得られた反応物を濾過・水洗後3モル/lの硝
酸中で80℃,2時間加熱反応を行いマンガン低級酸化物を
溶解させ二酸化マンガン試料Fを得た。
Synthetic Example 6 Up to the additional oxidation reaction step with chlorine was carried out in the same manner as in Synthetic Example 5, the obtained reaction product was filtered and washed with water, and then heated at 80 ° C. for 2 hours in 3 mol / l nitric acid to lower-oxidize manganese. The substance was dissolved to obtain a manganese dioxide sample F.

合成例7 炭酸マンガン合成温度を5℃とし、他は合成例6と同
様の方法で二酸化マンガン試料Gを得た。
Synthesis Example 7 A manganese dioxide sample G was obtained in the same manner as in Synthesis Example 6 except that the synthesis temperature of manganese carbonate was 5 ° C.

合成例8 25℃に保持された1モル/lの炭酸ナトリウム水溶液0.
4l中に1モル/lの硫酸マンガン水溶液0.4lを0.1/hrの
速度で滴下して炭酸マンガンを得、他は合成例6と同様
の方法により二酸化マンガン試料Hを得た。
Synthesis Example 8 1 mol / l sodium carbonate aqueous solution kept at 25 ° C.
A manganese dioxide sample H was obtained in the same manner as in Synthesis Example 6 except that 0.4 l of a 1 mol / l manganese sulfate aqueous solution was dropped into 4 l at a rate of 0.1 / hr to obtain manganese carbonate.

以上の方法により得られた化学合成二酸化マンガン試
料A〜試料Hの他、化学合成二酸化マンガン試料として
国際共通二酸化マンガン試料IC-22(試料I)及び、国
際共通二酸化マンガン試料IC-8(試料J)を準備した。
また比較試料として電解二酸化マンガンである国際共通
二酸化マンガン試料IC-17(試料Kとする。)を準備し
た。
In addition to the chemically-synthesized manganese dioxide samples A to H obtained by the above method, as the chemically-synthesized manganese dioxide samples, the international common manganese dioxide sample IC-22 (Sample I) and the international common manganese dioxide sample IC-8 (Sample J ) Prepared.
Further, as a comparative sample, an international common manganese dioxide sample IC-17 (designated as sample K), which is electrolytic manganese dioxide, was prepared.

準備した二酸化マンガン試料A〜二酸化マンガン試料
Kの平均粒径,二酸化マンガン純度及びBET法による比
表面積の測定結果を第1表に示す。
Table 1 shows the measurement results of the average particle size, the manganese dioxide purity, and the specific surface area by the BET method of the prepared manganese dioxide sample A to manganese dioxide sample K.

上述の試料を用いて以下に示す実施例を行った。 The following examples were performed using the above samples.

予備実験1 先ず、試料A〜試料Jの正極活物質としての特性を調
査するため正極電気容量に対して大過剰の負極活物質及
び多量の電解液を備えたサンプル電池を作製した。尚、
各二酸化マンガン試料は希炭酸ナトリウム水溶液で中和
した後、濾過・乾燥し、さらに420℃で4時間熱処理を
行い実験例に供した。
Preliminary Experiment 1 First, in order to investigate the characteristics of Samples A to J as positive electrode active materials, sample batteries were prepared which were provided with a large excess of negative electrode active material and a large amount of electrolyte solution relative to the positive electrode electric capacity. still,
Each manganese dioxide sample was neutralized with a dilute aqueous solution of sodium carbonate, filtered, dried, and further heat-treated at 420 ° C. for 4 hours to be used as an experimental example.

サンプル電池の概略断面図を第1図に示す。すなわ
ち、第1図に示すようにニッケルメッキを施したステン
レス鋼よりなる正極罐(2)には、重さ0.2g,直径1.1cm
の円板状に5トン/cm2の圧力にて加圧成形した正極合
剤(1)が設置されている。なお、正極合剤(1)は、
化学合成二酸化マンガン88.9重量部,グラファイト9.3
重量部,ポリテトラフルオロエチレン1.8重量部からな
っている。そして、正極罐(2)と同様にニッケルメッ
キを施したステンレス鋼よりなる負極罐(4)内には、
直径1.25cm,厚さ0.12cmの金属リチウム(3)が圧着さ
れている。これら正極合剤(1)と金属リチウム(3)
は、ポリプロピレン製のセパレータ(5)を介して重ね
合わせられており、表面にアスファルトを塗布したポリ
プロピレン製ガスケット(6)を介して正極罐(2)を
かしめることによって当該ガスケット(6)が負極罐
(4)とのあいだで圧縮され電池内部の気密性を保持し
ている。セパレータ(5)には電解液が浸透しており、
該電解液にはプロピレンカーボネートと1,2−ジメトキ
シエタンとの体積比1:1の混合溶媒中に過塩素酸リチウ
ムを1モル/lの割合で溶解させたもの0.2gを用いた。
A schematic sectional view of the sample battery is shown in FIG. That is, as shown in FIG. 1, the positive electrode can (2) made of nickel-plated stainless steel has a weight of 0.2 g and a diameter of 1.1 cm.
The positive electrode mixture (1) pressure-molded at a pressure of 5 ton / cm 2 is installed in the disk shape. The positive electrode mixture (1) is
Chemically synthesized manganese dioxide 88.9 parts by weight, graphite 9.3
It is composed of 1.8 parts by weight of polytetrafluoroethylene. Then, in the same manner as the positive electrode canister (2), in the negative electrode canister (4) made of nickel-plated stainless steel,
Lithium metal (3) with a diameter of 1.25 cm and a thickness of 0.12 cm is pressure bonded. These positive electrode mixture (1) and metallic lithium (3)
Are superposed through a polypropylene separator (5), and the positive electrode canister (2) is caulked through a polypropylene gasket (6) whose surface is coated with asphalt, whereby the gasket (6) becomes a negative electrode. It is compressed with the can (4) to maintain the airtightness inside the battery. The electrolyte has penetrated into the separator (5),
As the electrolyte, 0.2 g of lithium perchlorate dissolved in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane at a volume ratio of 1: 1 at a ratio of 1 mol / l was used.

このサンプル電池は、負極容量に対して正極容量を著
しく少なく設計しているため、電池としての放電特性を
測定して得られる結果は正極の特性が現れるものとな
る。また、電池内部に充分な量の電解液を注入すること
により電極反応に関与する電解液の影響を無視できるも
のとなっている。
Since this sample battery is designed so that the capacity of the positive electrode is significantly smaller than the capacity of the negative electrode, the results obtained by measuring the discharge characteristics of the battery show the characteristics of the positive electrode. Further, by injecting a sufficient amount of the electrolytic solution into the battery, the influence of the electrolytic solution involved in the electrode reaction can be ignored.

上述のような構成のサンプル電池の正極活物質として
試料A〜試料Kを用いて直径20mm,高さ2.5mmのサンプル
電池A〜サンプル電池Kを組みたてた。
Sample batteries A to sample K having a diameter of 20 mm and a height of 2.5 mm were assembled by using samples A to K as the positive electrode active material of the sample battery having the above-described structure.

次いで、これらサンプル電池A〜サンプル電池Kを用
いて、20℃で終止電圧2Vまで、電流密度5mA/cm2の定電
流放電を行い電池容量を測定した。
Next, using these sample batteries A to K, constant current discharge at a current density of 5 mA / cm 2 was performed at 20 ° C. to a final voltage of 2 V, and the battery capacities were measured.

得られた電池容量を正極単位体積当たりの容量に換算
し、各二酸化マンガン試料A〜試料Kの比表面積に対し
てプロットし第2図に表した。第2図より明らかなよう
に、二酸化マンガン比表面積の値が50m2以上の化学合成
品で高容量が得られるが比表面積の増大とともに充填密
度が低下するため所定の電池容量を得るには90m2/g以下
に規制される。
The obtained battery capacity was converted into the capacity per unit volume of the positive electrode, and plotted with respect to the specific surface area of each of the manganese dioxide samples A to K and shown in FIG. As is clear from FIG. 2 , a high capacity can be obtained with a chemically synthesized product having a specific surface area of manganese dioxide of 50 m 2 or more, but the packing density decreases with an increase in the specific surface area, and therefore 90 m to obtain a predetermined battery capacity. It is regulated to 2 / g or less.

以上の予備実験の結果を基に正極活物質として化学合
成二酸化マンガン資料F,資料I及び比較例として電解二
酸化マンガン資料Kを使用して電池を作成した。なお、
各二酸化マンガン資料は、予備実験用電池の場合と同様
の方法で中和処理及び加熱処理を行った。
Based on the results of the above preliminary experiments, a battery was prepared using chemically synthesized manganese dioxide data F and data I as positive electrode active materials and electrolytic manganese dioxide data K as a comparative example. In addition,
Each manganese dioxide material was neutralized and heat-treated in the same manner as in the case of the battery for preliminary experiments.

実施例1 本実施例で組みたてたサンプル電池の概略断面図を第
3図に示す。第3図に於いて正極合剤(11)は二酸化マ
ンガン(資料F)88.9重量部,グラファイト9.3重量
部,ポリテトラフルオロエチレン1.8重量部からなり、
直径1.55cmの円板状に5トン/cm2の圧力にて加圧成形
したもので、ニッケルメッキを施したステンレス綱より
なる正極罐(12)内に設置されている。負極合剤(13)
は、直径1.55cmの金属リチウム(13)であり、ニッケル
メッキを施したステンレス綱よりなる負極罐(14)内に
圧着されている。なお、負極容量は充分軽負荷の状態で
放電した時に得られる正極容量に合致させている。これ
ら正極合剤(11)と金属リチウム(13)は、ポリプロピ
レン製のセパレータ(15)を介して重ね合わせられてお
り、表面にアスファルトを塗布したポリプロピレン製ガ
スケット(16)を介して正極罐(12)をかしめることに
よって当該ガスケット(16)が負極罐(14)とのあいだ
で圧縮され電池内部の気密性を保持している。セパレー
タ(15)には電解液が浸透しており、該電解液にはプロ
ピレンカーボネートと1,2−ジメトキシエタンとの体積
比1:1の混合溶媒中に過塩素酸リチウムを0.5モル/lの割
合で溶解させたもの0.2gを用いた。
Example 1 A schematic cross-sectional view of the sample battery assembled in this example is shown in FIG. In FIG. 3, the positive electrode mixture (11) was composed of 88.9 parts by weight of manganese dioxide (Material F), 9.3 parts by weight of graphite, and 1.8 parts by weight of polytetrafluoroethylene.
It was pressed into a disk with a diameter of 1.55 cm at a pressure of 5 ton / cm 2 and is installed in a positive electrode can (12) made of nickel-plated stainless steel. Negative electrode mixture (13)
Is a lithium metal (13) with a diameter of 1.55 cm, which is crimped into a negative electrode can (14) made of nickel-plated stainless steel. The negative electrode capacity is matched with the positive electrode capacity obtained when discharging under a sufficiently light load. The positive electrode mixture (11) and metallic lithium (13) are superposed on each other via a polypropylene separator (15), and a positive electrode can (12) is inserted via a polypropylene gasket (16) whose surface is coated with asphalt. ), The gasket (16) is compressed between the gasket (16) and the negative electrode can (14) to maintain the airtightness inside the battery. The separator (15) is permeated with an electrolytic solution, and the electrolytic solution contains 0.5 mol / l of lithium perchlorate in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane in a volume ratio of 1: 1. 0.2 g dissolved in a ratio was used.

上述のような構成に従い直径20mm,高さ3.2mmのリチウ
ム・マンガン電池を組み立て、これをサンプル電池1と
した。
A lithium-manganese battery having a diameter of 20 mm and a height of 3.2 mm was assembled according to the above-described structure, and this was used as a sample battery 1.

実施例2 正極活物質として試料Iを使用し、他は実施例1と同
様の方法によりリチウム・マンガン電池を組み立て、こ
れをサンプル電池2とした。
Example 2 A lithium manganese battery was assembled by the same method as in Example 1 except that Sample I was used as the positive electrode active material, and this was designated as Sample Battery 2.

比較例1 正極活物質として試料Kを使用し、他は実施例1と同
様の方法によりリチウム・マンガン電池を組み立て、こ
れをサンプル電池3とした。
Comparative Example 1 A lithium manganese battery was assembled in the same manner as in Example 1 except that Sample K was used as the positive electrode active material, and this was designated as Sample Battery 3.

得られたサンプル電池を用いて20℃で終止電圧2Vまで
の300Ω定負荷放電を行った時の放電曲線を第4図に示
す。第4図から明らかなように本発明電池は比較例電池
と比較して重負荷放電における放電持続時間が長いこと
がわかる。
FIG. 4 shows a discharge curve when a 300 Ω constant load discharge up to a final voltage of 2 V was performed at 20 ° C. using the obtained sample battery. As is clear from FIG. 4, the battery of the present invention has a longer discharge duration in heavy load discharge than the comparative battery.

次に、化学合成二酸化マンガンを用いるリチウム・マ
ンガン電池において正極活物質重量に対する負極活物質
の重量比を検討し適正範囲を定めるために、以下の実験
を行った。
Next, in a lithium-manganese battery using chemically synthesized manganese dioxide, the following experiment was conducted in order to study the weight ratio of the negative electrode active material to the weight of the positive electrode active material and determine an appropriate range.

正極活物質に対する負極活物質の重量比の検討 第3図に示すサンプル電池の構成に準じてリチウム・
マンガン電池を作成した。但し、使用した正極活物質
は、比表面積値63m2/gの市販の化学合成二酸化マンガン
であり、これを0.985g用い、直径1.65cm,高さ1.8mmの円
板状に5トン/cm2の圧力にて加圧成形した形成して使
用した。また、負極罐(14)内には、重さ0.058g,直径
1.55cm,厚さ0.58cmの金属リチウム(13)が圧着されて
いる。
Examination of Weight Ratio of Negative Electrode Active Material to Positive Electrode Active Material According to the structure of the sample battery shown in FIG.
A manganese battery was created. However, the positive electrode active material used was a commercially available chemically synthesized manganese dioxide having a specific surface area value of 63 m 2 / g, and 0.985 g of this was used to form a disk of 1.65 cm in diameter and 1.8 mm in height at 5 ton / cm 2 It was used after being pressure molded at a pressure of. In addition, the negative electrode can (14) weighs 0.058 g, diameter
Lithium metal (13) 1.55 cm thick and 0.58 cm thick is pressure bonded.

上述の正極活物質及び負極活物質を用い、直径20mm,
高さ3.2mmで、電池の正極活物質に対する負極活物質の
重量比は0.007〜0.08のサンプル電池を作製した。
Using the positive electrode active material and the negative electrode active material described above, a diameter of 20 mm,
A sample battery having a height of 3.2 mm and a weight ratio of the negative electrode active material to the positive electrode active material of the battery of 0.007 to 0.08 was prepared.

これらサンプル電池は、21℃において2Vに達するまで
24時間毎に2時間間欠8mA定電流放電を行い経時時間の
積算値から全放電容量を求めた。第5図に前述の放電条
件により放電したときに得られる放電容量と正極活物質
に対する負極活物質の重量比との関係を第5図に示し
た。第5図より明らかなように、正極活物質として比表
面積63m2/gの化学合成二酸化マンガンを使用した場合、
従来最適とされていた重量比0.055〜0.067の範囲では高
電流密度での放電容量は最大とならず、重量比が0.025
〜0.070のときに放電容量が100mAH程度以上得られるこ
とがわかった。ただし、重量比が0.030〜0.054のときに
放電容量110mAHが達成された。
These sample batteries will reach 2V at 21 ° C.
Two-hour intermittent 8 mA constant current discharge was performed every 24 hours, and the total discharge capacity was obtained from the integrated value of the elapsed time. FIG. 5 shows the relationship between the discharge capacity and the weight ratio of the negative electrode active material to the positive electrode active material obtained when discharging under the above-mentioned discharge conditions. As is clear from FIG. 5, when chemically synthesized manganese dioxide having a specific surface area of 63 m 2 / g is used as the positive electrode active material,
In the weight ratio range of 0.055 to 0.067, which was previously considered optimal, the discharge capacity at high current density does not reach the maximum, and the weight ratio is 0.025.
It was found that a discharge capacity of about 100 mAH or more can be obtained when the value is up to 0.070. However, a discharge capacity of 110 mAH was achieved when the weight ratio was 0.030 to 0.054.

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかなように、本発明では有機電解
質電池の正極活物質として比表面積の大きな化学合成二
酸化マンガンを使用しているので、電解液と正極活物質
との界面の電気化学的反応面積を増大させ、電極反応を
円滑に行わせることができ、重負荷放電時の正極活物質
の利用率を向上することができる。
As is clear from the above description, in the present invention, since chemically synthesized manganese dioxide having a large specific surface area is used as the positive electrode active material of the organic electrolyte battery, the electrochemical reaction area of the interface between the electrolytic solution and the positive electrode active material. Can be increased, the electrode reaction can be carried out smoothly, and the utilization rate of the positive electrode active material during heavy load discharge can be improved.

したがって、本発明電池では数mA〜数十mAの高い電流
で放電する重負荷放電時の放電容量を増加させることが
できる。
Therefore, in the battery of the present invention, it is possible to increase the discharge capacity at the time of heavy load discharge in which a high current of several mA to several tens mA is discharged.

さらに化学合成によって合成される二酸化マンガンは
非常に材料価格が安価であるため電池の製造コストダウ
ンが図れる。
Further, manganese dioxide synthesized by chemical synthesis has a very low material price, and thus the manufacturing cost of the battery can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は予備実験で作成した有機電解質電池の構成例を
示す概略断面図である。 第2図は二酸化マンガンの比表面積に対する正極活物質
の体積当たりの容量を示す特性図である。 第3図は本発明を適用した実施例において作成した有機
電解質電池の構成例を示す概略断面図である。 第4図は本発明を適用した実施例の放電特性を比較例の
それと比べて示す特性図である。 第5図は正極活物質と負極活物質の重量比と放電容量と
の関係を示す特性図である。 1……正極合剤 2……正極罐 3……金属リチウム 4……負極罐 5……セパレータ 6……ガスケット
FIG. 1 is a schematic sectional view showing a configuration example of an organic electrolyte battery prepared in a preliminary experiment. FIG. 2 is a characteristic diagram showing the capacity per volume of the positive electrode active material with respect to the specific surface area of manganese dioxide. FIG. 3 is a schematic cross-sectional view showing a constitutional example of the organic electrolyte battery prepared in the example to which the present invention is applied. FIG. 4 is a characteristic diagram showing the discharge characteristics of the example to which the present invention is applied in comparison with that of the comparative example. FIG. 5 is a characteristic diagram showing the relationship between the weight ratio of the positive electrode active material and the negative electrode active material and the discharge capacity. 1 ... Positive electrode mixture 2 ... Positive electrode can 3 ... Metallic lithium 4 ... Negative electrode can 5 ... Separator 6 ... Gasket

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】二酸化マンガンを主体とする正極活物質と
リチウムもしくはリチウム合金を主体とする負極活物質
と有機電解質溶液よりなる有機電解質電池において、 前記正極活物質の二酸化マンガンが比表面積50〜90m2/g
の化学合成二酸化マンガンであり、正極活物質に対する
負極活物質の重量比が0.030〜0.054であることを特徴と
する有機電解質電池。
1. An organic electrolyte battery comprising a positive electrode active material mainly containing manganese dioxide, a negative electrode active material mainly containing lithium or a lithium alloy, and an organic electrolyte solution, wherein the manganese dioxide of the positive electrode active material has a specific surface area of 50 to 90 m. 2 / g
Which is a chemically synthesized manganese dioxide, wherein the weight ratio of the negative electrode active material to the positive electrode active material is 0.030 to 0.054.
JP62247099A 1987-09-30 1987-09-30 Organic electrolyte battery Expired - Lifetime JP2565259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62247099A JP2565259B2 (en) 1987-09-30 1987-09-30 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62247099A JP2565259B2 (en) 1987-09-30 1987-09-30 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPS6489261A JPS6489261A (en) 1989-04-03
JP2565259B2 true JP2565259B2 (en) 1996-12-18

Family

ID=17158413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62247099A Expired - Lifetime JP2565259B2 (en) 1987-09-30 1987-09-30 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP2565259B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110863A (en) * 1984-06-25 1986-01-18 Sanyo Electric Co Ltd Nonaqueous electrolyte batter
JPS62108457A (en) * 1985-11-05 1987-05-19 Sanyo Electric Co Ltd Non aqueous secondary cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110863A (en) * 1984-06-25 1986-01-18 Sanyo Electric Co Ltd Nonaqueous electrolyte batter
JPS62108457A (en) * 1985-11-05 1987-05-19 Sanyo Electric Co Ltd Non aqueous secondary cell

Also Published As

Publication number Publication date
JPS6489261A (en) 1989-04-03

Similar Documents

Publication Publication Date Title
US5472810A (en) Copper, silver, vanadium oxide composite cathode material for high energy density batteries
US6334993B1 (en) Lithium manganate, method of producing the same, and lithium cell produced by the method
JP4301527B2 (en) Aqueous rechargeable battery
US5516340A (en) Process for making a metal oxide composite cathode material for high energy density batteries
EP0827223B1 (en) Lithium secondary battery
EP0743692B1 (en) A material for use in the positive electrodes of lithium batteries, its manufacture, and lithium batteries incorporating this material
EP0573040A1 (en) A positive electrode for lithium secondary battery and its method of manufacture, and a nonaqueous electrolyte lithium secondary battery employing the positive electrode
JP2005071807A (en) Water-based lithium secondary battery
Hunger et al. Cathodic discharge of graphite intercalation compounds in organic electrolytes
JPH11292547A (en) Lithium cobaltate, its production and lithium cell using that
US5419986A (en) Method of making a rechargeable manganese-oxide compound and related electrode material
US4176214A (en) Lithium-lead sulfate primary electrochemical cell
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JP3050885B2 (en) Non-aqueous solvent secondary battery and method of manufacturing the same
JPH0644971A (en) Nonaqueous electrolyte lithium secondary battery
JP2565259B2 (en) Organic electrolyte battery
JP2835138B2 (en) Non-aqueous solvent secondary battery
JP2522328B2 (en) Organic electrolyte battery
JP2018107117A (en) Negative electrode active material, and electrochemical device
JP3451601B2 (en) Lithium battery
JP2812943B2 (en) Organic electrolyte battery
JP6931796B2 (en) Electrochemical device
JPH05325961A (en) Lithium battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JP2003002653A (en) Lithium chromium complex oxide for anode active substance of lithium secondary battery and method for producing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term