JP2565064B2 - How to transfer and load coal to the coke oven - Google Patents

How to transfer and load coal to the coke oven

Info

Publication number
JP2565064B2
JP2565064B2 JP4285644A JP28564492A JP2565064B2 JP 2565064 B2 JP2565064 B2 JP 2565064B2 JP 4285644 A JP4285644 A JP 4285644A JP 28564492 A JP28564492 A JP 28564492A JP 2565064 B2 JP2565064 B2 JP 2565064B2
Authority
JP
Japan
Prior art keywords
coal
fine powder
charging
coke oven
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4285644A
Other languages
Japanese (ja)
Other versions
JPH06136362A (en
Inventor
恵三 井上
秀文 碇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4285644A priority Critical patent/JP2565064B2/en
Publication of JPH06136362A publication Critical patent/JPH06136362A/en
Application granted granted Critical
Publication of JP2565064B2 publication Critical patent/JP2565064B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Coke Industry (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コークスを製造する際
に、コークス炉へ乾燥または予熱した石炭を装入するた
めの、石炭の搬送、装入方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of transporting and charging coal for charging dried or preheated coal to a coke oven during the production of coke.

【0002】[0002]

【従来の技術】コークスの製造技術の一つとして、乾燥
予熱炭技術がある。これは、コークス炉へ石炭を装入す
る際に、事前に原料石炭を乾燥もしくは予熱することに
よって、炭化室内における石炭のかさ密度を増大および
均等化させ、乾留熱量の低減などの効果を発現させ、操
業の安定、生産性の向上、品質の向上および安定化を図
る技術である。
2. Description of the Related Art As one of coke manufacturing technologies, there is a dry preheated carbon technology. This is to increase or equalize the bulk density of coal in the carbonization chamber by drying or preheating the raw material coal in advance when charging the coal to the coke oven, and to produce effects such as reduction of the amount of dry distillation heat. It is a technology that aims to stabilize operations, improve productivity, improve quality and stabilize it.

【0003】しかし、この乾燥予熱炭技術は上記のよう
な効果を有する反面、石炭中に含まれる水分の減少に伴
い、乾燥・予熱から装炭までの搬送過程における発塵量
の増大、コークス炉への装炭時における上昇管からの石
炭の炉外流出(キャリーオーバー)量の増大、および粉
塵爆発の危険性等、環境上、操業上、ならびに安全上の
問題点も有しているため、広く採用されるには至ってい
ない。
However, while this dry preheated coal technology has the above-mentioned effects, the amount of dust generated in the transfer process from drying / preheating to carbonization and the coke oven increase with the decrease of water content in the coal. Since there are also environmental, operational and safety issues, such as an increase in the amount of coal outflow (carryover) from the rising pipe during coal charging to the It has not been widely adopted.

【0004】これらの問題点を解決するために、例え
ば、密封式のチェーンコンベアを用い、不活性ガスを導
入しつつ装入口から装炭する技術(特開昭51−86501 号
公報参照)、不活性ガスを担体として気流輸送する技術
(特開昭52−132002号公報)、内部に不活性ガスを供給
して大気から遮断できるホッパーを有するラリー運搬車
により貯蔵装置から装入目標窯まで石炭を搬送する技術
(特開昭58−185681号公報)、などにより、搬送、装炭
時の発塵を抑制すると共に粉塵爆発の危険性を回避する
技術が提案されている。また、石炭中の微粉が粗粒状に
なった擬似粒子化物を乾燥・予熱またはその後段の工程
で破壊し、分離することによって発塵を防止し、キャリ
ーオーバーを抑制する技術(特開昭62−192486号公報)
が提案されている。
In order to solve these problems, for example, a technique of using a hermetically-sealed chain conveyor to introduce carbon dioxide from an inlet while introducing an inert gas (see Japanese Patent Laid-Open No. 51-86501), Technology for air flow transport of active gas as a carrier (JP-A-52-132002), a rally carrier having a hopper capable of shutting off the atmosphere by supplying an inert gas, from a storage device to a charging target kiln. A technique for suppressing dust generation during transportation and carbonization and for avoiding the risk of dust explosion has been proposed, such as a technique for transportation (Japanese Patent Laid-Open No. 58-185681). Further, a technique for preventing carry-over by preventing dust generation by destroying and separating a pseudo-particle material in which fine powder in coal is coarse-grained in a drying / preheating or a subsequent step (Japanese Patent Laid-Open No. 62-62 (192486 publication)
Is proposed.

【0005】しかし、前記の特開昭51−86501 号、特開
昭52−132002号及び特開昭58−185681号の各公報により
開示された技術はいずれも密閉構造体と、不活性ガスを
用いるもので、搬送の途中および装炭口での発塵抑制効
果は高いが、原料石炭中に微粉を含んだまま装炭される
ので、キャリーオーバー量の低減には効果がないばかり
か、搬送過程で粉化あるいは擬似粒子の破壊が進行し
て、原料炭中に含まれる微粉の比率が増大し、コークス
の品質が劣化するという重大な問題点がある。
However, the techniques disclosed in the above-mentioned JP-A-51-86501, JP-A-52-132002 and JP-A-58-185681 all use a closed structure and an inert gas. Although it is used, it is highly effective in suppressing dust generation during transportation and at the coal charging port, but it is not effective in reducing the carry-over amount because it is carbonized while the raw coal contains fine powder. In the process, pulverization or destruction of pseudo particles progresses, the ratio of fine powder contained in the raw coal increases, and there is a serious problem that the quality of coke deteriorates.

【0006】特開昭62−192486号公報に開示された微粉
部分を事前に分離する方法を用いれば、キャリーオーバ
ー量を低減させることは可能である。しかしながら、擬
似粒子を破壊して微粉の分離率を高めるための特別な装
置を乾燥・予熱機の後段に組み込む必要があること、さ
らに、微粉の分離が乾燥・予熱の直後に行われるため、
装炭までの間の搬送過程で粉化が進行し、新たな微粉が
発生すること等の問題点を有しており、キャリーオーバ
ーを減らす技術として十分な効果を発揮するものとはい
えない。
The carryover amount can be reduced by using the method of separating the fine powder portion in advance, which is disclosed in JP-A-62-192486. However, it is necessary to incorporate a special device for destroying the pseudo particles to increase the separation rate of the fine powder in the latter stage of the drying / preheating machine, and further, since the separation of the fine powder is performed immediately after the drying / preheating,
There is a problem that pulverization progresses during the transportation process up to carbonization and new fine powder is generated, and it cannot be said that the technique is sufficiently effective as a technique for reducing carryover.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上述した従
来技術における問題を解決して、乾燥または予熱した石
炭をコークス炉へ搬送、装入するに際し、擬似粒子を破
壊するための特別な装置を設けたりせずに、装炭時にお
けるキャリーオーバーを効果的に抑制し、さらに、原料
石炭中に含まれる微粉をコークス炉用原料として有効に
回収使用する方法を提案するものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in the prior art and provides a special device for destroying pseudo particles during the transportation and charging of dried or preheated coal into a coke oven. The present invention proposes a method of effectively suppressing carryover at the time of carbonization without providing the above, and effectively recovering and using the fine powder contained in the raw coal as a raw material for a coke oven.

【0008】[0008]

【課題を解決するための手段】本発明者らは、コークス
炉への乾燥・予熱炭の搬送、装炭に関する新技術の開発
を進める過程で気流搬送技術の検討を行い、固気分離に
ついて下記の新たな知見を得た。すなわち、 (a) 乾燥または予熱した石炭の搬送を気流輸送により行
うと、密閉系であるため系外への発塵が全くないことは
もちろんであるが、搬送過程で石炭中に残存している水
分が更に若干ではあるが蒸発すると共に、石炭粒子間お
よび石炭と管壁との接触、摩擦により擬似粒子が破壊さ
れる。このことから、気流輸送技術を用いれば、擬似粒
子を破壊するための特別な装置は不要である。
[Means for Solving the Problems] The inventors of the present invention conducted a study of an air flow transfer technology in the process of transferring a dried / preheated coal to a coke oven and developing a new technology for carbonization. I got new knowledge of. In other words, (a) When dry or preheated coal is transported by air flow, it is a closed system, so no dust is generated outside the system, but it remains in the coal during the transport process. While the water content is evaporated to some extent, the pseudo particles are destroyed by the contact and friction between the coal particles and between the coal and the pipe wall. For this reason, the use of air transport technology does not require a special device for destroying the pseudo particles.

【0009】(b) 気流輸送時の固気分離工程において
は、通常、気相側に同伴する粉塵をできるだけ少なくし
て固体の回収を高めることが要求されるが、固気分離で
はなく微粉分離を行うという発想に基づいて、気相側に
ガスと共に微粉部分を同伴させ、固相側に粗粒を多く含
む石炭を回収するとにより、発塵し易い微粉部分を分離
除去することが可能になる。これにより、粗粒部分のみ
の炭化室への装炭が可能となり、キャリーオーバーを大
幅に抑制することができる。
(B) In the solid-gas separation step during air flow transportation, it is usually required to reduce dust entrained in the gas phase side as much as possible to enhance the recovery of solids, but it is not solid-gas separation but fine powder separation. Based on the idea of carrying out the above, it is possible to separate and remove the fine powder portion which is easily dusted by entraining the fine powder portion with the gas on the gas phase side and collecting the coal containing a large amount of coarse particles on the solid phase side. . As a result, it is possible to charge the carbonization chamber only with the coarse-grained portion, and carry-over can be significantly suppressed.

【0010】(c) 分離される微粉部分の量は乾燥予熱条
件および気流輸送条件などにより異なる。その量バラン
スとコークス炉及び高炉を含めた全体のエネルギーコス
トバランスを考慮して、微粉部分を高炉吹き込み燃料と
して用いるか、あるいはコークス炉用原料として用いる
かが決められる。微粉炭燃焼による高炉吹き込み燃料と
して用いる場合は回収される微粉炭をそのまま利用でき
るが、コークス炉用原料として用いる場合は発塵防止対
策が必要となる。発塵を防止するためには、粒子径を大
きくして、それが装炭時に破壊されず、ある程度以上
の、望ましくは 0.1mm以上の粒子径を維持できるような
擬似粒子化処理を行えばよい。このような擬似粒子化を
行った微粉を、粗粒部分と混合すれば、微粉部分をコー
クス用原料として有効に利用することができる。
(C) The amount of the fine powder portion to be separated varies depending on the drying preheating condition and the air flow transportation condition. In consideration of the amount balance and the total energy cost balance including the coke oven and the blast furnace, it is determined whether the fine powder portion is used as the blast furnace blown fuel or the coke oven raw material. The pulverized coal recovered can be used as it is when it is used as a blast furnace fuel by pulverized coal combustion, but dust prevention measures are required when it is used as a raw material for a coke oven. In order to prevent dust generation, it is sufficient to increase the particle size so that the particle size is not destroyed during carbonization and can be maintained at a certain level or more, preferably 0.1 mm or more. . By mixing the fine powder that has undergone such pseudo-particle formation with the coarse particle portion, the fine powder portion can be effectively used as a raw material for coke.

【0011】本発明は上記の知見に基づいてなされたも
ので、その要旨は下記およびの石炭の搬送、装入方
法にある。
The present invention was made on the basis of the above findings, and its gist resides in the following method of transporting and charging coal.

【0012】 乾燥または予熱した石炭を、コークス
炉の装入目標窯の上部に設置された微粉分離装置まで気
流輸送により搬送し、上記微粉分離装置において、微粉
炭を含む気相と粗粒炭を主とする石炭とに分離し、その
粗粒炭を主とする石炭を装入目標窯に装入することを特
徴とするコークス炉への石炭の搬送、装入方法。
[0012] The dried or preheated coal is conveyed by air transportation to a fine powder separating apparatus installed at the upper part of a charging target kiln of a coke oven, and in the fine powder separating apparatus, a gas phase containing fine coal and coarse-grained coal are A method for transporting and charging coal to a coke oven, characterized in that the coal is separated into main coal and the coarse coal is mainly charged into a charging target kiln.

【0013】 気相側に同伴させた微粉を回収し、塊
成化した後、粗粒炭を主とする石炭と混合して装入目標
窯に装入することを特徴とする前記に記載のコークス
炉への石炭の搬送、装入方法。
[0013] The fine powder entrained on the gas phase side is collected and agglomerated, and then coarse grain coal is mixed with the main coal and charged into a charging target kiln. How to transfer and load coal into the coke oven.

【0014】前記の塊成化された粒子には、成形あるい
は造粒により、明らかに塊状を呈するものの他に、粒子
径が 100μm 以上の擬似粒子化されたものも含まれる。
The above-mentioned agglomerated particles include not only particles which are apparently agglomerated by molding or granulation but also particles which are pseudo-particles having a particle diameter of 100 μm or more.

【0015】[0015]

【作用】以下に、本発明方法を図に基づいて詳細に説明
する。
The method of the present invention will be described in detail below with reference to the drawings.

【0016】図1は本発明方法の実施に用いる搬送、装
入装置の一例の構成を示す概略図である。本発明を実施
するには、まず、コークス炉用原料炭(湿炭)aを乾燥
機1を用いて乾燥または予熱して水分を調整する。この
場合に用いる乾燥機は、所定の予熱温度が得られ、石炭
中の水分を所定の値とすることができるものであれば特
に制限はなく、例えば、流動層加熱機、間接加熱を行う
多管式回転乾燥予熱機等の一般的な加熱機あるいは予熱
機を用いればよい。
FIG. 1 is a schematic view showing the construction of an example of a carrying and charging apparatus used for carrying out the method of the present invention. In order to carry out the present invention, first, the coke oven raw material coal (wet coal) a is dried or preheated by using the dryer 1 to adjust the water content. The dryer used in this case is not particularly limited as long as a predetermined preheating temperature can be obtained and the water content in the coal can be set to a predetermined value. A general heater or preheater such as a tubular rotary drying preheater may be used.

【0017】水分は通常のコークス炉用原料炭である湿
炭が有する水分量(8〜9重量%)以下であれば特に問
題はないが、気流搬送の際の輸送の安定性、輸送効率お
よび固気分離時の微粉分離効率を良好にするという観点
から5重量%以下とするのが望ましく、さらに、コーク
ス炉内における石炭のかさ密度を増大および均等化し、
乾留熱量の低減等による操業の安定化、生産性の向上、
品質の向上および安定化を一層進めるためには可能な限
り少ない方がよい。
There is no particular problem as long as the water content is equal to or less than the water content (8-9% by weight) possessed by the wet coal which is a normal coking furnace coking coal, but the stability of transportation during air flow transportation, transportation efficiency and From the viewpoint of improving the fine powder separation efficiency at the time of solid-gas separation, it is desirable to be 5% by weight or less, and further increase and equalize the bulk density of coal in the coke oven,
Stabilize operations by improving dry distillation heat amount, improve productivity,
In order to further improve quality and stabilize it, it is better to reduce the amount as much as possible.

【0018】予熱温度については、石炭の熱分解温度以
下であればよいが、熱効率を高め、品質ならびに生産性
を向上させる上から、 150〜200 ℃とするのが望まし
い。
The preheating temperature may be not higher than the thermal decomposition temperature of coal, but is preferably 150 to 200 ° C. from the viewpoint of improving thermal efficiency and improving quality and productivity.

【0019】乾燥または予熱された石炭は、直接、また
は一旦中間炭槽(図示せず)に入れた後、気流搬送によ
り石炭塔の貯炭槽3へ送られる。次いで、同じく気流搬
送により貯炭槽3から微粉分離装置9へ送られ、ここで
微粉が分離、除去される。
The dried or preheated coal is directly or once put in an intermediate coal tank (not shown) and then sent to the coal storage tank 3 of the coal tower by air flow transfer. Next, similarly, the powder is fed from the coal storage tank 3 to the fine powder separating device 9 by air flow conveyance, where the fine powder is separated and removed.

【0020】微粉分離装置9は粗粒炭と微粉炭を含むガ
スとを分離するサイクロン式貯炭ビン10と集塵装置11を
有し、微粉炭を含むガスから分離された粗粒炭はサイク
ロン式貯炭ビン10に貯炭される。微粉炭を含むガスはバ
グフィルター等の集塵装置11に導入され、微粉炭cが補
集、回収される。微粉分離装置9としては特殊なものは
必要ではなく、コークス炉への装炭時のキャリーオーバ
ーするような粒径の微粉を効率よく分離することができ
るものであればよい。例えば、前記のサイクロン式のも
のの他、重力分級機など、一般的なものが使用できる。
微粉分離装置は、固定式または移動式のいずれでもよ
い。
The fine powder separating device 9 has a cyclone type coal storage bin 10 for separating coarse coal and a gas containing fine coal and a dust collector 11, and the coarse coal separated from the gas containing fine coal is a cyclone type. Coal is stored in coal storage bin 10. The gas containing pulverized coal is introduced into the dust collector 11 such as a bag filter, and the pulverized coal c is collected and collected. The fine powder separating device 9 does not need to be special, and may be any device that can efficiently separate fine powder having a particle size that causes carryover during carbonization in the coke oven. For example, in addition to the cyclone type, a general type such as a gravity classifier can be used.
The fine powder separating device may be either a fixed type or a mobile type.

【0021】予熱・乾燥した石炭の搬送は、全ラインを
気相搬送とする必要はない。例えば、貯炭槽3までは密
閉式のチェーンコンベア等で搬送し、その後気流搬送に
切り換えてもよい。
For the transportation of preheated and dried coal, it is not necessary that the entire line is vapor-phase transported. For example, it may be carried to the coal storage tank 3 by a closed chain conveyor or the like, and then switched to air flow carrying.

【0022】微粉分離装置9を石炭塔の貯炭槽3の上部
に設け、微粉炭を含むガスから分離された粗粒炭を貯炭
槽3に貯えることも考えられるが、貯炭槽からコークス
炉までの気流搬送の距離が長い場合、あるいはチェーン
コンベアで搬送する場合は、搬送途中の石炭粒子間およ
び石炭と管壁との接触・摩擦により新たな微粉が発生
し、装炭時のキャリーオーバー量が増大する。従って、
貯炭槽3では微粉分離を行わず、微粉分離装置を装炭対
象炭化室の上方部に設けて、ここで微粉の分離除去を行
えば、微粉を分離した後の搬送過程での新たな粉化を防
止することができ、キャリーオーバーを抑制することが
可能となる。
It is conceivable that the fine powder separating device 9 is provided above the coal storage tank 3 of the coal tower to store the coarse coal separated from the gas containing the fine coal in the coal storage tank 3. When the air flow distance is long, or when it is carried by a chain conveyor, new fine powder is generated due to contact and friction between coal particles during transfer and between coal and the pipe wall, increasing the carryover amount during carbonization. To do. Therefore,
In the coal storage tank 3, fine powder separation is not performed, but a fine powder separation device is provided in the upper part of the carbonization chamber to be charged, and if fine powder is separated and removed there, new fine powder is generated in the conveying process after separating the fine powder. Can be prevented and carryover can be suppressed.

【0023】表1は、石炭(表3の「乾燥前」の石炭)
を後述の実施例1と同じ条件、すなわち、図2に示す気
流輸送テスト装置を用いて、表4に示す輸送条件で切り
出しタンク12からタンクAへ気流輸送して擬似粒子を破
壊し、0.15mm以下の微粉を除去した後、再度同じ装置を
用いて気流輸送し、輸送の前後における粒度分布を比較
した結果である。「気流輸送前」が微粉を除去した後の
粒度分布、「気流輸送後」が再度の気流輸送後の粒度分
布であるが、この表に示されるように、搬送の途中で新
たな微粉の発生が認められる。この結果から、気流輸送
を利用した原料炭中の微粉の分離除去はコークス炉への
装入の直前で行うのが効果的であることが明らかであ
る。
Table 1 shows coal (coal "before drying" shown in Table 3).
Under the same conditions as in Example 1 described later, that is, using the air flow test apparatus shown in FIG. It is the result of comparing the particle size distributions before and after transporting by airflow again using the same device after removing the following fine powders. “Before air flow” is the particle size distribution after removing the fine powder, and “After air flow” is the particle size distribution after the air flow again. As shown in this table, new fine powder is generated during the transportation. Is recognized. From this result, it is clear that it is effective to separate and remove the fine powder in the coking coal by using the pneumatic transportation immediately before the charging into the coke oven.

【0024】[0024]

【表1】 [Table 1]

【0025】乾燥または予熱した石炭の搬送を気流輸送
により行うと、搬送過程で石炭粒子間および石炭と管壁
との接触、摩擦により擬似粒子が破壊される。従って、
気流輸送技術を用いれば、擬似粒子を破壊するための特
別な装置は不要である。
When the dried or preheated coal is conveyed by air flow, the pseudo particles are destroyed due to the contact and friction between the coal particles and between the coal and the pipe wall during the conveying process. Therefore,
With pneumatic transport technology, no special equipment is needed to destroy the pseudo particles.

【0026】表2は、前記表3の「乾燥前」の石炭を、
やはり後述の実施例1と同じ条件で切り出しタンク12か
らタンクAへ気流輸送し、輸送の前後における粒度分布
を比較した結果である。また、表3はこの石炭の乾燥前
の粒度分布と、乾燥後の粒度分布で、乾燥による擬似粒
子の破壊状況を示したものであるが、これら表2および
表3の結果を比較すると、輸送後の粒度分布は、乾燥後
の粒度分布と類似しており、粒径0.07mm以下の微粉が増
えていて、気流輸送を行うだけで搬送途中で擬似粒子の
破壊が起こっていることがわかる。すなわち、石炭の搬
送過程に気流搬送を用いれば、擬似粒子破壊のための特
別な装置は不要となることが明らかである。
Table 2 shows the coal before "drying" in Table 3
This is also the result of comparing the particle size distributions before and after transportation by air transport from the cutting tank 12 to the tank A under the same conditions as in Example 1 described later. Table 3 shows the particle size distribution of the coal before drying and the particle size distribution after drying, showing the destruction of pseudo particles due to drying. The subsequent particle size distribution is similar to the particle size distribution after drying, and it can be seen that the fine particles with a particle size of 0.07 mm or less are increasing, and that the pseudo particles are destroyed during the transportation only by air flow transportation. That is, it is clear that if air flow transportation is used in the coal transportation process, no special device for quasi-particle destruction is required.

【0027】[0027]

【表2】 [Table 2]

【0028】装炭時のキャリーオーバー量は、原料炭の
粉砕条件、乾燥・予熱条件、輸送条件、装炭方法 (速
度、順序) により異なるため、それらに応じて微粉分離
装置9に要求される仕様 (分離粒径、分離効率) が決定
されるが、通常、キャリーオーバー粒子の大部分は粒径
が70μm (0.07mm)未満であることから、0.07mm以下、
好ましくは 0.1mm以下の粒子を気相側にガスとともに同
伴させ、分離できるような装置であることが望ましい。
本発明(の発明)は粗粒分の微粉からの分離が目的で
あるから、この方法で用いる微粉分離装置は一般的な固
気分離装置で求められるように分離能力を高め、粒径0.
07mm未満の微粉まで固相側に多量に回収するような装置
にはしないことが必要である。
The carry-over amount at the time of carbonization differs depending on the crushing conditions of the raw material coal, the drying / preheating conditions, the transportation conditions, and the carbonization method (speed, order), and is therefore required for the fine powder separating apparatus 9 accordingly. Specifications (separation particle size, separation efficiency) are determined, but since most of the carry-over particles are usually less than 70 μm (0.07 mm), 0.07 mm or less,
It is desirable that the apparatus is such that particles of 0.1 mm or less can be entrained together with gas on the gas phase side and separated.
Since the present invention (invention) is intended to separate coarse particles from fine powder, the fine powder separation apparatus used in this method has an increased separation capacity as required by a general solid-gas separation apparatus, and has a particle size of 0.
It is necessary not to use a device that collects a large amount of fine powder of less than 07 mm on the solid phase side.

【0029】微粉分離装置9で回収された粗粒炭は炭化
室に装入される。装炭装置としては、炭化室1室分の石
炭を受け入れた後、装炭対象炭化室位置まで移動して装
炭を行う密閉式装炭車、計量槽を介して気流輸送により
炭化室へガスと共に装炭する気相直接装炭装置、計量槽
を介して気流輸送により装炭対象炭化室上の固定式また
は移動式の固気分離器まで輸送し、ガスを分離したのち
装炭する気送固気分離装炭装置、また密閉式のチェーン
コンベア装炭装置等、従来用いられている装置を用いれ
ばよい。
The coarse-grained coal recovered by the fine powder separating apparatus 9 is loaded into the carbonization chamber. The coal-charging device includes a coal-charging vehicle that receives coal for one chamber in the coal-charging chamber and then moves to the position of the coal-charging chamber for coal-charging to perform coal-charging. Gas-phase direct coal-charging device for carbonization, transporting to a fixed or mobile solid-gas separator on the target carbonization chamber by air flow through a metering tank, separating the gas and then coal-charging A conventionally used device such as a gas separation carbonization device or a closed chain conveyor carbonization device may be used.

【0030】の発明は、乾燥・予熱炭から分離除去さ
れた微粉を有効に利用する方法で、分離除去後の微粉に
バインダーを添加して混練することにより擬似粒子化
し、そのままで、または、造粒機や成型機により塊成化
した後、貯炭ビン10内の粗粒部分と混合し、炭化室内に
装炭する。混練機や造粒機は、擬似粒子径を 0.1mm以上
とすることができるものであればよく、水平軸型あるい
は垂直軸型ニーダーなどを用いればよい。成型機はダブ
ルロール型、ピストン型等の一般的なものが使用でき
る。
The invention of (1) is a method of effectively utilizing the fine powder separated and removed from the dried / preheated carbon, and a binder is added to the fine powder after the separation and removal to knead it to form pseudo particles, which is used as it is, or when it is produced. After being agglomerated by a granulator or a molding machine, it is mixed with the coarse-grained portion in the coal storage bin 10 and carbonized in the carbonization chamber. Any kneader or granulator may be used as long as the pseudo particle diameter can be 0.1 mm or more, and a horizontal axis type or vertical axis type kneader or the like may be used. As a molding machine, a general one such as a double roll type or a piston type can be used.

【0031】上記の本発明方法を用いれば、乾燥または
予熱された石炭はコークス炉に装入されるまで密閉され
た状態におかれるので、搬送過程および装入時での発塵
は皆無である。また、装炭される石炭は微粉が除かれて
いるので、上昇管からのキャリーオーバーを十分に抑制
することができる。
When the above-mentioned method of the present invention is used, the dried or preheated coal is kept in a sealed state until it is charged into the coke oven, so that no dust is generated during the transportation process and during charging. . Further, since fine coal is removed from the coal to be charged, carryover from the rising pipe can be sufficiently suppressed.

【0032】[0032]

【実施例1】図2に示す気流輸送テスト装置を用いて、
原料炭(表3の「乾燥前」の石炭)を表4に示す輸送条
件で切り出しタンク12からタンクAへ気流輸送し、微粉
を分離除去した後の粗粒部分を、タンクAから炭化室に
相当するタンクBへ装炭した時の排ガス中に含まれる微
粉炭量(キャリーオーバー量)の調査を行った。なお、
図2の13が微粉分離装置で、サイクロン式のものを用い
た。
[Embodiment 1] Using the air flow test apparatus shown in FIG.
Coking coal (coal “before drying” in Table 3) was cut out under the transportation conditions shown in Table 4 and air-transported from tank 12 to tank A, and the coarse-grained portion after separation and removal of fine powder was transferred from tank A to the carbonization chamber. The amount of pulverized coal (carryover amount) contained in the exhaust gas when the corresponding tank B was carbonized was investigated. In addition,
Reference numeral 13 in FIG. 2 is a fine powder separator, which is a cyclone type.

【0033】表5(1) に、原料炭を切り出しタンク12か
らタンクAへ気流輸送した後の固相側(粗粒炭)および
気相側(微粉炭)の粒度分布を示す。サンプリング位置
は、図示したように、微粉分離装置13の入側(輸送後サ
ンプリング位置)と出側(気相側サンプリング位置)
で、輸送後サンプリング位置で採取したサンプルの粒度
分布におけるそれぞれの粒度範囲の数値から気相側サン
プリング位置で採取したサンプルの粒度分布における対
応する粒度範囲の数値を差し引いた、粗粒炭の粒度分布
を「固相側」、気相側サンプリング位置で採取したサン
プルの粒度分布を「気相側」として表示した。「固相
側」と「気相側」を合わせると 100重量%となる。
Table 5 (1) shows the particle size distributions of the solid phase side (coarse grain coal) and the gas phase side (fine coal powder) after the raw coal is cut out and air-transported from the tank 12 to the tank A. The sampling positions are, as shown in the figure, the inlet side (post-transport sampling position) and the outlet side (vapor phase side sampling position) of the fine powder separation device 13.
, The particle size distribution of coarse coal obtained by subtracting the value of the corresponding particle size range in the particle size distribution of the sample collected at the gas-phase side sampling position from the value of each particle size range in the particle size distribution of the sample collected after transportation Is indicated as "solid phase side", and the particle size distribution of the sample collected at the gas phase side sampling position is indicated as "gas phase side". The total of "solid phase side" and "gas phase side" is 100% by weight.

【0034】ケース1は、気相側に粒径0.15mm以下の微
粉を同伴させた場合であり、粒径0.07mm以下の微粉はほ
とんど全量が気相側に含まれている。ケース2は微粉分
離条件を変化させて、粒径0.25mm以下の微粉の気相側へ
の同伴量を増加させた場合、ケース3は気相側への微粉
の同伴量を低下させた場合である。
Case 1 is a case where fine powder having a particle size of 0.15 mm or less is entrained in the gas phase side, and almost all fine powder having a particle size of 0.07 mm or less is contained in the gas phase side. In Case 2, the fine powder separation conditions were changed to increase the amount of fine powder with a particle size of 0.25 mm or less entrained in the gas phase, and in Case 3, the amount of fine powder entrained in the gas phase was reduced. is there.

【0035】表5(2) に、上記のように微粉を分離除去
した後の粗粒部分をタンクAからタンクBへ装炭した時
のタンクBからの排ガス中に含まれる微粉炭量(キャリ
ーオーバー量)の調査結果を示す。同表の比較例とは、
原料炭をタンクAに直接入れ、タンクBへ装炭する従来
法に相当する装入法である。
In Table 5 (2), the amount of pulverized coal contained in the exhaust gas from tank B (carrying when the coarse particle portion after separation and removal of fine powder as described above is carbonized from tank A to tank B) The results of the survey of the excess amount are shown. The comparative example in the table is
This is a charging method corresponding to the conventional method in which raw coal is directly charged into tank A and then charged into tank B.

【0036】表5(2) の結果から、微粉を除去すること
により装炭時のキャリーオーバー量が大幅に低下するこ
とがわかる。また、粒径0.25mm以下の微粉の気相側への
回収率を増加させても(ケース2)、キャリーオーバー
量は粒径0.15mm以下の微粉を気相側に同伴させたケース
1の場合とほとんど変わらず、粒径0.07mm以下の微粉の
気相側への回収率を低下させたケース3では、キャリー
オーバー量はケース1に比べ大幅に増加した。このこと
から、粒径0.25mm以下の微粉まで気相側へ回収する必要
はなく、粒径0.15mm以下の微粉を気相側に同伴させるの
が望ましいといえる。
From the results shown in Table 5 (2), it is understood that the carry-over amount at the time of carbonization is significantly reduced by removing the fine powder. In addition, even if the recovery rate of fine powder with a particle size of 0.25 mm or less to the gas phase side is increased (Case 2), the carryover amount is Case 1 in which fine powder with a particle size of 0.15 mm or less is entrained in the gas phase side. In Case 3, where the recovery rate of fine powder with a particle size of 0.07 mm or less to the gas phase side was reduced, the carryover amount increased significantly compared to Case 1. From this, it can be said that it is not necessary to collect fine powder having a particle size of 0.25 mm or less to the gas phase side, and it is desirable to entrain fine powder having a particle size of 0.15 mm or less to the gas phase side.

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】[0039]

【表5(1)】 [Table 5 (1)]

【0040】[0040]

【表5(2)】 [Table 5 (2)]

【0041】[0041]

【実施例2】実施例1と同じ条件で気流輸送して気相側
へ同伴させた微粉(粒度分布を表6に示す)を回収し、
これにバインダーとしてタールを2重量%添加して高速
混練機で粒径 0.1mm以上に造粒塊成化したものをタンク
Aの粗粒部分に混合し、タンクBへ装炭して、装炭時の
キャリーオーバー量を調査した。
Example 2 Fine powder (particle size distribution is shown in Table 6) which was air-transported under the same conditions as in Example 1 and was entrained in the gas phase side was recovered,
To this, 2% by weight of tar as a binder was added and granulated and agglomerated with a high-speed kneader to a particle size of 0.1 mm or more was mixed with the coarse-grained portion of tank A and carbonized in tank B, and then carbonized. The amount of carryover at that time was investigated.

【0042】調査結果を表7に示す。同表の比較例と
は、原料炭をタンクAに直接入れ、タンクBへ装炭する
従来法に該当する場合である。この結果から、分離除去
された微粉を回収し、塊成化した後、粗粒部分と混合し
て装炭することにより、キャリーオーバーさせずに、微
粉を有効に利用できることがわかる。
The survey results are shown in Table 7. The comparative example in the table is a case where the raw material coal is directly put into the tank A and is charged into the tank B, which corresponds to the conventional method. From this result, it is understood that the fine powder separated and removed is collected, agglomerated, and then mixed with the coarse grain portion and carbonized, whereby the fine powder can be effectively used without carrying over.

【0043】[0043]

【表6】 [Table 6]

【0044】[0044]

【表7】 [Table 7]

【0045】[0045]

【発明の効果】乾燥または予熱した石炭をコークス炉へ
搬送、装入するに際し本発明方法を適用すれば、搬送、
装入の際に生じる発塵を防止するとともに、装炭時にお
けるキャリーオーバーを効果的に抑制することができ
る。また、回収される微粉をコークス炉用原料等として
有効に利用することが可能である。
When the method of the present invention is applied when the dried or preheated coal is transferred and charged into the coke oven, the transfer,
It is possible to prevent dust generation during charging and to effectively suppress carryover during charging. Further, it is possible to effectively use the recovered fine powder as a raw material for a coke oven or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の実施に用いる搬送、装入装置の一
例の構成を示す概略図である。
FIG. 1 is a schematic diagram showing a configuration of an example of a carrying and charging device used for carrying out a method of the present invention.

【図2】実施例で用いた気流輸送テスト装置の概略図で
ある。
FIG. 2 is a schematic diagram of an airflow transportation test device used in an example.

【符号の説明】[Explanation of symbols]

1:乾燥機、2:気流搬送用配管、3:貯炭槽、4:気
流搬送用配管、5:コークス炉、6:押出機、7:ガイ
ド車、8:消化台車、9:微粉分離装置、10:サイクロ
ン式貯炭ビン、11:集塵装置、12:切り出しタンク、1
3:微粉分離装置、14:ロータリーフィーダー、a:コ
ークス炉用原料炭(湿炭)、b:排ガス、c:微粉炭。
1: Dryer, 2: Pipe for air flow transfer, 3: Coal storage tank, 4: Pipe for air flow transfer, 5: Coke oven, 6: Extruder, 7: Guide car, 8: Digestion trolley, 9: Fine powder separation device, 10: Cyclone type coal storage bin, 11: Dust collector, 12: Cutting tank, 1
3: Fine powder separating device, 14: Rotary feeder, a: Coking furnace raw coal (wet coal), b: Exhaust gas, c: Fine coal.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】乾燥または予熱した石炭を、コークス炉の
装入目標窯の上部に設置された微粉分離装置まで気流輸
送により搬送し、上記微粉分離装置において、微粉炭を
含む気相と粗粒炭を主とする石炭とに分離し、その粗粒
炭を主とする石炭を装入目標窯に装入することを特徴と
するコークス炉への石炭の搬送、装入方法。
1. Dry or preheated coal is conveyed by air flow to a fine powder separator installed at the upper part of a charging target kiln of a coke oven, and in the fine powder separator, a gas phase containing fine coal and coarse particles are conveyed. A method for transporting and charging coal to a coke oven, which comprises separating the coal into main coal and charging the coarse coal mainly into a charging target kiln.
【請求項2】気相側に同伴させた微粉を回収し、塊成化
した後、粗粒炭を主とする石炭と混合して装入目標窯に
装入することを特徴とする請求項1に記載のコークス炉
への石炭の搬送、装入方法。
2. The fine powder entrained on the gas phase side is recovered and agglomerated, and then the coarse coal is mixed with the main coal and charged into a charging target kiln. The method for transporting and charging coal to the coke oven according to 1.
JP4285644A 1992-10-23 1992-10-23 How to transfer and load coal to the coke oven Expired - Fee Related JP2565064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4285644A JP2565064B2 (en) 1992-10-23 1992-10-23 How to transfer and load coal to the coke oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4285644A JP2565064B2 (en) 1992-10-23 1992-10-23 How to transfer and load coal to the coke oven

Publications (2)

Publication Number Publication Date
JPH06136362A JPH06136362A (en) 1994-05-17
JP2565064B2 true JP2565064B2 (en) 1996-12-18

Family

ID=17694205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4285644A Expired - Fee Related JP2565064B2 (en) 1992-10-23 1992-10-23 How to transfer and load coal to the coke oven

Country Status (1)

Country Link
JP (1) JP2565064B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2772684C (en) 2009-09-04 2016-03-22 Fujifilm Corporation Aqueous pigment dispersion and aqueous ink for inkjet recording
JP5905463B2 (en) * 2011-07-19 2016-04-20 三菱日立パワーシステムズ株式会社 Drying conveyor device and thermal power generation system including the same
CN108659868B (en) * 2018-05-31 2020-10-02 武汉钢铁有限公司 Coking coal charging process based on coking wastewater emission reduction

Also Published As

Publication number Publication date
JPH06136362A (en) 1994-05-17

Similar Documents

Publication Publication Date Title
US8425731B2 (en) Pyrolysis process for decomposing rubber products
KR100584745B1 (en) An apparatus and method for recycling dust and sludge containing iron ironmaking process using coal and fine ore
JP2565064B2 (en) How to transfer and load coal to the coke oven
JP2019019346A (en) Recovery method of noble metal from incineration ash
KR100435439B1 (en) apparatus for recycling self-generated sludge in non-coking coal and fine ore based ironmaking
JP5320832B2 (en) Vertical furnace operation method and furnace powdering prevention equipment
JP5682827B2 (en) Coke coking coal conveying device and method for stopping the same
JP4101896B2 (en) Coke coking coal pretreatment method
JP2002241848A (en) Method for recycling dust developed in converter
JPS6341959B2 (en)
JPH0565487A (en) Method for charging raw material coal into coke oven
JPH0133522B2 (en)
JP2980597B2 (en) Pretreatment method for coke coal
JP3395604B2 (en) Method for charging dry coal into coke oven
JP4323570B2 (en) Process for recirculating fine solids discharged from a reaction vessel by carrier gas
JP3477048B2 (en) Pretreatment method and apparatus for coal for coke oven
JPH08157914A (en) Blowing of charcoal powder into blast furnace
US4337084A (en) System for recycling char in iron oxide reducing kilns
KR101197695B1 (en) Method for dry cooling of hot compacted iron
US4378241A (en) Method for achieving low sulfur levels in the DRI product from iron oxide reducing kilns
JPS6360238A (en) Method for melting metal chip
JPH06287561A (en) Method for conveying and charging coal into coke oven
AU2006259214A8 (en) Method for making carbon powder and installation therefor
JPH07268351A (en) Method for preparing coal for coke
JPH09272872A (en) Preliminary treatment of raw coal for coke

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees