JP2564875B2 - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor

Info

Publication number
JP2564875B2
JP2564875B2 JP63044834A JP4483488A JP2564875B2 JP 2564875 B2 JP2564875 B2 JP 2564875B2 JP 63044834 A JP63044834 A JP 63044834A JP 4483488 A JP4483488 A JP 4483488A JP 2564875 B2 JP2564875 B2 JP 2564875B2
Authority
JP
Japan
Prior art keywords
charge
generation layer
ctl
charge generation
charge transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63044834A
Other languages
Japanese (ja)
Other versions
JPH01219752A (en
Inventor
圭一 遠藤
進 金子
康夫 勝谷
晃 景山
孝幸 秋元
繁雄 立木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP63044834A priority Critical patent/JP2564875B2/en
Publication of JPH01219752A publication Critical patent/JPH01219752A/en
Application granted granted Critical
Publication of JP2564875B2 publication Critical patent/JP2564875B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/047Photoconductive layers characterised by having two or more layers or characterised by their composite structure characterised by the charge-generation layers or charge transport layers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,電子写真感光体に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electrophotographic photoreceptor.

(従来の技術) 従来,光導電性物質を感光材料として利用する電子写
真材料においては,セレン,酸化亜鉛,酸化チタン,酸
化カドミウム等の無機系光導電性物質が主に用いられて
きた。しかし,これらは,一般に毒性が強いものが多
く,廃棄する方法にも問題がある。
(Prior Art) Conventionally, an inorganic photoconductive substance such as selenium, zinc oxide, titanium oxide, or cadmium oxide has been mainly used in an electrophotographic material using a photoconductive substance as a photosensitive material. However, many of them are generally highly toxic, and there is a problem in the method of disposal.

一方,有機光導電性化合物を使用する感光材料は,無
機系光導電性物質を使用する場合に比べて一般に,毒性
が弱く,更に,透明性,可撓性,軽量性,表面平滑性,
価格等の点において有利であることから,最近広く研究
されてきている。その中でも,電荷の発生機能(電荷発
生層)と電荷の輸送機能(電荷輸送層)を分離した機能
分離型電子写真感光体は,従来,有機光導電性化合物を
使用した感光体の大きな欠点であつた感度を大幅に向上
させることができるため,近年急速な進歩を遂げつつあ
る。
On the other hand, a photosensitive material using an organic photoconductive compound is generally less toxic than a material using an inorganic photoconductive substance, and is further transparent, flexible, lightweight, surface smooth,
Since it is advantageous in terms of price, it has been widely researched recently. Among them, the function-separated type electrophotographic photoconductor in which the charge generation function (charge generation layer) and the charge transport function (charge transport layer) are separated is a major drawback of the photoconductors using the organic photoconductive compound. Since the sensitivity can be greatly improved, rapid progress has been made in recent years.

感光体の感度を向上させる方法としては,「化学と工
業」,34号,7巻,489〜492頁(1981)やIEEE IA−17,No.
4,382〜386頁(1981)に記載されているように,負帯電
型感光体の場合には,電荷発生層のイオン化ポテンシヤ
ル(IpCGL)と電荷輸送層のイオン化ポテンシヤル(Ip
CTL)の関係がIpCGL>IpCTLの場合に感光体としての機
能を発現し,電荷輸送材料のイオン化ポテンシヤル(I
p′CTL)が小さいものほど感度が良いことが記載されて
いる。
As a method for improving the sensitivity of the photoreceptor, “Chemicals and Industry”, No. 34, Volume 7, pages 489 to 492 (1981) and IEEE IA-17, No.
As described in 4,382 to 386 (1981), in the case of a negative charging type photoreceptor, the ionization potential (Ip CGL ) of the charge generation layer and the ionization potential (Ip CGL ) of the charge transport layer are described.
When the relation of CTL ) is Ip CGL > Ip CTL , the function as a photoreceptor is expressed, and the ionization potential (I
It is described that the smaller the p'CTL ), the higher the sensitivity.

また,特開昭60−207142号公報には,電荷輸送材料の
イオン化ポテンシヤルをポーラログラフイー測定により
求め,得られたイオン化ポテンシヤル(Ip)から,特定
のイオン化ポテンシヤルを持つ電荷輸送材料を用いるこ
とにより感度が向上することが記載されている。
Further, in Japanese Patent Application Laid-Open No. 60-207142, the ionization potential of the charge transport material is determined by polarographic measurement, and from the obtained ionization potential (Ip), the sensitivity can be improved by using a charge transport material having a specific ionization potential. Is described as being improved.

前記したいずれの文献においてもイオン化ポテンシヤ
ル(Ip′CTL)は,電荷輸送材を適当な溶媒中に溶解さ
せて測定したものであり,電荷輸送材を結着剤樹脂中に
含有させた状態−結着剤樹脂マトリクス中に電荷輸送材
がある状態−すなわちマトリクスとの相互作用下におけ
る電荷輸送剤のイオン化ポテンシヤルを測定してはいな
い。また電荷を発生する有機顔料のイオン化ポテンシヤ
ルを実際には測定されていない。
The ionization potential (Ip ′ CTL ) in each of the above-mentioned references was measured by dissolving the charge transport material in an appropriate solvent, and the state in which the charge transport material was contained in the binder resin The ionization potential of the charge transport agent in the presence of the charge transport material in the binder resin matrix-ie, interaction with the matrix, has not been measured. Also, the ionization potential of organic pigments that generate charge has not been actually measured.

(発明が解決しようとする課題) しかしながら,有機光導電性物質を感光材料として利
用する電子写真感光体は,一般に電荷を発生する有機顔
料(アゾ系顔料,フタロシアニン系顔料,インジゴ系顔
料,ペリレン系顔料等)及び電荷輸送性物質(オキサゾ
ール系化合物,ヒドラゾン系化合物,ブタジエン系化合
物,スチリル系化合物,カルバゾール系化合物)を,結
着剤樹脂溶液(ポリエステル樹脂,ポリビニルブチラー
ル樹脂,アクリル樹脂,シリコーン樹脂等の溶液)に分
散或いは溶解し,これらを導電性基体上に塗布し,乾燥
することによつて形成されるものであり,すなわち結着
剤マトリクス中において主に結着剤樹脂との相互作用下
(他に添加剤等による若干の相互作用)に電荷を発生す
る有機顔料及び電荷輸送剤のイオン化ポテンシヤルが存
在するから,感度を向上させるためには,電子写真感光
体が実際に使用される態様における電荷発生層及び電荷
輸送層そのもののイオン化ポテンシヤルを明らかにし,
更に,その最適な組み合わせを見出すべきであるが,前
記文献にはこれらについてはなんら示唆するところがな
い。
(Problems to be Solved by the Invention) However, an electrophotographic photoreceptor using an organic photoconductive substance as a photosensitive material is generally an organic pigment (azo pigment, phthalocyanine pigment, indigo pigment, perylene pigment) that generates an electric charge. Pigments) and charge transporting substances (oxazole compounds, hydrazone compounds, butadiene compounds, styryl compounds, carbazole compounds), binder resin solutions (polyester resins, polyvinyl butyral resins, acrylic resins, silicone resins, etc.) Solution), or by coating and drying these on a conductive substrate, that is, mainly in the binder matrix under the interaction with the binder resin. Ionization of organic pigments and charge transport agents that generate electric charges (some interactions due to other additives) Therefore, in order to improve the sensitivity, the ionization potential of the charge generation layer and the charge transport layer itself in the mode in which the electrophotographic photoreceptor is actually used is clarified in order to improve the sensitivity.
Furthermore, the optimum combination should be found, but there is no suggestion of these in the literature.

本発明は,電荷発生層及び電荷輸送層のイオン化ポテ
ンシヤルの最適な組み合わせを有する優れた電子写真感
光体を提供することを目的とする。
An object of the present invention is to provide an excellent electrophotographic photoreceptor having an optimum combination of ionization potentials of a charge generation layer and a charge transport layer.

(課題を解決するための手段) 本発明者らは,導電性基体上に,電荷を発生する有機
顔料を含む電荷発生層及び電荷輸送性物質を含む電荷輸
送層を有し,前記電荷発生層のイオン化ポテンシヤルIp
CTLと電荷輸送層のイオン化ポテンシヤルIpCGLの差(Ip
CTL−IpCGL)を特定の範囲とすることにより優れた特性
の電子写真感光体が得られることを見い出し本発明をな
すに至つた。
(Means for Solving the Problems) The present inventors have a charge generation layer containing a charge-generating organic pigment and a charge transport layer containing a charge-transporting substance on a conductive substrate. Ionization Potential of Ip
Difference between ionization potential Ip CGL of CTL and charge transport layer (Ip
It was found that an electrophotographic photoreceptor having excellent characteristics can be obtained by setting CTL- Ip CGL ) within a specific range, and the present invention has been completed.

即ち,本発明は,導電性基体上に,電荷を発生する有
機顔料として無金属フタロシアニンを含む電荷発生層及
び電荷輸送性物質を含む電荷輸送層を有し,前記電荷輸
送層のイオン化ポテンシヤルIpCTLと前記電荷発生層の
イオン化ポテンシヤルIpCGLの差(IpCTL−IpCGL)が+
0.14〜0.26eVである電子写真感光体に関する。
That is, the present invention has a charge generation layer containing a metal-free phthalocyanine as an organic pigment for generating a charge and a charge transport layer containing a charge transport material on a conductive substrate, and the ionization potential Ip CTL of the charge transport layer is provided. And the difference in ionization potential Ip CGL of the charge generation layer (Ip CTL −Ip CGL ) is +
The present invention relates to an electrophotographic photosensitive member which is 0.14 to 0.26 eV.

本発明におけるイオン化ポテンシヤルは下記の方法で
測定することができる。
The ionization potential in the present invention can be measured by the following method.

導電性基体上に,電荷発生層あるいは電荷輸送層を形
成した後,これらの試料に紫外線ランプから放出された
光をモノクロメータにより200〜360nmの任意の波長に分
光し,試料表面に照射する。200〜360nmの光はE=hν
=h(c/λ)の式を用いてエネルギー換算すると,6.2〜
3.4eVになる。この光を励起エネルギーの低い方から高
い方に向つてスイープしていくと,あるエネルギーで光
電効果による電子放出が始まる。このエネルギーを光電
的イオン化ポテンシヤルと呼び,本発明ではこの値をイ
オン化ポテンシヤルとした。
After forming the charge generation layer or the charge transport layer on the conductive substrate, the light emitted from the ultraviolet lamp is dispersed into these samples by a monochromator to an arbitrary wavelength of 200 to 360 nm, and the sample surface is irradiated with the light. Light of 200-360nm is E = hν
== h (c / λ), the energy conversion is 6.2 ~
It will be 3.4 eV. When this light is swept from the lower excitation energy toward the higher excitation energy, electron emission due to the photoelectric effect begins at a certain energy. This energy is called a photoelectrical ionization potential, and this value is referred to as an ionization potential in the present invention.

このような測定は,例えば表面分析装置(例えば商品
名AC−1型,理研計器(株))を用いて好適に行うこと
ができる。(参照,「電子材料」11月号,125〜128頁(1
985))。この方法は,従来のポーラログラフイによる
測定に比べて層全体としてのイオン化ポテンシヤルを直
接測定できるという特長がある。
Such a measurement can be suitably performed using, for example, a surface analyzer (for example, AC-1 type, trade name, manufactured by Riken Keiki Co., Ltd.). (Reference, "Electronic Materials" November issue, pages 125-128 (1
985)). This method has the advantage of being able to directly measure the ionization potential of the entire layer, as compared to conventional polarographic measurements.

また,この方法によると電荷輸送性物質や電荷を発生
する有機顔料単独の場合にはポーラログラフイーにより
求めた場合と同様に電荷を発生する有機顔料のイオン化
ポテンシヤルの方が電荷輸送性物質のイオン化ポテンシ
ヤルよりも大きいが,結合剤を加えた実際の層の状態で
比較するとイオン化ポテンシヤルは電荷輸送層の方が一
般に大きい値が得られる。この理由の詳細は定かでない
が,結合剤の種類や含有率によつても層全体としてのイ
オン化ポテンシヤルは変化することからそれぞれの層の
実際のイオン化ポテンシヤルは,電荷を発生する有機顔
料や電荷輸送性物質の単独のイオン化ポテンシヤルでは
なくて,結合剤も複雑に関与した値になつていることが
分かる。いずれにしても層としてのイオン化ポテンシヤ
ルを比較すると電荷輸送層の方が電荷発生層のそれより
大きく,またその差が0.14〜0.26eVの値になるような電
荷輸送層と電荷発生層を組み合わせると電子写真特性の
感度が良好になることを見い出し,本発明に到達した。
According to this method, in the case of a charge transporting substance or an organic pigment that generates a charge alone, the ionization potential of the organic pigment that generates a charge is the same as that obtained by polarography. However, the ion transport potential of the charge transport layer is generally larger than that of the actual layer containing the binder. Although the details of this reason are not clear, the actual ionization potential of each layer varies depending on the type and content of the binder, and therefore the actual ionization potential of each layer is different from the organic pigments that generate charge and charge transport. It can be seen that not only the ionization potential of the volatile substance alone, but also the binding agent has a complexly involved value. In any case, comparing the ionization potentials as layers, the charge transport layer is larger than that of the charge generation layer, and if the difference is 0.14 to 0.26 eV, the charge transport layer and charge generation layer are combined. The inventors have found that the sensitivity of electrophotographic characteristics is good and have reached the present invention.

上記のような組み合わせとなる電荷輸送層と電荷発生
層を得るためには電荷を発生する有機顔料,電荷輸送剤
及び結合剤の種類と使用量と適宜選択することでなしう
ることができる。
In order to obtain the charge transport layer and the charge generation layer which are combined as described above, it is possible to appropriately select the type and the amount of the organic pigment, the charge transport agent and the binder which generate the charge.

次に,本発明になる電子写真感光体について詳述す
る。
Next, the electrophotographic photosensitive member according to the present invention will be described in detail.

まず,本発明において,導電性基体とは,導電処理し
た紙又はプラスチツクフイルム,アルミニウムのような
金属箔を積層したプラスチツクフイルム,金属板,金属
ドラム等の導電体である。
First, in the present invention, the conductive substrate is a conductor such as paper or plastic film that has been subjected to conductive processing, a plastic film in which a metal foil such as aluminum is laminated, a metal plate, a metal drum, or the like.

本発明において,電荷発生層には電荷を発生する有機
顔料が含まれる。電荷を発生する有機顔料としては,ア
ゾキシベンゼン系,ジスアゾ系,トリスアゾ系,ベンズ
イミダゾール系,多環式キノン系,インジゴイド系,キ
ナクリドン系,ペリレン系,メチン系及びα型,β型,
γ型,δ型,ε型,X型等の各種の結晶構造を有する無金
属タイプや金属タイプのフタロシアニン系等,電荷を発
生することが既に知られている顔料を使用できる。これ
らの顔料は,例えは特開昭47−37543号,特開昭47−375
44号,特開昭47−18543号,特開昭47−18544号,特開昭
48−43942号,特開昭48−70538号,特開昭49−1231号,
特開昭49−105536号,特開昭50−75214号,特開昭53−4
4028号,特開昭54−17732号公報等に開示されている。
In the present invention, the charge generation layer contains an organic pigment that generates a charge. Organic pigments that generate electric charge include azoxybenzene, disazo, trisazo, benzimidazole, polycyclic quinone, indigoid, quinacridone, perylene, methine and α type, β type,
Pigments that are already known to generate an electric charge, such as metal-free or metal-type phthalocyanine-based pigments having various crystal structures such as γ-type, δ-type, ε-type and X-type, can be used. These pigments are disclosed, for example, in JP-A-47-37543 and JP-A-47-375.
44, JP-A-47-18543, JP-A-47-18544, and JP-A-47-18544
48-43942, JP-A-48-70538, JP-A-49-1231,
JP-A-49-105536, JP-A-50-75214, JP-A-53-4
No. 4028, JP-A No. 54-17732, and the like.

特に,長波長(800nm付近)にまで感度を有する点で
特開昭58−182640号公報及びヨーロッパ特許出願公開第
92255号公報に記載されているγ,γ′,η及びη′型
無金属フタロシアニンが好適である。このようなものの
他,光照射により電荷担体を発生する有機顔料は,いず
れも使用することができる。ただし、本発明において
は、有機顔料として、無金属フタロシアニンを必ず用い
る。
In particular, Japanese Patent Laid-Open No. 58-182640 and European Patent Application Publication No.
The γ, γ ′, η and η ′ type metal-free phthalocyanines described in 92255 are suitable. In addition to these, any organic pigment that generates a charge carrier by light irradiation can be used. However, in the present invention, metal-free phthalocyanine is always used as the organic pigment.

本発明において,電荷発生層に含まれる電荷を発生す
る有機顔料は,2種以上を混合して用いてもよい。
In the present invention, two or more kinds of charge-generating organic pigments contained in the charge generation layer may be mixed and used.

電荷発生層中の電荷を発生する有機顔料濃度は,低す
ぎると,感度が低下したり,残留電位が高くなる傾向が
あり,30〜100重量%であることが好ましい。
If the concentration of the organic pigment generating charges in the charge generation layer is too low, the sensitivity tends to decrease and the residual potential tends to increase, and it is preferably 30 to 100% by weight.

また,電荷発生層に,電子写真感光体に通常使用され
る結合剤及び/又は可塑剤,流動性付与剤,ピンホール
抑制剤等の添加剤を含有させることができる。結合剤と
しては,シリコーン樹脂,ポリアミド樹脂,ポリウレタ
ン樹脂,ポリエステル樹脂,エポキシ樹脂,ポリカーボ
ネート樹脂,ポリスチレン樹脂,ポリメタクリル酸メチ
ル樹脂,ポリアクリルアミド樹脂,ポリブタジエン樹
脂,ポリイソプレン樹脂,メラミン樹脂,エチルセルロ
ース樹脂,ニトロセルロール樹脂,ポリクロロプレン樹
脂,酢酸ビニル樹脂,ポリアクリロニトリル樹脂,尿素
樹脂等が挙げられる。また,熱及び/又は光硬化性樹脂
も使用できる。いずれにしても,電気絶縁性で,通常の
状態で被膜を形成しうる樹脂であれば,特に制限はな
い。電荷発生層中に結合剤は,前記電荷を発生する有機
顔料100重量部に対して300重量部以下の量で使用する。
300重量部を超えると,電子写真特性が低下する。
Further, the charge generation layer may contain additives such as a binder and / or a plasticizer, a fluidity imparting agent, and a pinhole inhibitor, which are commonly used in electrophotographic photoreceptors. As the binder, silicone resin, polyamide resin, polyurethane resin, polyester resin, epoxy resin, polycarbonate resin, polystyrene resin, polymethylmethacrylate resin, polyacrylamide resin, polybutadiene resin, polyisoprene resin, melamine resin, ethylcellulose resin, nitro Cellulose resin, polychloroprene resin, vinyl acetate resin, polyacrylonitrile resin, urea resin and the like can be mentioned. Also, heat and / or light curable resins can be used. In any case, there is no particular limitation as long as it is an electrically insulating resin that can form a film in a normal state. The binder is used in the charge generation layer in an amount of 300 parts by weight or less based on 100 parts by weight of the charge-generating organic pigment.
If it exceeds 300 parts by weight, the electrophotographic properties will deteriorate.

可塑剤としては,ハロゲン化パラフイン,ジメチルナ
フタレン,ジブチルフタレート等が挙げられる。流動性
付与剤としては,モダフロー(モンサントケミカル社
製),アクロナール4F(バスフ社製)等が挙げられ,ピ
ンホール抑制剤としては,ベンゾイン,ジメチルフタレ
ート等が挙げられる。これらの添加物は,各々,前記電
荷を発生する有機顔料に対して5重量%以下で使用する
のが好ましい。
Examples of the plasticizer include halogenated paraffin, dimethylnaphthalene, dibutyl phthalate and the like. Examples of the fluidity-imparting agent include Modaflow (manufactured by Monsanto Chemical Co., Ltd.) and Acronal 4F (manufactured by Basuf Co.). Examples of the pinhole inhibitor include benzoin and dimethyl phthalate. Each of these additives is preferably used in an amount of 5% by weight or less based on the organic pigment generating the electric charge.

電荷発生層を形成する方法として,前記の有機顔料の
みを用いる場合には,真空蒸着で行うことができ,電荷
を発生する有機顔料,結合剤及びその他の添加剤をアセ
トン,メチルエチルケトン,テトラヒドロフラン,トル
エン,キシレン,メタノール,塩化メチレン,イソプロ
ピルアルコール,イソブチルアルコール,n−ブチルアル
コール,トリクロロエタン等の溶剤に均一に溶解又は分
散させた後,この溶液を導電性基体上に浸漬塗工法,ス
プレー塗工法,ロール塗工法,アプリケータ塗工法,ワ
イヤバー塗工法等の塗工法を用いて塗工し,乾燥して形
成することもできる。
As a method for forming the charge generation layer, when only the above-mentioned organic pigment is used, it can be carried out by vacuum deposition, and the charge-generating organic pigment, the binder and other additives are added to acetone, methyl ethyl ketone, tetrahydrofuran, toluene. , Xylene, methanol, methylene chloride, isopropyl alcohol, isobutyl alcohol, n-butyl alcohol, trichloroethane, etc. after being uniformly dissolved or dispersed, this solution is applied onto the conductive substrate by dip coating, spray coating, roll coating. It can also be formed by coating using a coating method such as a coating method, an applicator coating method, or a wire bar coating method, and drying.

電荷発生層の厚さは,0.001〜10μmであるのが好まし
く,特に0.01〜5μmであるのが好ましい。0.001μm
未満では,電荷発生層を均一に形成するのが困難にな
り,10μmを超えると,電子写真特性が低下する傾向が
ある。
The thickness of the charge generation layer is preferably 0.001 to 10 μm, and particularly preferably 0.01 to 5 μm. 0.001 μm
If it is less than 10 μm, it becomes difficult to uniformly form the charge generation layer, and if it exceeds 10 μm, the electrophotographic properties tend to deteriorate.

電荷輸送層には,電荷輸送性物質が含まれる。該電荷
輸送性物質としては,ポリ−N−ビニルカルバゾール,
ポリビニルピレン,ポリビニルピラゾリン等の高分子化
合物,カルバゾール,3−フエニルカルバゾール,2−フエ
ニルインドール,オキサジアゾール,1−フエニル−3−
(4−ジエチルアミノスチリル)−5−(4−ジエチル
アミノフエニル)ピラゾリン,ヒドラゾン,ブタジエ
ン,エナミン,2−フエニル−4−(4−ジエチルアミノ
フエニル)−5−フエニルオキサゾール,トリフエニル
アミン,イミダゾール等の低分子化合物及びこれらの誘
導体等がある。
The charge transport layer contains a charge transport material. Examples of the charge transport material include poly-N-vinylcarbazole,
Polymer compounds such as polyvinylpyrene and polyvinylpyrazoline, carbazole, 3-phenylcarbazole, 2-phenylindole, oxadiazole, 1-phenyl-3-
(4-Diethylaminostyryl) -5- (4-diethylaminophenyl) pyrazolin, hydrazone, butadiene, enamine, 2-phenyl-4- (4-diethylaminophenyl) -5-phenyloxazole, triphenylamine, imidazole, etc. Low molecular weight compounds and derivatives thereof.

電荷輸送層にも電荷発生層に用いるのと同様な結合剤
及び可塑剤,流動性付与剤,ピンホール抑制剤等の添加
剤を必要に応じて含有させることができる。結合剤は,
電荷輸送性物質100重量部に対し,電子写真特性が低下
しないように400重量部以下が好ましく,低分子電荷輸
送性物質のみを使用するときは,皮膜特性の関係上,該
物質100重量部に対して結合剤を50重量部以上使用する
のが好ましい。その他の添加剤は,それぞれ電荷輸送性
物質に対して5重量%以下の量で使用するのが好まし
い。
If necessary, the charge transport layer may contain the same binders and additives as those used in the charge generation layer, such as a plasticizer, a fluidity imparting agent and a pinhole inhibitor. The binder is
To 100 parts by weight of the charge transporting substance, 400 parts by weight or less is preferable so that the electrophotographic properties are not deteriorated. On the other hand, it is preferable to use 50 parts by weight or more of the binder. Each of the other additives is preferably used in an amount of 5% by weight or less based on the charge transporting substance.

電荷輸送層の厚さは,5〜50μmであるのが好ましく,
特に8〜20μmであるのが好ましい。また,電荷輸送層
の厚さが5μm未満であると,帯電性が劣る傾向があ
り,50μmを超えると,感度が低下する傾向がある。
The thickness of the charge transport layer is preferably 5 to 50 μm,
It is particularly preferably 8 to 20 μm. Further, if the thickness of the charge transport layer is less than 5 μm, the charging property tends to be poor, and if it exceeds 50 μm, the sensitivity tends to decrease.

電荷輸送層を形成するには,電荷輸送層を構成する電
荷輸送性物質等を前記した溶剤に均一に溶解又は分散さ
せて作成した塗布液を電荷発生層の上に塗布し,乾燥す
ることにより行うことができる。
To form the charge transport layer, a coating solution prepared by uniformly dissolving or dispersing the charge transporting substance or the like constituting the charge transport layer in the above-mentioned solvent is applied on the charge generating layer and dried. It can be carried out.

本発明に係る電子写真感光体は,その表面に従来公知
の保護層を有していてもよい。本発明に係る電子写真感
光体は,更に,導電性基体と電荷発生層の間に下引き
層,接着層及び/又はバリヤ層を有していてもよい。
The electrophotographic photoreceptor according to the present invention may have a conventionally known protective layer on its surface. The electrophotographic photosensitive member according to the present invention may further have an undercoat layer, an adhesive layer and / or a barrier layer between the conductive substrate and the charge generation layer.

(実施例) 次に,実施例により本発明を詳述するが,本発明はこ
れに限定されるものではない。
(Examples) Next, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

以下の例中に用いる各材料を次に列記する。括弧内に
は,略号を示す。
The materials used in the following examples are listed below. Abbreviations are shown in parentheses.

(1) 電荷を発生する有機顔料 γ型無金属フタロシアニン(γ−H2Pc) (2) 電荷輸送性物質 (3) 結合剤 (A) 電荷発生層用結合剤 シリコーンワニス:商品名KR214(KR214)(固形分70重
量%)〔信越化学工業(株)〕 (B) 電荷輸送層用結合剤 ポリカーボネート樹脂:商品名ユーピロンS−3000(UP
3000)(固型分100重量%)〔三菱ガス化学(株)〕 実施例1 γ−H2Pc0.5g,KR214 0.5g及びテトラヒドロフラン70
gをボールミル(日本化学陶業製3寸ポツトミル)を用
いて8時間混練した。得られた顔料分散液をアプリケー
タにより導電性基体であるアルミニウム板(厚さ0.1m
m)上に塗工し,100℃で30分間乾燥して膜厚0.5μmの電
荷発生層を形成した。
(1) Organic pigment that generates electric charge γ-type metal-free phthalocyanine (γ-H 2 Pc) (2) Charge-transporting substance (3) Binder (A) Binder for charge generation layer Silicone varnish: trade name KR214 (KR214) (70 wt% solids) [Shin-Etsu Chemical Co., Ltd.] (B) Binder for charge transport layer Polycarbonate resin: Product name Iupilon S-3000 (UP
3000) (solid content 100% by weight) [Mitsubishi Gas Chemical Co., Inc.] Example 1 γ-H 2 Pc 0.5 g, KR214 0.5 g and tetrahydrofuran 70
g was kneaded using a ball mill (3 inch pot mill manufactured by Nippon Kagaku Sangyo) for 8 hours. An aluminum plate (thickness 0.1 m
m) and then dried at 100 ° C. for 30 minutes to form a charge generation layer having a thickness of 0.5 μm.

次に,この電荷発生層のイオン化ポテンシヤルIpCGL
を表面分析装置(商品名AC−1型 理研計器(株))を
用いて求めたところ,IpCGLは,5.20eVであつた。
Next, the ionization potential Ip CGL of this charge generation layer
Ip CGL was 5.20 eV when measured using a surface analyzer (trade name AC-1 type Riken Keiki Co., Ltd.).

次に,BUT6gとUP3000 14gを1,1,2−トリクロロエタン
と塩化メチレンとの1:1の混合溶剤80g中で混合し,完全
に溶解させた。得られた溶液を前記の電荷発生層上にア
プリケータにより塗工し,120℃で30分乾燥して15μmの
電荷輸送層を形成した。
Next, 6 g of BUT and 14 g of UP3000 were mixed in 80 g of a 1: 1 mixed solvent of 1,1,2-trichloroethane and methylene chloride and completely dissolved. The resulting solution was applied onto the charge generation layer with an applicator and dried at 120 ° C. for 30 minutes to form a 15 μm charge transport layer.

上記の電荷輸送層の形成に用いた溶液をアルミニウム
板(厚さ0.1mm)上にアプリケータにより塗工し,120℃
で30分乾燥して15μmの電荷輸送層を形成した。この電
荷輸送層のイオン化ポテンシヤルIpCTLを前記と同じ表
面分析装置を用いて求めたところ,IpCTLは,5.40eVであ
つた。
The solution used to form the charge transport layer above was coated on an aluminum plate (thickness 0.1 mm) with an applicator and the temperature was 120 ° C.
And dried for 30 minutes to form a 15 μm charge transport layer. The ionization potential Ip CTL of this charge transport layer was determined by using the same surface analyzer as above, and the Ip CTL was 5.40 eV.

従つてIpCTL−IpCGL=5.40−5.20=0.20eVであつた。Atsuta in accordance connexion Ip CTL -Ip CGL = 5.40-5.20 = 0.20eV .

実施例2 実施例1と同様にしてアルミニウム板上にIpCGL5.20e
Vの電荷発生層を形成した。
Example 2 Ip CGL 5.20e was formed on an aluminum plate in the same manner as in Example 1.
A V charge generation layer was formed.

次に,ENM5g及びUP3000 15gを用いた以外は,実施例
1と同様にしてIpCTL5.36eVの電荷輸送層を前記の電荷
発生層上に形成した。
Next, a charge transport layer of Ip CTL 5.36 eV was formed on the above charge generation layer in the same manner as in Example 1 except that 5 g of ENM and 15 g of UP3000 were used.

この電子写真感光体において,IpCTL−IpCGLは5.36−
5.20=0.16eVであつた。
In this electrophotographic photosensitive member, Ip CTL −Ip CGL is 5.36−
It was 5.20 = 0.16 eV.

実施例3 実施例1と同様にしてアルミニウム板上にIpCGL5.20e
Vの電荷発生層を形成した。
Example 3 Ip CGL 5.20e was formed on an aluminum plate in the same manner as in Example 1.
A V charge generation layer was formed.

次に,BUT4g,OXZ−1 2g及びUP3000 14gを用いた以
外は,実施例1と同様にしてIpCTL5.42eVの電荷輸送層
を前記の電荷発生層上に形成した。
Next, a charge transport layer of Ip CTL 5.42 eV was formed on the above charge generation layer in the same manner as in Example 1 except that BUT 4 g, OXZ-12 g and UP3000 14 g were used.

この電子写真感光体において,IpCTL−IpCGLは5.42−
5.20=0.22eVであつた。
In this electrophotographic photoreceptor, Ip CTL −Ip CGL is 5.42−
It was 5.20 = 0.22 eV.

実施例4 実施例1と同様にしてアルミニウム板上にIpCGL5.20e
Vの電荷発生層を形成した。
Example 4 Ip CGL 5.20e was formed on an aluminum plate in the same manner as in Example 1.
A V charge generation layer was formed.

次に,BUT4g,HDZ−2 2g及びUP3000 14gを用いた以
外は,実施例1と同様にしてIpCTL5.46eVの電荷輸送層
を前記の電荷発生層上に形成した。
Next, a charge transport layer of Ip CTL 5.46 eV was formed on the charge generation layer in the same manner as in Example 1 except that BUT 4 g, HDZ-22 g and UP3000 14 g were used.

この電子写真感光体において,IpCTL−IpCGLは5.46−
5.20=0.26eVであつた。
In this electrophotographic photosensitive member, Ip CTL −Ip CGL is 5.46−
It was 5.20 = 0.26 eV.

実施例5 実施例1と同様にしてアルミニウム板上にIpCGL5.20e
Vの電荷発生層を形成した。
Example 5 Ip CGL 5.20e was formed on an aluminum plate in the same manner as in Example 1.
A V charge generation layer was formed.

次に,BUT6g,HDZ−1 2g及びUP3000 12gを用いた以
外は,実施例1と同様にしてIpCTL5.43eVの電荷輸送層
を前記の電荷発生層上に形成した。
Next, a charge transport layer of Ip CTL 5.43 eV was formed on the charge generation layer in the same manner as in Example 1 except that BUT 6 g, HDZ-12 g and UP3000 12 g were used.

この電子写真感光体において,IpCTL−IpCGLは5.43−
5.20=0.23eVであつた。
In this electrophotographic photoreceptor, Ip CTL −Ip CGL is 5.43−
It was 5.20 = 0.23 eV.

比較例1 実施例1と全く同じ導電性基体(アルミニウム板)上
に実施例1と同じIpCGL5.20eVの電荷発生層を形成し
た。
Comparative Example 1 The same charge generation layer of Ip CGL 5.20 eV as in Example 1 was formed on the same conductive substrate (aluminum plate) as in Example 1.

次に,HDZ−1 8gとUP3000 12gを1,1,2−トリクロロ
エタンと塩化メチレンとの1:1の混合溶剤80g中で混合
し,完全に溶解させた。得られた溶液を前記の電荷発生
層上にアプリケータにより塗工し,100℃で30分乾燥して
15μmの電荷輸送層を形成した。
Next, 8 g of HDZ-1 and 12 g of UP3000 were mixed in 80 g of a 1: 1 mixed solvent of 1,1,2-trichloroethane and methylene chloride and completely dissolved. The obtained solution was applied on the charge generation layer with an applicator and dried at 100 ° C for 30 minutes.
A 15 μm charge transport layer was formed.

上記の溶液をアルミニウム板(厚さ0.1mm)上にアプ
リケータにより塗工し,100℃で30分乾燥して15μmの電
荷輸送層を形成した。この電荷輸送層のイオン化ポテン
シヤルIpCTLを表面分析装置を用いて求めたところ,Ip
CTLは,5.25eVであつた。
The above solution was applied on an aluminum plate (thickness 0.1 mm) with an applicator and dried at 100 ° C. for 30 minutes to form a 15 μm charge transport layer. The ionization potential Ip CTL of this charge transport layer was determined using a surface analyzer.
The CTL was 5.25 eV.

従つて,IpCTL−IpCGL=5.25−5.20=0.05eVであつ
た。
Accordance connexion, Atsuta in Ip CTL -Ip CGL = 5.25-5.20 = 0.05eV .

比較例2 実施例1と全く同じ導電性基体上に全く同じ電荷発生
層を形成し,更に,OXZ−2 8g及びUP3000 12gを用い
た以外は,実施例1と同様にしてIpCTL5.24eVの電荷輸
送層を前記の電荷発生層上に形成した。
Comparative Example 2 Ip CTL 5.24eV was prepared in the same manner as in Example 1 except that the same charge generation layer was formed on the same conductive substrate as in Example 1 and OXZ-2 8g and UP3000 12g were used. A charge transport layer was formed on the charge generating layer.

この電子写真感光体において,IpCTL−IpCGLは5.24−
5.20=0.04eVであつた。
In this electrophotographic photosensitive member, Ip CTL −Ip CGL is 5.24−
It was 5.20 = 0.04 eV.

比較例3 実施例1と全く同じ導電性基体上に全く同じ電荷発生
層を形成し,更に,HDZ−2 5g及びUP3000 15gを用
い,乾燥温度を90℃とした以外は,実施例1と同様にし
てIpCTL5.54eVの電荷輸送層を前記の電荷発生層上に形
成した。
Comparative Example 3 Same as Example 1 except that exactly the same charge generation layer was formed on the same conductive substrate as in Example 1, 5 g of HDZ-2 and 15 g of UP3000 were used and the drying temperature was 90 ° C. Then, a charge transport layer of Ip CTL 5.54 eV was formed on the charge generation layer.

この電子写真感光体において,IpCTL−IpCGLは5.54−
5.20=0.34eVであつた 比較例4 実施例1と全く同じ導電性基体上に全く同じ電荷発生
層を形成し,更に,HDZ−1 5g及びUP3000 15gを用い
た以外は,比較例1と同様にしてIpCTL5.58eVの電荷輸
送層を前記の電荷発生層上に形成した。
In this electrophotographic photoreceptor, Ip CTL −Ip CGL is 5.54−
5.20 = 0.34 eV Comparative Example 4 Same as Comparative Example 1 except that exactly the same charge generation layer was formed on the same conductive substrate as in Example 1 and HDZ-1 5g and UP3000 15g were used. Then, a charge transport layer of Ip CTL 5.58 eV was formed on the charge generation layer.

この電子写真感光体において,IpCTL−IpCGLは5.58−
5.20=0.38eVであつた。
In this electrophotographic photoreceptor, Ip CTL −Ip CGL is 5.58−
It was 5.20 = 0.38 eV.

比較例5 実施例1と全く同じ導電性基体に全く同じ電荷発生層
を形成し,更に,OXZ−1 5g及びUP3000 15gを用い,
乾燥温度を115℃とした以外は,実施例1と同様にしてI
pCTL5.48eVの電荷輸送層を前記の電荷発生層上に形成し
た。
Comparative Example 5 The same charge generation layer was formed on the same conductive substrate as in Example 1, and OXZ-1 5g and UP3000 15g were used.
I was prepared in the same manner as in Example 1 except that the drying temperature was 115 ° C.
A charge transport layer of p CTL 5.48 eV was formed on the charge generating layer.

この電子写真感光体において,IpCTL−IpCGLは5.48−
5.20=0.28eVであつた。
In this electrophotographic photosensitive member, Ip CTL −Ip CGL is 5.48−
It was 5.20 = 0.28 eV.

実施例6 γ−H2Pc0.4g,KR214 0.6g及びテトラヒドロフラン70
gを実施例1と同様な方法でボールミルを用いて8時間
混練した。得られた顔料分散液をアプリケータにより導
電性基体であるアルミニウム板上に塗工し,100℃で30分
間乾燥して膜厚0.5μmの電荷発生層を形成した。この
電荷発生層のIpCGLは5.22eVであつた。
Example 6 γ-H 2 Pc 0.4 g, KR214 0.6 g and tetrahydrofuran 70
g was kneaded in the same manner as in Example 1 using a ball mill for 8 hours. The obtained pigment dispersion was applied onto an aluminum plate as a conductive substrate with an applicator and dried at 100 ° C. for 30 minutes to form a charge generation layer having a film thickness of 0.5 μm. The Ip CGL of this charge generation layer was 5.22 eV.

次にこの電荷発生層の上に実施例1と同様の組成のIp
CTL5.40eVの電荷輸送層を形成した。
Next, on this charge generation layer, Ip having the same composition as in Example 1 was formed.
A charge transport layer of CTL 5.40 eV was formed.

この電子写真感光体においてIpCTL−IpCGL=5.40−5.
22=0.18eVであつた。
In this electrophotographic photoreceptor, Ip CTL -Ip CGL = 5.40-5.
It was 22 = 0.18 eV.

実施例7 γ−H2Pc0.7g,KR214 0.3g及びテトラヒドロフラン70
gを実施例1と同様な方法でボールミルを用いて8時間
混練した。得られた顔料分散液をアプリケータにより導
電性基体であるアルミニウム板上に塗工し100℃で30分
間乾燥して膜厚0.5μmの電荷発生層を形成した。この
電荷発生層のIpCGLは5.13eVであつた。
Example 7 γ-H 2 Pc 0.7 g, KR214 0.3 g and tetrahydrofuran 70
g was kneaded in the same manner as in Example 1 using a ball mill for 8 hours. The obtained pigment dispersion was applied onto an aluminum plate as a conductive substrate with an applicator and dried at 100 ° C. for 30 minutes to form a charge generation layer having a film thickness of 0.5 μm. The Ip CGL of this charge generation layer was 5.13 eV.

次にこの電荷発生層の上に実施例2と同様の組成のIp
CTL5.36eVの電荷輸送層を形成した。
Next, on this charge generation layer, Ip having the same composition as in Example 2 was formed.
A charge transport layer of CTL 5.36 eV was formed.

この電子写真感光体においてIpCTL−IpCGL=5.36−5.
13=0.23eVであつた。
In this electrophotographic photosensitive member, Ip CTL -Ip CGL = 5.36-5.
It was 13 = 0.23 eV.

比較例6 γ−H2Pc0.15g,KR214 0.85g及びテトラヒドロフラン
70gを実施例1と同様な方法でボールミルを用いて8時
間混練した。得られた顔料分散液をアプリケータにより
導電性基体であるアルミニウム板上に塗工し,100℃で30
分間乾燥して膜厚0.5μmの電荷発生層を形成した。こ
の電荷発生層のIpCGLは5.42eVであつた。
Comparative Example 6 γ-H 2 Pc 0.15 g, KR214 0.85 g and tetrahydrofuran
70 g was kneaded in the same manner as in Example 1 using a ball mill for 8 hours. The pigment dispersion obtained is applied onto an aluminum plate, which is a conductive substrate, with an applicator and the temperature is maintained at 100 ° C for 30
After drying for a minute, a charge generation layer having a thickness of 0.5 μm was formed. The Ip CGL of this charge generation layer was 5.42 eV.

次にこの電荷発生層の上に実施例4と同様の組成のIp
CTL5.46eVの電荷輸送層を形成した。
Next, on this charge generation layer, an Ip having the same composition as in Example 4 was formed.
A charge transport layer of CTL 5.46 eV was formed.

この電子写真感光体においてIpCTL−IpCGL=5.45−5.
42=0.03eVであつた。
In this electrophotographic photosensitive member, Ip CTL -Ip CGL = 5.45-5.
It was 42 = 0.03 eV.

比較例7 γ−H2Pc0.4g,KR214 0.6g及びテトラヒドロフラン70
gを実施例1と同様な方法でボールミルを用いて8時間
混練した。得られた顔料分散液をアプリケータにより導
電性基体であるアルミニウム板上に塗工し,100℃で30分
間乾燥して膜厚0.5μmの電荷発生層を形成した。この
電荷発生層のIpCGLは5.22eVであつた。
Comparative Example 7 γ-H 2 Pc 0.4 g, KR214 0.6 g and tetrahydrofuran 70
g was kneaded in the same manner as in Example 1 using a ball mill for 8 hours. The obtained pigment dispersion was applied onto an aluminum plate as a conductive substrate with an applicator and dried at 100 ° C. for 30 minutes to form a charge generation layer having a film thickness of 0.5 μm. The Ip CGL of this charge generation layer was 5.22 eV.

次にこの電荷発生層の上に比較例4と同様の組成のIp
CTL5.58eVの電荷輸送層を形成した。
Next, on this charge generation layer, Ip having the same composition as in Comparative Example 4 was formed.
A charge transport layer of CTL 5.58 eV was formed.

この電子写真感光体においてIpCTL−IpCGL=5.58−5.
22=0.36eVであつた。
In this electrophotographic photoreceptor, Ip CTL -Ip CGL = 5.58-5.
It was 22 = 0.36 eV.

実施例1〜7及び比較例1〜7で得られた電子写真感
光体の分光感度を静電記録試験装置(川口電機製SP−42
8)を用いて測定した。結果を第1表に示す。
An electrostatic recording test device (SP-42 manufactured by Kawaguchi Denki Co., Ltd.) was used to measure the spectral sensitivity of the electrophotographic photoreceptors obtained in Examples 1 to 7 and Comparative Examples 1 to 7.
8) was used. The results are shown in Table 1.

780nmの分光感度(S780)は,ハロゲンランプを光源
とし,モノクロメーターを通して780nmの単色光に分光
した光を照射し,照射後の電位が半分になるまでに要し
た時間t(s)を求め,これに照射光のエネルギー(mW
/m2)を乗じることによつて求めたものである。
The spectral sensitivity (S780) of 780 nm is obtained by irradiating a monochromatic light of 780 nm through a monochromator with a halogen lamp as the light source, and irradiating the light with a potential of half after the irradiation, t (s), The energy of the irradiation light (mW
/ m 2 ).

分光感度と電荷発生層のイオン化ポテンシヤルと電荷
輸送層のイオン化ポテンシヤルの差(ΔIp)の関係を第
1図に示す。
FIG. 1 shows the relationship between the spectral sensitivity and the difference (ΔIp) between the ionization potential of the charge generation layer and the ionization potential of the charge transport layer.

第1図から明らかなとおり,ΔIpが0.14〜0.26の電子
写真感光体は,優れた感度を示す。
As is clear from FIG. 1, the electrophotographic photosensitive member having ΔIp of 0.14 to 0.26 exhibits excellent sensitivity.

(発明の効果) 本発明によれば,電荷発生層及び電荷輸送層のイオン
化ポテンシヤルの最適な組み合わせを容易に選択できる
ので,高い感度を示す電子写真感光体を容易に得ること
ができる。
(Effects of the Invention) According to the present invention, the optimum combination of ionization potentials of the charge generation layer and the charge transport layer can be easily selected, so that an electrophotographic photoreceptor having high sensitivity can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は,分光感度(S780(mJ/m2))と電荷発生層の
イオン化ポテンシヤルと電荷輸送層のイオン化ポテンシ
ヤルの差ΔIp(eV)(IpCTL−IpCGL)の関係図である。
FIG. 1 is a relationship diagram of the spectral sensitivity (S780 (mJ / m 2 )) and the difference ΔIp (eV) (Ip CTL −Ip CGL ) between the ionization potential of the charge generation layer and the ionization potential of the charge transport layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 景山 晃 茨城県日立市東町4丁目13番1号 日立 化成工業株式会社山崎工場内 (72)発明者 秋元 孝幸 茨城県日立市東町4丁目13番1号 日立 化成工業株式会社茨城研究所内 (72)発明者 立木 繁雄 茨城県日立市東町4丁目13番1号 日立 化成工業株式会社茨城研究所内 (56)参考文献 特開 昭60−19153(JP,A) 特開 昭60−237454(JP,A) 特開 昭58−182639(JP,A) 特開 昭60−19144(JP,A) 特開 昭61−34547(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Akira Kageyama Akira Kageyama 4-13-1, Higashimachi, Hitachi City, Ibaraki Hitachi Chemical Co., Ltd. Yamazaki Factory (72) Inventor Takayuki Akimoto 4-13-1, Higashimachi, Ibaraki Prefecture Issue Hitachi Chemical Co., Ltd. Ibaraki Research Laboratory (72) Inventor Shigeo Tachiki 4-13-1, Higashimachi, Hitachi City, Ibaraki Prefecture Hitachi Chemical Co., Ltd. Ibaraki Research Laboratory (56) Reference JP-A-60-19153 (JP, A) ) JP-A-60-237454 (JP, A) JP-A-58-182639 (JP, A) JP-A-60-19144 (JP, A) JP-A-61-34547 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導電性基体上に、電荷を発生する有機顔料
として無金属フタロシアニンを含む電荷発生層及び電荷
輸送性物質を含む電荷輸送層を有し、前記電荷輸送層の
イオン化ポテンシャルIpCTLと前記電荷発生層のイオン
化ポテンシャルIpCGLの差(IpCTL−IpCGL)が+0.14〜
0.26eVである電子写真感光体。
1. A charge generating layer containing a metal-free phthalocyanine as an organic pigment for generating a charge and a charge transporting layer containing a charge transporting substance on a conductive substrate, and an ionization potential Ip CTL of the charge transporting layer. The difference in the ionization potential Ip CGL of the charge generation layer (Ip CTL −Ip CGL ) is +0.14 to
An electrophotographic photoreceptor of 0.26 eV.
JP63044834A 1988-02-26 1988-02-26 Electrophotographic photoreceptor Expired - Lifetime JP2564875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63044834A JP2564875B2 (en) 1988-02-26 1988-02-26 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63044834A JP2564875B2 (en) 1988-02-26 1988-02-26 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH01219752A JPH01219752A (en) 1989-09-01
JP2564875B2 true JP2564875B2 (en) 1996-12-18

Family

ID=12702497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63044834A Expired - Lifetime JP2564875B2 (en) 1988-02-26 1988-02-26 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2564875B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293853A (en) * 1989-05-09 1990-12-05 Mita Ind Co Ltd Laminate type electrophotographic sensitive body

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182639A (en) * 1982-04-20 1983-10-25 Hitachi Ltd Electrophotographic receptor
JPS6019144A (en) * 1983-07-13 1985-01-31 Hitachi Ltd Composite type electrophotographic sensitive body
JPS6019153A (en) * 1983-07-13 1985-01-31 Hitachi Ltd Electrophotographic sensitive body
JPS60237454A (en) * 1984-05-09 1985-11-26 Hitachi Chem Co Ltd Electrophotographic sensitive body
JPS6134547A (en) * 1984-07-26 1986-02-18 Hitachi Chem Co Ltd Positively chargeable electrophotographic sensitive body
JPH0721646B2 (en) * 1986-06-05 1995-03-08 高砂香料工業株式会社 Electrophotographic photoreceptor

Also Published As

Publication number Publication date
JPH01219752A (en) 1989-09-01

Similar Documents

Publication Publication Date Title
JP2564875B2 (en) Electrophotographic photoreceptor
JP3646489B2 (en) Electrophotographic photoreceptor
JPS62200359A (en) Electrophotographic sensitive body
JP4228334B2 (en) Electrophotographic photoreceptor
JP2762962B2 (en) Electrophotographic photoreceptor
JPH05204175A (en) Electrophotographic sensitive body
JPH07111586B2 (en) Electrophotographic photoreceptor
JP2564875C (en)
JPS63210938A (en) Electrophotographic sensitive body
JP2990981B2 (en) Electrophotographic photoreceptor
JP3978941B2 (en) Electrophotographic photoreceptor
JP3885985B2 (en) Electrophotographic photoreceptor
JPH0756364A (en) Electrophotographic photoreceptor
JPS61126556A (en) Electrophotographic sensitive body
JP2817807B2 (en) Electrophotographic photoreceptor
JP2551495B2 (en) Electrophotographic photoreceptor
JPH06230592A (en) Electrophotogtaphic sensitive body
JPH06138678A (en) Electrophotographic sensitive body
JPS61151544A (en) Electrophotographic sensitive body
JPH041765A (en) Electrophotographic sensitive body
JPS63293550A (en) Electrophotographic sensitive body
JPH0756368A (en) Electrophotographic photoreceptor
JPS61126553A (en) Electrophotographic sensitive body
JPS61126554A (en) Electrophotographic sensitive body
JPH0756370A (en) Electrophotographic photoreceptor