JP2564806Y2 - Visible light infrared light characteristic measuring instrument - Google Patents

Visible light infrared light characteristic measuring instrument

Info

Publication number
JP2564806Y2
JP2564806Y2 JP1992053225U JP5322592U JP2564806Y2 JP 2564806 Y2 JP2564806 Y2 JP 2564806Y2 JP 1992053225 U JP1992053225 U JP 1992053225U JP 5322592 U JP5322592 U JP 5322592U JP 2564806 Y2 JP2564806 Y2 JP 2564806Y2
Authority
JP
Japan
Prior art keywords
light
sample
sample information
sensor
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1992053225U
Other languages
Japanese (ja)
Other versions
JPH0614957U (en
Inventor
宏和 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nireco Corp
Original Assignee
Nireco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nireco Corp filed Critical Nireco Corp
Priority to JP1992053225U priority Critical patent/JP2564806Y2/en
Publication of JPH0614957U publication Critical patent/JPH0614957U/en
Application granted granted Critical
Publication of JP2564806Y2 publication Critical patent/JP2564806Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、サンプルに光を照射
し、その反射光、透過光を検出してサンプルの特徴を測
定する可視光赤外光特性測定器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a visible light / infrared light characteristic measuring device which irradiates a sample with light, detects reflected light and transmitted light thereof, and measures characteristics of the sample.

【0002】[0002]

【従来の技術】可視光、近赤外光を材料に照射し、その
反射光や透過光を検出し、この反射光や透過光を分析す
ることにより、材料の物理的性質や、化学的性質を得る
分光分析装置が用いられている。このような反射光や透
過光を検出する検出素子として、可視光を主とする領域
(400 〜1100nm)はSi素子が用いられ、また近赤外
領域(1100〜2500nm)はPbS素子が用いられる。
2. Description of the Related Art By irradiating a material with visible light or near-infrared light, detecting reflected light or transmitted light, and analyzing the reflected light or transmitted light, the physical and chemical properties of the material are measured. Is used. As a detection element for detecting such reflected light or transmitted light, a Si element is used in a region mainly composed of visible light (400 to 1100 nm), and a PbS element is used in a near infrared region (1100 to 2500 nm). .

【0003】図6は波長に対するSi素子とPbS素子
の比検出率を示す。比検出率は室温時の特性を示す。S
i素子,PbS素子はそれぞれの波長領域において最高
の特性を示すが、その最高の特性値を比べるとSi素子
の方がPbS素子の比検出率よりも1桁以上大きい。ま
た、1100nmを境にして比検出率の大小が逆転する。
FIG. 6 shows a ratio detection ratio between a Si element and a PbS element with respect to wavelength. The ratio detection ratio shows characteristics at room temperature. S
The i element and the PbS element show the best characteristics in the respective wavelength regions. However, comparing the highest characteristic values, the Si element is one order of magnitude higher than the specific detection rate of the PbS element. In addition, the magnitude of the ratio detection ratio is reversed around 1100 nm.

【0004】このように波長により検出素子の特性が異
なるため、可視光と近赤外光の両領域(400 〜2500n
m)の可視光近赤外分析を行うには、Si素子とPbS
素子の両検出素子を近接して配置し、サンプルからの反
射光や透過光をスリットにより横長の光とし、この横長
光を同時にSi素子とPbS素子の両方に照射してい
た。
As described above, since the characteristics of the detecting element differ depending on the wavelength, both the visible light region and the near-infrared light region (400 to 2500 nm) are used.
m) To perform the visible / near-infrared analysis, a Si device and PbS
Both detection elements of the element were arranged close to each other, and the reflected light or transmitted light from the sample was made into a horizontally long light by a slit, and this horizontally long light was simultaneously applied to both the Si element and the PbS element.

【0005】このように反射光や透過光(以下、サンプ
ル情報光と言う)をスリットを通して横長光にする装置
は、分光分析装置と一体となったサンプル設定部にサン
プルを設定して計測する形式のものに採用されている。
このためサンプル設定部に設定できるサンプルが限定さ
れる。ところが近年、配管中を流れるもの、生物体,果
物,などそのままの状態ではサンプル設定部に設定でき
ないものが測定対象となってきた。このため、サンプル
に照射する経路、サンプル情報光の経路に光ファイバー
が使われるようになった。光ファイバーの場合、通常断
面は円形をしており、このためサンプル情報光をスリッ
トに入れ横長光とせず、そのまま検出素子に入射する方
法が用いられている。このようにすると、可視光領域の
サンプル情報光はSi素子に直接入射させ、近赤外光領
域のサンプル情報光はPbS素子に直接入射させるた
め、測定領域に応じて光ファイバーの接続位置を対応す
る検出素子の入射口に切替えて接続していた。
[0005] As described above, an apparatus for converting reflected light or transmitted light (hereinafter, referred to as sample information light) into oblong light through a slit is a type in which a sample is set in a sample setting unit integrated with a spectroscopic analyzer and measured. Has been adopted for
Therefore, the samples that can be set in the sample setting unit are limited. However, in recent years, objects that cannot be set in the sample setting section as they are, such as those flowing in pipes, living organisms, fruits, and the like, have been measured. For this reason, an optical fiber has come to be used for a path for irradiating the sample and a path for the sample information light. In the case of an optical fiber, the cross section is usually circular, and therefore, a method is used in which the sample information light is put into a slit and is not made into a horizontally long light, but is directly incident on the detection element. With this configuration, the sample information light in the visible light region is directly incident on the Si element, and the sample information light in the near infrared light region is directly incident on the PbS element, so that the connection position of the optical fiber corresponds to the measurement region. The connection was switched to the entrance of the detection element.

【0006】図4はこのような光ファイバーを用いた分
光分析装置を示す。(a)はサンプルの透過光を用いる
方式で、(b)は反射光を用いる方式の装置である。分
光分析装置の本体1は光源より光を出射し、サンプル情
報光を検出する検出部2の出力を処理する。検出部2は
Si素子とPbS素子の両検出素子を有し、サンプル情
報光を電気信号に変換し、増幅処理を行う。検査対象と
なるサンプル3は、照射用光ファイバー5より光を照射
され、(a)の場合は透過光が出射され、(b)の場合
は反射光がサンプル情報光として出射される。サンプル
情報光用光ファイバー6は(a)ではサンプル3より直
接、(b)では分岐器7よりサンプル情報光を入力して
検出部2に出射する。入出力光ファイバー8は周囲で照
射光を導光し、中心でサンプル3からサンプル情報光を
導光する2重構造となっている。分岐器7は照射光用フ
ァイバーとサンプル情報光用ファイバーを分岐する。パ
ソコン4は表示画面を有し、サンプル情報光の情報を解
析し表示する。
FIG. 4 shows a spectroscopic analyzer using such an optical fiber. (A) shows an apparatus using a transmitted light of a sample, and (b) shows an apparatus using a reflected light. A main body 1 of the spectroscopic analyzer emits light from a light source and processes an output of a detection unit 2 that detects sample information light. The detection unit 2 has both a Si element and a PbS element, converts the sample information light into an electric signal, and performs an amplification process. The sample 3 to be inspected is irradiated with light from the irradiation optical fiber 5, and in the case of (a), transmitted light is emitted, and in the case of (b), reflected light is emitted as sample information light. The sample information light optical fiber 6 inputs the sample information light directly from the sample 3 in (a), and outputs the sample information light from the splitter 7 in (b) to the detection unit 2. The input / output optical fiber 8 has a double structure that guides irradiation light at the periphery and guides sample information light from the sample 3 at the center. The splitter 7 splits the irradiation light fiber and the sample information light fiber. The personal computer 4 has a display screen, and analyzes and displays information of the sample information light.

【0007】図5は検出部2とサンプル情報光用光ファ
イバー6の取合を示す図である。検出素子ブロック12に
はSi素子とPbS素子が近接して配置され、その出力
は増幅部13で増幅される。取合ブロック9には、サンプ
ル情報光用光ファイバー6と取り合う2個の取合口10が
あり、下部空間11は検出素子ブロック12と嵌合する。可
視光を主とする測定か近赤外測定かにより、サンプル情
報光用光ファイバー6を対応する素子の取合口10に接合
する。
FIG. 5 is a diagram showing the connection between the detection unit 2 and the optical fiber 6 for sample information light. An Si element and a PbS element are arranged close to each other in the detection element block 12, and the output is amplified by the amplifier 13. The joint block 9 has two joint openings 10 for engaging with the optical fiber 6 for sample information light, and the lower space 11 is fitted with the detection element block 12. The optical fiber 6 for sample information light is joined to the corresponding element inlet 10 depending on whether the measurement is mainly for visible light or near-infrared measurement.

【0008】[0008]

【考案が解決しようとする課題】サンプル情報光用光フ
ァイバー6は、上述のように可視光測定の場合はSi素
子用の取合口10に、近赤外測定の場合はPbS素子用の
取合口10に差し込む必要があり、全域(400 〜2500n
m)のスペクトルを取り込むときは、Si素子用取合口
10とPbS素子用取合口10とを差し換える操作が必要で
あった。
As described above, the optical fiber 6 for sample information light is connected to the joint 10 for the Si element in the case of visible light measurement, and to the joint 10 for the PbS element in the case of near infrared measurement. Must be inserted into the entire area (400 to 2500n
m) When taking in the spectrum of
An operation of exchanging the PbS element connection port 10 with the PbS element connection port 10 was required.

【0009】本考案は、上述の問題点に鑑みてなされた
もので、サンプル情報光用光ファイバー6の差し換えを
行なわず、可視光、近赤外光の測定を行うことのできる
可視光赤外光特性測定器を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and it is possible to measure visible light and near-infrared light without replacing the optical fiber 6 for sample information light. It is an object to provide a characteristic measuring device.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、光源よりの光をサンプルに照射してサンプルの情報
を有するサンプル情報光を得、このサンプル情報光を光
ファイバーにより可視光センサと赤外光センサに与えサ
ンプルの特性を解析する可視光赤外光特性測定器におい
て、前記可視光センサと前記赤外光センサを近接して配
置したセンサ部に前記サンプル情報光を拡散して照射す
る拡散部を設け、前記可視光センサとしてSi素子を用
い、前記赤外光センサとしてPbS素子を用い、前記拡
散部は前記サンプル情報光を前記可視光センサよりも
前記赤外光センサに多く照射するように配置されたサン
プル情報光用ファイバー取合口が設けられている
In order to achieve the above object, the sample is irradiated with light from a light source to obtain sample information light having information on the sample, and this sample information light is transmitted to a visible light sensor and an infrared light sensor through an optical fiber. In a visible light / infrared light characteristic measuring device for analyzing characteristics of a sample given to an optical sensor, a diffuser for diffusing and irradiating the sample information light to a sensor unit in which the visible light sensor and the infrared light sensor are arranged in close proximity. the part is provided, the Si element is used as the visible light sensor, with PbS element as the infrared sensor, often for irradiating the infrared light sensor than the visible light sensor the sample information light in the diffusion part Sun arranged as
A fiber inlet for pull information light is provided .

【0011】[0011]

【0012】[0012]

【0013】[0013]

【作用】センサ部は可視光センサと赤外光センサが近接
して配置され、拡散部よりサンプル情報光が拡散されて
照射されるので可視光センサと赤外光センサのいずれに
も照射される。これにより両センサは同時に動作する
が、サンプル情報光が可視光(400 〜1100nm)域であ
るときは主として可視光センサが働き、赤外光センサは
殆んど働かない。また赤外光(1100〜2500nm)域のと
きは赤外光センサが主として働く。
In the sensor section, the visible light sensor and the infrared light sensor are arranged close to each other, and the sample information light is diffused and radiated from the diffusion section, so that both the visible light sensor and the infrared light sensor are radiated. . As a result, both sensors operate simultaneously, but when the sample information light is in the visible light (400 to 1100 nm) region, the visible light sensor mainly works, and the infrared light sensor hardly works. In the infrared light (1100 to 2500 nm) region, the infrared light sensor mainly works.

【0014】主として可視光領域を測定する可視光セン
サとしてSi素子を用い、赤外光センサとしてPbS素
子を用いた場合、図6で示したようにPbS素子はSi
素子に比し、比検出率が小さいので、拡散部はサンプル
情報光がPbS素子に多く照射されるようにする。これ
によりPbS素子の出力が改良される。
When a Si element is used as a visible light sensor mainly for measuring a visible light region and a PbS element is used as an infrared light sensor, as shown in FIG.
Since the ratio detection ratio is smaller than that of the element, the diffusing section causes the PbS element to be irradiated more with the sample information light. Thereby, the output of the PbS element is improved.

【0015】[0015]

【0016】[0016]

【実施例】以下、本考案の実施例を図面を参照して説明
する。図1は本考案の実施例の構成を示す図である。本
図は図4に示した検出部2とサンプル情報光用光ファイ
バー6の取合部を示す図である。図5と同一符号は同一
機能を有する部材を表わす。サンプル情報光用ファイバ
ー6と検出素子ブロック12を取合う取合ブロック14に
は、サンプル情報光用ファイバー6の取合口10は1個で
あり、計測中は取合口10に差し込んだ状態とする。拡散
部15に対し、取合口10はPbS素子に近い位置に取付け
られ、サンプル情報光はPbS素子に多く入射するよう
になっている。拡散部15は空洞となっている。16は光ガ
イドで、サファイアなどの透明体で構成された直方体
で、サンプル情報光の入射面と、検出素子ブロック12に
対する面以外の周囲4面の外面をアルミ蒸着などにより
内面を鏡面としたもので、拡散部15の空洞内に嵌合す
る。なお、光ガイド16の形状は角錐の頂部を底面に平行
に切断した角錐台としてもよい。このとき拡散部15空洞
も同じ形状とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration of an embodiment of the present invention. This figure is a diagram showing a joint between the detection unit 2 and the sample information light optical fiber 6 shown in FIG. 5 denote members having the same functions. The connection block 14 for connecting the sample information light fiber 6 and the detection element block 12 has one connection opening 10 for the sample information light fiber 6, which is inserted into the connection opening 10 during measurement. The inlet 10 is attached to the diffusion unit 15 at a position close to the PbS element, and a large amount of sample information light is incident on the PbS element. The diffusion unit 15 is hollow. Reference numeral 16 denotes a light guide, which is a rectangular parallelepiped made of a transparent material such as sapphire. The outer surface of the sample information light incident surface and the four outer surfaces other than the surface with respect to the detection element block 12 are mirror-finished by aluminum evaporation or the like. Then, it fits in the cavity of the diffusion portion 15. The shape of the light guide 16 may be a truncated pyramid in which the top of the pyramid is cut parallel to the bottom surface. At this time, the cavity of the diffusion portion 15 has the same shape.

【0017】図2は図4に示した機器のブロック図であ
る。光源20より出た照射光は走査型回折格子(スキャニ
ング・グレーティング)21で波長が逐次変化する単色光
となり、破線で示す光ファイバーを通りサンプル3に照
射され、サンプルからの反射光、透過光が破線で示す
光ファイバーによりSi素子、PbS素子よりなる検査
素子を有する検出部2に入力され、解析部24で解析さ
れ、その結果が表示部25に表示される。光源20及び走査
型回折格子21は本体1に内蔵され、検出素子ブロック12
と増幅部13は検出部2を構成し、解析部24と表示部25は
コンピュータとその表示部4である。
FIG. 2 is a block diagram of the device shown in FIG. Irradiation light emitted from the light source 20 becomes a monochromatic light having a wavelength with a scanning diffraction grating (scanning grating) 21 is changed sequentially, is irradiated with an optical fiber indicated by a broken line as sample 3, the light reflected from the sample 3, the transmitted light The optical fiber indicated by the broken line is input to the detection unit 2 having the inspection element composed of the Si element and the PbS element, analyzed by the analysis unit 24, and the result is displayed on the display unit 25. The light source 20 and the scanning diffraction grating 21 are built in the main body 1,
The amplification unit 13 and the amplification unit 13 constitute the detection unit 2, and the analysis unit 24 and the display unit 25 are a computer and its display unit 4.

【0018】図3は図2の検出器2と解析部24の詳細、
表示部25を示したブロック図である。400 〜1100nm波
長のデータはSi素子30で電気信号に変換され増幅器31
で増幅される。1100〜2500nm波長のデータはPbS素
子32で電気信号に変換され増幅器33で増幅される。これ
ら増幅器31,33よりの入力データは波長選択部34で全領
域(400 〜2500)、可視領域(400 〜1100)、近赤外領
域(1100〜2500nm)のデータに分類し、演算部35でこ
のデータを解析し、その結果を表示部25に表示する。
FIG. 3 shows details of the detector 2 and the analyzer 24 shown in FIG.
5 is a block diagram showing a display unit 25. FIG. The data having a wavelength of 400 to 1100 nm is converted into an electric signal by the Si
Amplified by Data having a wavelength of 1100 to 2500 nm is converted into an electric signal by the PbS element 32 and amplified by the amplifier 33. The input data from the amplifiers 31 and 33 are classified by the wavelength selector 34 into data of the entire region (400 to 2500), visible region (400 to 1100), and near infrared region (1100 to 2500 nm). This data is analyzed, and the result is displayed on the display unit 25.

【0019】[0019]

【考案の効果】以上の説明から明らかなように、本考案
は光ファイバーからのサンプル情報光を拡散部に導入し
拡散部で可視光センサと赤外光センサに照射することに
より、光ファイバーの検出部への切り換えを行う必要が
ない。
As is clear from the above description, the present invention introduces the sample information light from the optical fiber into the diffusion section and irradiates the visible light sensor and the infrared light sensor with the diffusion section, thereby detecting the optical fiber. There is no need to switch to

【図面の簡単な説明】[Brief description of the drawings]

【図1】本考案の実施例の構成を示す図である。FIG. 1 is a diagram showing a configuration of an embodiment of the present invention.

【図2】可視光赤外光特性測定器の構成を示すブロック
図である。
FIG. 2 is a block diagram illustrating a configuration of a visible light / infrared light characteristic measuring device.

【図3】センサモジュールより表示部までのブロック図
である。
FIG. 3 is a block diagram from a sensor module to a display unit.

【図4】光ファイバーを用いた可視光赤外光特性測定器
の外観構成を示す図である。
FIG. 4 is a diagram showing an external configuration of a visible light / infrared light characteristic measuring device using an optical fiber.

【図5】従来の光ファイバーと検出部の取合部を示す図
である。
FIG. 5 is a diagram showing a conventional coupling portion between an optical fiber and a detection unit.

【図6】検出素子の特性を示す図である。FIG. 6 is a diagram illustrating characteristics of a detection element.

【符号の説明】[Explanation of symbols]

6 サンプル情報光ファイバー 10 取合口 12 検出素子ブロック 14 取合ブロック 15 拡散部 16 光ガイド 6 Sample information optical fiber 10 Inlet 12 Detector block 14 Inlet block 15 Diffusion unit 16 Light guide

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 光源よりの光をサンプルに照射してサン
プルの情報を有するサンプル情報光を得、このサンプル
情報光を光ファイバーにより可視光センサと赤外光セン
サに与えサンプルの特性を解析する可視光赤外光特性測
定器において、前記可視光センサと前記赤外光センサを
近接して配置したセンサ部に前記サンプル情報光を拡散
して照射する拡散部を設け、前記可視光センサとしてS
i素子を用い、前記赤外光センサとしてPbS素子を用
い、前記拡散部は前記サンプル情報光を前記可視光セ
ンサよりも前記赤外光センサに多く照射するように配置
されたサンプル情報光用ファイバー取合口が設けられて
いることを特徴とする可視光赤外光特性測定器。
A sample information light having sample information is obtained by irradiating a sample with light from a light source, and the sample information light is supplied to a visible light sensor and an infrared light sensor through an optical fiber to analyze the characteristics of the sample. In a light-infrared light characteristic measuring device, a diffusion unit for diffusing and irradiating the sample information light is provided in a sensor unit in which the visible light sensor and the infrared light sensor are arranged close to each other.
with i elements, using a PbS element as the infrared sensor, the said spreading unit arranged to illuminate many the infrared light sensors than the visible light sensor the sample information light
Fiber connection for sampled information light
Visible infrared light characteristic measuring apparatus, characterized in that there.
JP1992053225U 1992-07-29 1992-07-29 Visible light infrared light characteristic measuring instrument Expired - Fee Related JP2564806Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1992053225U JP2564806Y2 (en) 1992-07-29 1992-07-29 Visible light infrared light characteristic measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1992053225U JP2564806Y2 (en) 1992-07-29 1992-07-29 Visible light infrared light characteristic measuring instrument

Publications (2)

Publication Number Publication Date
JPH0614957U JPH0614957U (en) 1994-02-25
JP2564806Y2 true JP2564806Y2 (en) 1998-03-11

Family

ID=12936886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992053225U Expired - Fee Related JP2564806Y2 (en) 1992-07-29 1992-07-29 Visible light infrared light characteristic measuring instrument

Country Status (1)

Country Link
JP (1) JP2564806Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3039606A1 (en) * 2016-10-06 2018-04-12 View, Inc. Infrared cloud detector systems and methods

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179646A (en) * 1981-04-28 1982-11-05 Shimadzu Corp Multiple light fluxes mixer
JPS6110730A (en) * 1983-12-08 1986-01-18 アイ・ア−ル オ− Device for analyzing color of individual
JPS60230290A (en) * 1984-04-27 1985-11-15 株式会社東芝 Discriminator for print
JPS63225147A (en) * 1987-03-16 1988-09-20 ロイボツクス オイ Method of measuring humidity
JPH01124745A (en) * 1987-11-10 1989-05-17 Sugai:Kk Light transmittance meter
JPH04138339A (en) * 1990-09-28 1992-05-12 Shimadzu Corp Thin-film measuring apparatus

Also Published As

Publication number Publication date
JPH0614957U (en) 1994-02-25

Similar Documents

Publication Publication Date Title
JP3574851B2 (en) Method and apparatus for diagnosing mastitis using visible light and / or near infrared light
US6274871B1 (en) Method and system for performing infrared study on a biological sample
EP0063431B1 (en) Spectroscopic analyzer system
US3910701A (en) Method and apparatus for measuring light reflectance absorption and or transmission
US5319200A (en) Rapid near-infrared measurement of nonhomogeneous samples
US5731581A (en) Apparatus for automatic identification of gas samples
TW516955B (en) Method and apparatus for detecting mastitis by using visible light rays and/or near infrared light
JP2000504115A (en) Programmable standard device for use in devices and methods for non-invasive measurement of light absorbing compounds
US20080023634A1 (en) Non-invasive detection of analytes in a comples matrix
US5519219A (en) Portable filter infrared spectrometer
US20200146597A1 (en) Device and method for spectrum analysis and device for blood glucose measurement
Kim et al. Nonspectroscopic imaging for quantitative chlorophyll sensing
JP4341153B2 (en) Test paper analyzer
US7868295B2 (en) Advanced calorimetric spectroscopy for commercial applications of chemical and biological sensors
JP2564806Y2 (en) Visible light infrared light characteristic measuring instrument
US20050287678A1 (en) Method and apparatus for inspecting biological samples
JPH1189799A (en) Concentration measuring device for specified ingredient
CN109324032A (en) A kind of surface-enhanced Raman spectroscopy for realizing food safety rapid screening
KR101764704B1 (en) Apparatus for Measuring Toxin
JP3324341B2 (en) Spectroscopic analyzer
KR20000074001A (en) Apparatus for analysing spectrom of portable near-infrared and Method measuring it
JP3585786B2 (en) Organic material identification system
CN113720825A (en) Optical instant detector and detection method and application
Firago et al. Radiometric calibration of fiber optic spectrophotometers
Schwab et al. An Experimental Double-Integrating Sphere Spectrophotometer for In Vitro Optical Analysis of Blood and Tissue Samples, Including Examples of Analyte Measurement Results

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees