JP2564587B2 - Artificial ground creation method - Google Patents

Artificial ground creation method

Info

Publication number
JP2564587B2
JP2564587B2 JP62503851A JP50385187A JP2564587B2 JP 2564587 B2 JP2564587 B2 JP 2564587B2 JP 62503851 A JP62503851 A JP 62503851A JP 50385187 A JP50385187 A JP 50385187A JP 2564587 B2 JP2564587 B2 JP 2564587B2
Authority
JP
Japan
Prior art keywords
artificial ground
cement
constructing
sand
earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62503851A
Other languages
Japanese (ja)
Inventor
敏郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP62503851A priority Critical patent/JP2564587B2/en
Application granted granted Critical
Publication of JP2564587B2 publication Critical patent/JP2564587B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 技術分野 この発明はソイルセメント等、土砂または岩石にセメ
ント系材料を加えた人工地盤材料の調整において、添加
する水の一部または全部におきかえて氷塊を使用する人
工地盤造成方法に関するもので、地盤改良、埋め立て、
路床、路盤の造成、あるいは再掘削を前提とした人工地
盤の造成等に利用する。
TECHNICAL FIELD The present invention relates to an artificial ground such as soil cement that uses an ice mass instead of a part or all of the water to be added in the preparation of an artificial ground material obtained by adding a cement-based material to earth and sand or rock. It relates to the method of creation, ground improvement, land reclamation,
It is used to construct subgrades and subgrades, or to construct artificial ground for re-excavation.

背景技術 構造物を構築した跡の掘削地盤は、通常、埋め戻し、
本来の地山強度と同等の強度とすることが要求される。
また、道路、滑走路等の地盤は、一般に地山強度よりも
高い地盤強度が要求される。従来、このような要求に対
しては、掘削した土砂にセメント、石灰、石こう等のセ
メント系材料を混入した処理土を掘削した地盤内に埋め
戻し、これを展圧等により締固め、セメント系材料の硬
化を待ち、所望の強度を発現せしめる安定化処理が行な
われている。
Background Art Excavated grounds that have built structures are usually backfilled,
It is required to have the same strength as the natural ground strength.
The ground such as roads and runways is generally required to have a higher ground strength than the ground strength. Conventionally, in order to meet such demands, the treated soil in which cement-based materials such as cement, lime and gypsum are mixed in the excavated earth and sand is backfilled in the excavated ground, and this is compacted by spreading pressure etc. Waiting for the material to harden, a stabilizing treatment is carried out to develop the desired strength.

このような安定化処理において、掘削土砂に対するセ
メント系材料の割合は通常10%以下で比較的少ない。ま
た、セメント系材料を混入した処理土の強度を高めるに
は、その混入量に見合った最適含水量となし、締固める
必要がある。ところが土砂は粒度やコンシステンシーが
制約され、セメント系材料や水を均一に混合しがたい場
合が多く、特に小割合量のセメント系材料や水を均一に
混合することは容易でなかった。
In such stabilization treatment, the ratio of cementitious material to excavated soil is usually less than 10%, which is relatively small. Further, in order to increase the strength of the treated soil mixed with the cement-based material, it is necessary to set the optimum moisture content corresponding to the mixed amount and compact it. However, it is often difficult to mix the cement-based material and water uniformly, because the particle size and the consistency of the soil are limited, and it is not easy to mix a small proportion of the cement-based material and water uniformly.

地盤改良に関する関連技術としては、例えば日本国特
許公報(B2)昭51−33662号、日本国特許公報(B2)昭6
1−8212号等がある。前者はヘドロ等の軟弱汚泥物質に
セメント、山土を加え、現場に設置した容器で撹拌混合
し、該処理土により、所要強度の人工地盤を造成する方
法に関するもので、ヘドロ等の処理と地盤改良を同時に
行なうものである。また後者は改良予定地盤の地上に掘
削土分離装置、計量装置、ミキシング装置を設置し、前
記地盤に穴を掘削すると共に、地上に排出された掘削土
を掘削土分離装置で泥水と泥土とに分離し、この泥土に
強化材を加えて試験練りを行なって所定地盤強度および
単位体積重量を算出し、泥土および強化材をこの所定地
盤強度および単位体積重量になるよう計量装置で計量
後、ミキシング装置で均一に混合し、生成した地盤強化
材を圧送ポンプによって先に削孔した穴に均一に充填す
るというものである。
Examples of related technology relating to ground improvement include Japanese Patent Publication (B2) Sho 51-33662 and Japanese Patent Publication (B2) Sho 6
There are 1-8212 etc. The former relates to the method of adding cement and mountain soil to soft sludge substances such as sludge, stirring and mixing in a container installed at the site, and creating artificial ground of the required strength with the treated soil. Improvements are made at the same time. In the latter, the excavated soil separating device, the weighing device, and the mixing device are installed on the ground of the ground to be improved, the holes are excavated in the ground, and the excavated soil discharged on the ground is converted into muddy water and mud by the excavating soil separating device. Separate, add reinforcement to this mud and perform test kneading to calculate predetermined ground strength and unit volume weight.Measure mud and reinforcement with this measuring device so as to have this predetermined ground strength and unit volume weight, and then mix. This is to mix uniformly in the device, and to fill the generated ground reinforcement material uniformly in the previously drilled holes with a pressure pump.

しかし、いずれの方法も、土砂とセメント系材料、お
よび水を均一に混合することは難しく、硬化地盤の強度
にバラツキが生じやすい。また、砂利や岩石の含まれる
地盤では、これらが分離し、コンクリートにおける骨材
分離のような現象を起こしやすい。また、特に軟弱な粘
性土質の場合、少量の水やセメント系材料を均一に分散
させることは容易ではない。
However, in any of the methods, it is difficult to uniformly mix the earth and sand, the cement-based material, and water, and the strength of the hardened ground tends to vary. In addition, in the ground where gravel and rocks are contained, these are likely to separate, and a phenomenon such as aggregate separation in concrete is likely to occur. Further, particularly in the case of soft cohesive soil, it is not easy to uniformly disperse a small amount of water or cement-based material.

また、モルタル類の調合方法、製造方法に関し、本発
明者は水に代えて小氷塊を用い、セメント、骨材との混
合過程において、小氷塊を徐々に融解させることによ
り、均質で、骨材分離が生じ難くく、かつワーカビリテ
ィに優れた高品質のモルタル、コンクリートの施工を可
能とした(国際公開WO86/00884号、WO87/00163号参
照)。さらに、日本国特許公報(B2)昭53−005694号に
は粉末状水硬性結合材と破砕した氷または雪状の水を水
を融点以下で、実質的に乾燥状態で混合し、所定の厚さ
に圧縮した後、水の融点以上の温度で硬化させる建築用
ボードの製造法が開示されており、また、硬化過程にお
いて氷の融解を調整することにより多孔質のボードを製
造することも示唆されている。
Further, regarding the preparation method and the manufacturing method of the mortars, the present inventor uses a small ice block instead of water, and gradually melts the small ice block in the process of mixing with the cement and the aggregate, so that the aggregate is homogeneous. It enables the construction of high-quality mortar and concrete that are difficult to separate and have excellent workability (see International Publication WO86 / 00884 and WO87 / 00163). Further, Japanese Patent Publication (B2) Sho 53-005694 discloses that powdered hydraulic binder and crushed ice or snowy water are mixed in a substantially dry state with water having a melting point or lower to a predetermined thickness. A method for manufacturing an architectural board that is cured at a temperature equal to or higher than the melting point of water after being compressed into a compact size is disclosed, and it is also suggested that a porous board is manufactured by adjusting the melting of ice during the curing process. Has been done.

この発明は地盤改良、埋め立て等に利用するソイルセ
メント等、セメント系材料を混合した処理土に加える水
の一部または全部を氷塊の形で加え、固相または表面が
融解して疑似固相の状態にある氷塊の特性を利用して、
均質性の高い処理土を効率良くつくり、所望の強度を持
った信頼性の高い人工地盤を低コストで施工できるよう
にしたものである。
The present invention is to add soil water such as soil cement used for soil improvement and landfill to the treated soil mixed with cementitious material in the form of ice cubes, and the solid phase or surface melts to form a pseudo-solid phase. Utilizing the characteristics of ice blocks in the state,
The treated soil with high homogeneity is efficiently produced, and the highly reliable artificial ground with desired strength can be constructed at low cost.

発明の開示 この発明の方法においては、混合装置を用いて掘削土
砂または岩石にセメント系材料を混合する際に、処理土
の含水量が所望の値となるのに必要な水を小氷塊で添加
する。混合の初期の段階では、添加した小氷塊は固相と
して、あるいは小氷塊の一部が融解しその表面に土砂ま
たはセメント成分が付着した疑似固相として挙動し、土
砂、セメント系材料および小氷塊は短時間の撹拌手段に
より容易に巨視的に均質な系に混合できる。続いて小氷
塊は徐々に融解し、周囲の土砂、あるいはセメント成分
を濡して均質な混合系に移行する。従来の水を直接添加
する場合に比べ、短時間の撹拌により、より均質な処理
土をつくることができる。この処理方法は添加した小氷
塊のすべてが融解し、均質な処理土となった後に埋め戻
し、締固める方法に限定されるものではない。前記した
巨視的に均質に分散した系の状態の処理土を埋め戻して
もよい。埋め戻した後、徐々に小氷塊は融解し均質な混
合系に移行する。また、こうすることにより、混合の過
程を短縮し、かつ乾燥に近い状態で混合土を埋め戻しで
きるので作業能率を一層高めることができる。
DISCLOSURE OF THE INVENTION In the method of the present invention, when mixing a cement-based material with excavated soil or rock using a mixing device, water necessary for the water content of the treated soil to reach a desired value is added in small ice blocks. To do. In the initial stage of mixing, the added small ice blocks behave as a solid phase or as a pseudo-solid phase in which a part of the small ice blocks melts and the soil or cement component adheres to the surface of the solid ice, the cement-based material and the small ice blocks. Can be easily mixed into a macroscopically homogeneous system by a short-time stirring means. Subsequently, the small ice block gradually melts, wets the surrounding earth and sand or cement components, and shifts to a homogeneous mixing system. Compared with the case where water is added directly, the treated soil can be made more homogeneous by stirring for a short time. This treatment method is not limited to the method in which all of the added small ice blocks are melted to form a homogeneous treated soil and then backfilled and compacted. The above-mentioned treated soil in a macroscopically homogeneously dispersed state may be backfilled. After backfilling, the small ice blocks gradually melt and move to a homogeneous mixed system. Further, by doing so, the mixing process can be shortened and the mixed soil can be backfilled in a state close to dryness, so that the work efficiency can be further enhanced.

土砂または岩石は現場で掘削したものを用い、処理
後、掘削地盤に埋め戻すようにすれば排土の問題がな
い。もちろん、埋め立ての場合等、他所で採取された土
砂を運搬してきて、使用してもよい。
If the earth and sand or rock is excavated at the site and after processing, it is backfilled in the excavated ground, so there is no problem of soil removal. Of course, in the case of land reclamation, the earth and sand collected at another place may be transported and used.

また、自然含水量がそれほど多くない土砂について
は、そのままセメント系材料および小氷塊を添加するこ
とができるが、含水量の多い土砂やあるいは掘削時に泥
水を使用する場合は分離装置によってある程度の水を分
離し、セメント系材料との撹拌混合時に小氷塊を加え
る。
In addition, for earth and sand with a low natural water content, cement-based materials and small ice blocks can be added as they are, but if earth and sand with a high water content or muddy water is used during excavation, some amount of water will be added by a separator. Separate and add a small block of ice during stirring and mixing with the cementitious material.

セメント系材料としては広く水硬性組成物が使用で
き、最も一般的なものとしてポルトランドセメント等の
セメントの他、石こう、石炭、水ガラス等が利用でき、
土粒子を結合して、処理土硬化後の強度を高めることが
できる。
A wide range of hydraulic compositions can be used as the cement-based material, and as the most common cements such as Portland cement, gypsum, coal, water glass, etc. can be used.
The soil particles can be combined to increase the strength of the treated soil after hardening.

小氷塊は粒径30mm以下程度のものである。土砂および
気温が高温の場合は比較的大径のものを、低温の場合は
比較的小径のものを用いるとよい。小氷塊の添加量は最
適含水量から土砂の自然含水量を減じ、必要に応じ、例
えば締固めの度合等に応若干の水量を加減して設定す
る。なお、埋め戻し、締固め後の処理土は表面からの乾
燥を防止するために、必要に応じ適切な処置がとられ
る。
A small ice block has a particle size of about 30 mm or less. When the soil and the temperature are high, a relatively large diameter is used, and when the temperature is low, a relatively small diameter is used. The amount of addition of small ice blocks is set by subtracting the natural water content of earth and sand from the optimum water content, and adjusting the water content if necessary, for example, depending on the degree of compaction. Incidentally, the treated soil after backfilling and compaction is appropriately treated as necessary in order to prevent the soil from drying.

また、この発明の方法においては、砂利、岩石を主と
する掘削物にポルトランドセメント等のセメント系材料
および比較的大径の氷塊を混合したものを打設し、凝固
を開始させることにより、高水セメント比の混合物であ
っても、氷塊は固体として挙動し、打設時の流動性が低
く、打設空間に疎に充填することができる。混合物の凝
固の進行とともに徐々に氷塊は融解し、周囲の混合物中
に移行し氷塊の融解あとには空隙が形成される。この結
果、高水セメント比の混合物から多数の空隙が存在する
疎の硬化物、すなわち低強度の硬化物をつくることがで
きる。
Further, in the method of the present invention, a mixture of a cement-based material such as Portland cement and a relatively large-diameter ice block is mixed with an excavated material mainly composed of gravel and rock, and solidification is started to increase the Even with a mixture having a water-cement ratio, the ice blocks behave as solids, have low fluidity during pouring, and can be sparsely filled in the pouring space. As the solidification of the mixture progresses, the ice block gradually melts, moves into the surrounding mixture, and a void is formed after the ice block melts. As a result, a sparse cured product having a large number of voids, that is, a cured product having a low strength can be produced from a mixture having a high water cement ratio.

例えば、地下数100mの深さの廃坑となった立坑に、比
較的大径の氷塊が混在する処理土を注入、打設すると、
氷塊は徐々に融解し、融解のあとが空隙として残った硬
化物が形成される。また、氷塊は固体として挙動するの
で水セメント比が比較的高くても、流動性が低く、坑内
に疎に充填できるので、氷塊融解あとの空隙とともに、
比較的低強度の硬化物を形成するのに寄与する。製造す
る硬化物の空隙は、氷塊の量、大きさ、あるいは処理土
の流動性、充填手段等の条件により定まる。従って、水
セメント比、および空隙の割合を調整し、例えば廃坑の
破壊が防止でき、かつ再掘削が容易である程度の調整さ
れた強度の硬化物を製造できる。
For example, if you inject and pour treated soil mixed with relatively large ice blocks into a vertical shaft that became an abandoned mine with a depth of several hundred meters,
The ice blocks gradually melt, and a cured product that remains as voids after melting is formed. In addition, since the ice blocks behave as solids, even if the water-cement ratio is relatively high, the fluidity is low and they can be loosely packed in the mine, so along with the voids after melting the ice blocks
It contributes to the formation of a relatively low strength cured product. The voids of the cured product to be produced are determined by the amount and size of ice blocks, the fluidity of the treated soil, the filling means, and other conditions. Therefore, by adjusting the water cement ratio and the ratio of voids, it is possible to prevent destruction of an abandoned mine, for example, and to perform re-drilling easily to produce a cured product having a certain adjusted strength.

この場合、用いる氷塊は比較的大径のものであり、具
体的数値を挙げるならば10mm〜100mmが好適に用いられ
る範囲である。周囲の環境温度が高い場合は大径側に、
低い場合は小径側にシフトさせるとよい。
In this case, the ice mass used has a relatively large diameter, and 10 mm to 100 mm is a suitable range for the specific numerical value. If the surrounding environment temperature is high, the larger diameter side,
If it is low, it is better to shift to the smaller diameter side.

また、メチルセルロース等の増粘効果がある物質を混
合物に混入、あるいは氷塊に溶解混入せしめておくと、
混合物の流動性を低下させ、疎に打設する上で有利であ
る。
In addition, if a substance having a thickening effect such as methyl cellulose is mixed in the mixture, or is dissolved and mixed in an ice block,
It is advantageous in that the fluidity of the mixture is lowered and the mixture is sparsely cast.

発明を実施するための最良の形態 大型構造物基礎部の軟弱地盤(粘性土で、一軸圧縮強
度が例えば1.0kg/cm2以下程度の場合を想定)につい
て、現場の掘削土砂にポルトランドセメントを加えて、
一軸圧縮強度が10.0kg/cm2程度のソイルセメントによる
改良地盤を造成する場合について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Regarding the soft ground (assuming that the uniaxial compressive strength is, for example, about 1.0 kg / cm 2 or less in the cohesive soil) of the large structure foundation, Portland cement is added to the excavated soil at the site. hand,
The case of constructing improved ground by soil cement having a uniaxial compressive strength of about 10.0 kg / cm 2 will be described.

ソイルセメントの配合設計は従来公知の方法をそのま
ま適用することができ、例えば次ようにして行なう。
A conventionally known method can be applied as it is to the compounding design of soil cement, and for example, it is performed as follows.

i)掘削土砂のサンプルについて含水比、粒度分布、コ
ンシステンシーを調べる。
i) Examine the sample of excavated sediment for water content, particle size distribution and consistency.

ii)対象土にセメントをそれぞれ2,4,6,8,10%の割合で
加えて、締固め、貫入試験等により最適含水比、最大乾
燥密度を求める。
ii) Add cement to the target soil at a rate of 2,4,6,8,10%, and obtain the optimum water content and maximum dry density by compaction, penetration test, etc.

iii)最適含水比で締固めた各セメント量の供試体につ
いて、硬化後、一軸圧縮試験を行ない、セメント量と強
度の関係をグラフに表わす。
iii) A uniaxial compression test is conducted after hardening for each cement amount compacted at the optimum water content ratio, and the relationship between the cement amount and strength is shown in a graph.

iv)グラフより一軸圧縮強度10.0kg/cm2となるセメント
量を決定する。
iv) From the graph, determine the amount of cement that produces a uniaxial compressive strength of 10.0 kg / cm 2 .

掘削において泥水を使用する場合、あるいは自然含水
比が非常に高い場合は泥水等を分離したものについて試
験を行なう。また試験練りにおいて、添加する水を小氷
塊におきかえることにより、この発明の方法により近い
条件での試験を行なうことがてきる。
If muddy water is used in the excavation, or if the natural water content is very high, the muddy water should be separated before the test. In addition, in the test kneading, the water to be added is replaced by a small ice block, so that the test can be performed under conditions closer to those of the method of the present invention.

一般に、現場において混合されたソイルセメントの強
度は、実験室で混合されたものに比べ小さく、60〜80%
程度と考えられている。しかし、氷塊を用いるこの発明
の方法によれば、比較的粒径の大きい土砂成分の分離が
抑制され、また氷塊自体には水のような流動性がなく、
粘性土、砂質土に関係なく、均一な混合が図れるため、
強度の低下傾向は小さいと考えられる。
Generally, the strength of soil cement mixed in the field is lower than that mixed in the laboratory, 60-80%.
It is considered to be degree. However, according to the method of the present invention using an ice block, the separation of sediment components having a relatively large particle size is suppressed, and the ice block itself does not have fluidity like water,
Regardless of cohesive soil or sandy soil, uniform mixing can be achieved,
It is considered that the tendency for the strength to decrease is small.

次に、上述のようにして添加セメント量の割合、最適
含水比を決定した後の現場施工について述べる。
Next, the on-site construction after determining the ratio of the added cement amount and the optimum water content ratio as described above will be described.

まず、大口径掘削機あるいはショベル等により、軟弱
地盤を所定深さまで掘削し、地上で掘削用の泥水あるい
は土砂に含まれる過剰な水分を分離する。分離後の土砂
は計量後、ミキシング装置へ送り、所定量のセメント、
氷塊と撹拌混合する。
First, the soft ground is excavated to a predetermined depth by a large-diameter excavator or a shovel, and excess water contained in the mud for excavation or earth and sand is separated on the ground. Sediment after separation is weighed and sent to a mixing device, where a predetermined amount of cement,
Stir mix with ice cubes.

氷塊の大きさは施工規模、施工に要する時間や外気温
等に応じて適宜選択するものとし、施工規模が比較的小
さく、気温も低い状態では直径が数mm程度まで小径の
氷、場合によっては雪等を使用し、規模が大きく、また
気温も高い状態では粒径が30mm程度までの氷塊を使用す
ることも考えられる。
The size of the ice block should be appropriately selected according to the construction scale, the time required for construction, the outside temperature, etc.When the construction scale is relatively small and the temperature is low, the ice with a diameter of about several mm, depending on the case, It is conceivable to use ice blocks with a grain size of up to about 30 mm when snow is used, the scale is large, and the temperature is high.

ミキシング装置で混合された処理土はタンクに移さ
れ、ポンプで掘削地盤内へ送り込み埋め戻される。
The treated soil mixed by the mixing device is transferred to a tank and pumped back into the excavated ground for backfilling.

埋め戻された処理土中のセメント成分の水和反応によ
り硬化した処理土は強度を発揮し、地盤改良が完了す
る。
The treated soil hardened by the hydration reaction of the cement component in the backfilled treated soil exerts its strength and the ground improvement is completed.

Claims (13)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】掘削した土砂または岩石とセメント系材料
に所定量の水を加えて撹拌混合した処理土を打設し、ま
た埋め戻して硬化させる人工地盤の造成方法において、
添加を必要とする水の一部または全部を小氷塊におきか
えて撹拌混合した処理土を用いることを特徴とする人工
地盤造成方法。
1. A method for constructing artificial ground, in which a predetermined amount of water is added to excavated earth or sand and rocks and a cement-based material, and the treated soil is stirred and mixed, and then backfilled and cured.
A method for constructing an artificial ground, characterized in that a part or all of water that needs to be added is replaced with a small ice block and agitated and mixed with the treated soil.
【請求項2】土砂または岩石は人工地盤造成現場で掘削
したものである請求の範囲第1項記載の人工地盤造成方
法。
2. The method for constructing an artificial ground according to claim 1, wherein the earth or sand or rock is excavated at an artificial ground constructing site.
【請求項3】土砂または岩石は他所で掘削し、運搬して
きたものである請求の範囲第1項記載の人工地盤造成方
法。
3. The method for constructing artificial ground according to claim 1, wherein the earth and sand or rock have been excavated and transported elsewhere.
【請求項4】土砂または岩石は掘削した状態のまま使用
する請求の範囲第1項記載の人工地盤造成方法。
4. The method for constructing an artificial ground according to claim 1, wherein the earth or sand or rock is used in an excavated state.
【請求項5】セメント系材料を加える土砂は土砂に含ま
れる水量の一部または掘削時に使用される泥水を分離し
て使用する請求の範囲第1項記載の人工地盤造成方法。
5. The method for constructing an artificial ground according to claim 1, wherein as the earth and sand to which the cement-based material is added, a part of the amount of water contained in the earth and sand or muddy water used during excavation is separated and used.
【請求項6】セメント系材料はポルトランドセメントで
ある請求の範囲第1項記載の人工地盤造成方法。
6. The method for constructing artificial ground according to claim 1, wherein the cement-based material is Portland cement.
【請求項7】ポルトランドセメントは重量比で2〜10%
添加する請求の範囲第6項記載の人工地盤造成方法。
7. Portland cement is 2 to 10% by weight.
The method for constructing artificial ground according to claim 6, wherein the artificial ground is added.
【請求項8】セメント系材料は石こうである請求の範囲
第1項記載の人工地盤造成方法。
8. The artificial ground construction method according to claim 1, wherein the cement-based material is gypsum.
【請求項9】セメント系材料は石灰である請求の範囲第
1項記載の人工地盤造成方法。
9. The method for constructing artificial ground according to claim 1, wherein the cementitious material is lime.
【請求項10】セメント系材料は水ガラスである請求の
範囲第1項記載の人工地盤造成方法。
10. The artificial ground construction method according to claim 1, wherein the cement-based material is water glass.
【請求項11】小氷塊は粒径が30mm以下である請求の範
囲第1項記載の人工地盤造成方法。
11. The method for constructing artificial ground according to claim 1, wherein the small ice blocks have a particle size of 30 mm or less.
【請求項12】掘削した土砂または岩石とセメント系材
料に所定量の水を加えて撹拌混合した処理土を埋め戻し
て硬化させる人工地盤の造成方法において、添加を必要
とする水の一部または全部を粒径10mm〜100mmの氷塊に
おきかえて撹拌混合し、該氷塊の混在下で処理土を埋め
戻し、凝固を開始せしめることにより空隙率の高い硬化
地盤を形成することを特徴とする人工地盤造成方法。
12. A method for constructing artificial ground, in which a predetermined amount of water is added to excavated earth or sand and rocks and cement-based material and stirred and mixed to backfill and harden the treated soil. An artificial ground characterized by forming a hardened ground with a high porosity by replacing the whole with an ice mass with a particle size of 10 mm to 100 mm and mixing with stirring, backfilling the treated soil in the presence of the ice mass, and causing solidification to start. Creation method.
【請求項13】セメント系材料はポルトランドセメント
である請求の範囲第12項記載の人工地盤造成方法。
13. The method for constructing artificial ground according to claim 12, wherein the cement-based material is Portland cement.
JP62503851A 1986-07-01 1987-06-25 Artificial ground creation method Expired - Lifetime JP2564587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62503851A JP2564587B2 (en) 1986-07-01 1987-06-25 Artificial ground creation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15462386 1986-07-01
JP61-154623 1986-07-01
JP62503851A JP2564587B2 (en) 1986-07-01 1987-06-25 Artificial ground creation method

Publications (1)

Publication Number Publication Date
JP2564587B2 true JP2564587B2 (en) 1996-12-18

Family

ID=26482857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62503851A Expired - Lifetime JP2564587B2 (en) 1986-07-01 1987-06-25 Artificial ground creation method

Country Status (1)

Country Link
JP (1) JP2564587B2 (en)

Similar Documents

Publication Publication Date Title
Ling et al. Global perspective on application of controlled low-strength material (CLSM) for trench backfilling–An overview
Liu et al. Effects of cementitious grout components on rheological properties
CN110723938B (en) Fluidized solidified soil and preparation method thereof
WO2005095300A1 (en) Concrete composition, process for producing the same, method of regulating viscosity, and method of constructing cast-in-place concrete pile from the concrete composition
CN109338999A (en) Using the construction method of cement sand and gravel processing side slope in a kind of rock
KR100900779B1 (en) A manufacturing method of artifical soil using coal dust
Lee et al. Shear strength and interface friction characteristics of expandable foam grout
KR100773991B1 (en) Solidification method of dredged soils
JP2728846B2 (en) Fluidization method
WO1988000260A1 (en) Method of producing artificial ground
KR20060136325A (en) Solidification method of dredged soils
SE512058C2 (en) Procedure for soil stabilization during road construction
JP6755743B2 (en) Manufacturing method of fluidized soil cement
JP2564587B2 (en) Artificial ground creation method
KR100312457B1 (en) Solidified composition to strengthen weak stratum and constructing method using the same
CN111908853A (en) Self-compacting soil, preparation method thereof and construction method for backfilling municipal cavity
JP7042016B1 (en) How to make soil cement
JP4408499B2 (en) Mud solidification method and artificial solidification ground
JP4054848B2 (en) Method for producing fluidized soil
JP6999253B1 (en) How to build a sabo dam
JP3088628B2 (en) Self-hardening stabilizer
JP2004217870A (en) Soil-stabilized soil and method for producing the same
JP7441685B2 (en) Fluidized soil and its manufacturing method
Singh et al. Improvement of Soil Sub grade by Using Red Mud for Flexible Payment
JP2003002725A (en) Construction material using site generated rock material