JP2564028C - - Google Patents

Info

Publication number
JP2564028C
JP2564028C JP2564028C JP 2564028 C JP2564028 C JP 2564028C JP 2564028 C JP2564028 C JP 2564028C
Authority
JP
Japan
Prior art keywords
polyimide resin
resin powder
powder
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Other languages
Japanese (ja)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Publication date

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、成形性に優れたポリイミド樹脂粉末およびこれからえられる成形体
に関する。さらに詳しくは、機械的特性に優れたポリイミド成形体を製造しうる
ポリイミド樹脂粉末および圧縮成形してえられる高強度、高靱性を有するポリイ
ミド樹脂成形体に関する。 [従来の技術] 芳香族ポリイミド樹脂成形体は、優れた耐熱性に加え、耐摩耗性、耐薬品性、
耐放射線性などの諸特性を有しており、摺動部材などの機構部品として、あるい
は自動車、事務機器、電気・電子機器、航空・宇宙、原子力、一般産業機械分野
などに広く利用されている。 しかしながら、このような優れた諸特性を有するポリイミド樹脂を、たとえば
金属代替材料、精密構造材料などとしてさらに用途を拡大していくためには、強
度、靱性といった機械的特性の改良が必須で、今日まで継続的な努力が払われて
いる。 このようなポリイミド樹脂は、一般的に有機溶剤には不溶でかつ加熱溶融しな
いため、厚物成形体の製造方法としては、ポリイミド樹脂の粉末を圧縮成形し、
かつ圧縮成形時と同時および/または圧縮成形したのち無圧の状態で加熱処理を
施すという方法が用いられている。 芳香族ポリイミド樹脂粉末の製造方法としては、たとえば特公昭39−300
60号に開示されているような方法、すなわち芳香族テトラカルボン酸二無水物
と芳香族ジアミンとを有機極性溶媒中で反応させてポリアミド酸の溶液をえ、つ
いでこれを熱的に脱水閉環させたのち、真空乾燥器で乾燥させ、ついで16時間
325℃で加熱することにより、ポリイミド樹脂粉末をえる方法がある。また、
特公昭39−9078号、特開昭61−252228号などに開示されているよ
うに、芳香族テトラカルボン酸二無水物と芳香族ジアミンとを有機極性溶媒中で
反応させてポリアミド酸の溶液をえ、ついでこの溶液を水、トルエン、ヘキサン
などのようなポリアミド酸に対する貧溶媒と接触させポリアミド酸を粉末として
えて、これを加熱することによりポリイミド樹脂粉末をえる方法、さらには特公
昭61−26926号に開示されているように、芳香族テトラカルボン酸成分と
芳香族ジイソシアナートとを有機極性溶媒中で反応させて直接ポリイミド樹脂粉
末をえる方法などが見い出せる。 [発明が解決しようとする課題] これらの従来の方法によると、大きい比表面積かつ約100%の高イミド化率
、高結晶性を有するポリイミド樹脂粉末あるいは小さい比表面積かつ低イミド化
率、低結晶性を有するポリイミド樹脂粉末がえられる。 しかしポリイミド樹脂粉末の比表面積は圧縮成形体の比重および機械的特性と
密接に関係していて、比表面積が小さいばあいには圧縮成形体において粉末同士
の合着性が不充分となるため成形体中のボイドの割合が増加し、成形体の比重、
機械的特性を低下させる。またポリイミド樹脂粉末のイミド化率、結晶性が高過 ぎるばあいは圧縮成形時および成形体加熱処理時における粉末間の相互作用が不
充分となり、成形体の機械的特性を低下させる。 すなわち、ポリイミド樹脂成形体の機械的特性改良のためには、一定以上の大
きい比表面積を有しかつ適当なイミド化率、結晶性を有するポリイミド樹脂粉末
を開発することが目的となる。 [課題を解決するための手段] 本発明者らはかかる課題を鑑み鋭意検討の結果、優れた耐熱性と機械的特性を
兼ね備えたポリイミド樹脂成形体を製造するためのポリイミド樹脂粉末および該
樹脂粉末を圧縮成形してえられる高強度、高靱性を有するポリイミド樹脂成形体
を提供するに至った。具体的には、20m2/g以上の比表面積を有しかつ90
%より低いイミド化率を有する本質的に結晶性のポリイミド樹脂粉末の製造を可
能にし、さらにはこのようなポリイミド樹脂粉末を用いることにより比重、強度
及び靱性が大幅に改善されたポリイミド成形体がえられることを見い出し、本発
明に至った。 本発明は、一般式(I): (式中、R0は炭素数6〜30の4価の芳香族基、R1は炭素数6〜30の2価の
芳香族基、nは正の整数を表す)で示される繰返し単位を含む芳香族ポリイミド
樹脂粉末において、粉末の比表面積が20m2/g以上であり、かつイミド化率
が90%未満であって、本質的に結晶性であることを特徴とするポリイミド樹脂
粉末に関するものである。 さらに本発明は、前記ポリイミド樹脂粉末を圧縮成形し、かつ圧縮成形と同時
および/または圧縮成形したのち無圧の状態で加熱処理を施してなることを特徴
とするポリイミド樹脂成形体に関するものである。 [実施例] 本発明のポリイミド樹脂粉末は、比表面積が少なくとも1m2/g以上、好ま
しくは10m2/g以上で、特に好ましくは20m2/g以上であり、かつイミド
化率が95%未満、好ましくは90%未満の特性値を有しており、本質的に結晶
性であることを必須要件としており、またその対数粘度は、たとえば濃硫酸の溶
液として0.5g/100mlの濃度で30℃で測定すると一般に0.1〜2.
0の値を有するが、少なくとも0.1以上であることが好ましい。0.1未満の
値を有するポリイミド樹脂粉末を用いても、これからえられるポリイミド樹脂成
形体は十分な機械的強度が発現されない。したがって本発明の粉末を圧縮成形す
ることによりえられたポリイミド樹脂成形体は優れた耐熱性に加え、高比重、高
強度および高靱性を有している。なおここでいうイミド化率とは、アミド酸がイ
ミドに閉環した割合のことであり、たとえばフーリエ変換赤外吸収スペクトルの
測定により算出される。詳しくは、まず第一にイミド環に基づく720cm-1
近の吸収およびベンゼン環に基づく880cm-1付近の吸収の吸光度の比(以下
、この比をrとする)を求める。次にポリアミド酸のイミド化率を0%とし、特
公昭39−30060号に開示されているような方法、すなわち芳香族テトラカ
ルボン酸二無水物と芳香族ジアミンとを有機極性溶媒中で反応させてポリアミド
酸の溶液をえ、ついでこれを熱的に脱水閉環させる方法により製造したポリイミ
ド樹脂粉末を、さらに300℃で5時間加熱処理することによりえた粉末のイミ
ド化率を100%として、rの大小に比例した相対値として与えられる。 本発明の一般式(I)で示される繰返し単位を含むポリイミドにおいて、R0
は炭素数6〜30の4価の芳香族基であることが好ましい。そのような基の具体
例としてはピロメリット酸、3,3′,4,4′−ビフェニルテトラカルボン酸
、3,3′,4,4′−ベンゾフェノンテトラカルボン酸、3,3′,4,4′
−ジフェニルスルホンテトラカルボン酸、3,3′,4,4′−ジフェニルエー
テルテトラカルボン酸、ナフタレン−1,2,5,6−テトラカルボン酸、2,
2−ヘキサフルオロプロピリデン−ビスフタル酸からカルボン酸基を除いた残基
などがあげられ、これらを単独もしくは2種以上の混合物として用いることがで
きる。これらの中ではピロメリット酸残基が特に好ましい。 また、R1は炭素数6〜30の芳香族基を含有する2価の有機基であり、かつ 芳香環を形成する炭素原子が結合手となる基であることが好ましい。そのような
基の具体例としては、4,4′−ジアミノジフェニルエーテル、3,4′−ジア
ミノジフェニルエーテル、3,3′−ジアミノジフェニルエーテル、4,4′−
ジアミノジフェニルスルフィド、4,4′−ビス(4−アミノフェノキシ)ビフ
ェニル、4,4′−ジアミノジフェニルスルホン、3,3′−ジアミノジフェニ
ルスルホン、3,3′−ジアミノベンゾフェノン、2,5−ジアミノベンズ4ア
ミド、ビス{4−(4−アミノフェノキシ)フェニル}スルホン、ビス{4−(
3−アミノフェノキシ)フェニル}スルホン、ビス{4-(2-アミノフェノキシ
)フェニル}スルホン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,
3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノ
キシ)ベンゼン、1,4−ビス(4−アミノフェニル)ベンゼン、ビス{4−(
4−アミノフェノキシ)フェニル}エーテル、4,4′´−ジアミノジフェニル
メタン、ビス(3−エチル−4−アミノフェニル)メタン、ビス(3−メチル−
4−アミノフェニル)メタン、ビス(3−クロロ−4−アミノフェニル)メタン
、4,4′−ジアミノビフェニル、4,4′−ジアミノオクタフルオロビフェニ
ル、3,3′−ジメトキシ−4,4′−ジアミノビフェニル、3,3′−ジメチ
ル−4,4′−ジアミノビフェニル、3,3′−ジクロロ−4,4′−ジアミノ
ビフェニル、2,2′,5,5′−テトラクロロ−4,4′−ジアミノビフェニ
ル、3,3′−ジカルボキシ−4,4′−ジアミノビフェニル、3,3′−ジヒ
ドロキシ−4,4′−ジアミノビフェニル、2,4−ジアミノトルエン、1,3
−ジアミノベンゼン、1,4−ジアミノベンゼン、2,2′−ビス{4−(4−
アミノフェノキシ)フェニル}プロパン、2,2′−ビス{4−(4−アミノフ
ェノキシ)フェニル}ヘキサフルオロプロパン、2,2′−ビス(4−アミノフ
ェニル)プロパン、2,2′−ビス(4−アミノフェニル)ヘキサフルオロプロ
パン、2,2′−ビス(3−ヒドロキシ−4−アミノフェニル)プロパン、2,
2′−ビス(3−ヒドロキシ−4−アミノフェニル)ヘキサフルオロプロパン、
9,9′−ビス(4−アミノフェニル)−10−ヒドロアントラセン、オルトト
リジンスルホンからアミノ基を除いた残基などがあげられ、これらを単独もしく
は2種以上の混合物として用いることができる。これらの中では、4, 4′−ジアミノジフェニルエーテルからアミノ基を除いた残基が好ましい。 本発明のポリイミド樹脂粉末は、たとえばピロメリット酸二無水物などの芳香
族テトラカルボン酸二無水物と、たとえば4,4′−ジアミノジフェニルエーテ
ルなどの芳香族ジアミンとを、たとえばピリジンと、N,N−ジメチルアセトア
ミドまたはN,N−ジメチルホルムアミドなどの有機極性溶媒中で反応させてポ
リアミド酸溶液を調製し、ついで、該ポリアミド酸溶液を加熱してポリアミド酸
を脱水閉環させたのち冷却し、濾過してえられた粉末を約200℃以下の温度で
乾燥させる方法などによって製造することができる。 すなわち、本発明によるポリイミド樹脂粉末は、優れた機械的特性を有する成
形体を製造するために必要である大きい比表面積および低イミド化率を合わせ持
つ本質的に結晶性のものでありしかも、たとえばポリアミド酸溶液から熱的に脱
水閉環させイミド化させるという極めて簡便な方法により製造されうることを特
徴としている。 本発明の新規ポリイミド樹脂粉末から本発明のポリイミド樹脂成形体を製造す
る方法としては、以下のような方法が公知の技術である。 たとえば、金型内に充填した該樹脂粉末を数百〜数千kg/cm2圧力で圧縮
成形を行ない、この圧縮成形時と同時に加圧状態でおよび/または圧縮成形を行
ったのち無圧の状態で、該ポリイミド樹脂のガラス転移温度以上かつ分解温度以
下の温度で加熱処理を施す方法、あるいは弾性を有するラバーケースなどに該樹
脂粉末を充填したのち、CIP装置(冷間静水圧装置)および/またはHIP装
置(熱間静水圧装置)にて数百〜数千kg/cm2圧力で処理し、この時同時に
加圧状態および/または処理後無圧の状態で該ポリイミド樹脂のガラス転移温度
以上かつ分解温度以下の温度で加熱処理を施す方法などがあり、これらいずれの
方法によっても本発明のポリイミド樹脂成形体を製造することができる。 さらに以下の実施例によって本発明を具体的に説明するが、本発明はこれら実
施例のみに限定されるものではない。 実施例1 窒素気流下、4,4′−ジアミノジフェニルエーテル(以下、ODAとする)
20.02g(0.10mol)をN,N−ジメチルアセトアミド(以下、DM Acとする)250mlとピリジン(以下、Pyとする)250mlの混合溶液
に溶解したのち、氷冷下、ピロメリット酸二無水物(以下、PMDAとする)2
1.81g(0.10mol)を粉末のまま約30分間で徐々に添加した。添加
終了後60分間撹拌を続け、ポリアミド酸溶液約500mlをえた。 引き続きえられたポリアミド酸溶液を加熱し、加熱撹拌を続けた。この時の内
温は110℃であった。放冷後瀘過しえられた粉末をDMAc、メタノールの順
に洗浄、瀘過を繰返した。 さらに粉末を150℃で数時間減圧乾燥したのち、絶乾状態にするために、パ
ーフェクトオーブンにて200℃で熱処理し、本発明のポリイミド樹脂粉末約3
6gをえた。 以上の処理によりえられたポリイミド樹脂粉末の一部を取り、その比表面積お
よびイミド化率を各々、B.E.T.法を用いた比表面積測定および赤外吸収ス
ペクトルの測定により算出した。またこのポリイミド樹脂粉末の結晶性を評価す
るために回折強度を広角X線回折計を用いて測定した。第1図にその回折強度曲
線を示すように2θが11°(ピーク1)、14°(ピーク2)、23°(ピー
ク3)および27°(ピーク4)付近に各々ピークが観察された。このことは、
このポリイミド樹脂粉末は本質的に結晶性であることを示している。 こののち、残りのポリイミド樹脂粉末を金型内に充填し、油圧式圧縮成形機を
用いて、室温にて5000kg/cm2圧力で3分間加圧した。さらに無圧の状
態で窒素気流下、450℃で30分間加熱処理を施しポリイミド樹脂成形体をえ
た。 このようにしてえられたポリイミド樹脂成形体について、比重(JIS K
7112の方法)、曲げ強度ならびに曲げ弾性率(JIS K 7203の方法
)、引張破断強度ならびに引張破断伸び(JIS K 6911の方法)、Vノ
ッチ付アイゾット衝撃強度(JIS K 7110の方法)を測定した。これら
の結果を比表面積およびイミド化率の結果と合わせて第1表に示す。 実施例2 実施例1で用いたDMAcにかえてN,N−ジメチルホルムアミド(以下、D
MFとする)250mlを用いたほかは、実施例1と同様に反応および処理し、 本発明のポリイミド樹脂粉末約36gをえた。 またえられたポリイミド樹脂粉末の一部を取り、その比表面積およびイミド化
率をそれぞれ実施例1と同様に算出した。 こののち、残りのポリイミド樹脂粉末を実施例1と同様に処理してポリイミド
樹脂成形体をえた。 このようにしてえられたポリイミド樹脂成形体について、比重、曲げ強度なら
びに弾性率、引張破断強度ならびに引張破断伸び、Vノッチ付アイゾット衝撃強
度をそれぞれ実施例1と同様の方法で測定した。これらの結果を比表面積および
イミド化率の結果と合わせて第1表に示す。 比較例1 実施例1と同様にしてえられたポリアミド酸溶液を加熱し、加熱撹拌を続けた
。この時の内温は132℃であった。放冷後瀘過しえられた粉末をDMAc、メ
タノールの順に洗浄、瀘過を繰返した。 さらに粉末を150℃で数時間減圧乾燥したのち、パーフェクトオーブンにお
いて200℃で処理し、ポリイミド樹脂粉末約37gをえた。 またえられたポリイミド樹脂粉末の一部を取り、その比表面積およびイミド化
率をそれぞれ実施例1と同様に算出した。 こののち、残りのポリイミド樹脂粉末を実施例1と同様に処理して、ポリイミ
ド樹脂成形体をえた。 このようにしてえられたポリイミド樹脂成形体について、比重、曲げ強度なら
びに曲げ弾性率、引張破断強度ならびに引張破断伸び、Vノッチ付アイゾット衝
撃強度をそれぞれ実施例1と同様の方法で測定した。これらの結果を比表面積お
よびイミド化率の結果と合わせて第1表に示す。 比較例2 実施例1と同様にしてえられたポリアミド酸溶液100mlをとり、これにD
MAc40mlを加えて充分に撹拌したのち、強い撹拌中塩化メチレン1200
mlを徐々に添加しポリアミド酸の粉末をスラリー状でえた。えられたポリアミ
ド酸の粉末を塩化メチレンで洗浄、瀘過を繰返した。 さらに粉末を150℃で数時間減圧乾燥したのち、パーフェクトオーブンにお いて200℃で処理し、ポリイミド樹脂粉末約7.2gをえた。 またえられたポリイミド樹脂粉末の一部を取り、その比表面積およびイミド化
率をそれぞれ実施例1と同様に算出した。 こののち、残りのポリイミド樹脂粉末を実施例1と同様に処理して、ポリイミ
ド樹脂成形体をえた。 このようにしてえられたポリイミド樹脂成形体について、比重、曲げ強度なら
びに曲げ弾性率、引張破断強度ならびに引張破断伸び、Vノッチ付アイゾット衝
撃強度をそれぞれ実施例1と同様の方法で測定した。これらの結果を比表面積お
よびイミド化率の結果と合わせて第1表に示す。 第1表より、実施例1および2からえられたポリイミド樹脂粉末は20m2
gより大きい比表面積と90%より低いイミド化率を兼ね備えており、また第1
図よりこのポリイミド樹脂粉末は本質的に結晶性であることがわかる。このよう
なポリイミド樹脂粉末を圧縮成形してえられるポリイミド樹脂成形体は、高比重
、高い引張破断強度および引張破断伸び、ならびに高い衝撃強度などを発現して
いる。 [発明の効果] 本発明により大きい比表面積かつ低イミド化率を有する本質的に結晶性のポリ
イミド樹脂粉末ををえた。またさらにそれを圧縮成形してえられるポリイミド樹
脂成形体は、芳香族ポリイミド樹脂の本来の特性である高耐熱性に加え強度、靱
性などの機械的特性においても極めて優れており、機械部品などに極めて広範囲
かつ有用に使用されうる。
Description: TECHNICAL FIELD The present invention relates to a polyimide resin powder excellent in moldability and a molded article obtained therefrom. More specifically, the present invention relates to a polyimide resin powder capable of producing a polyimide molded article having excellent mechanical properties and a polyimide resin molded article having high strength and high toughness obtained by compression molding. [Prior art] In addition to excellent heat resistance, an aromatic polyimide resin molded article has abrasion resistance, chemical resistance,
Has various properties such as radiation resistance, and is widely used as mechanical parts such as sliding members, or in the fields of automobiles, office equipment, electric and electronic equipment, aerospace and nuclear power, and general industrial machinery. . However, in order to further expand the applications of polyimide resins having such excellent properties as, for example, metal substitutes and precision structural materials, it is necessary to improve mechanical properties such as strength and toughness. Ongoing efforts have been made until now. Since such a polyimide resin is generally insoluble in an organic solvent and does not melt by heating, as a method for producing a thick molded product, a polyimide resin powder is compression-molded,
In addition, a method is used in which a heat treatment is performed at the same time as the compression molding and / or after the compression molding and without pressure. As a method for producing an aromatic polyimide resin powder, for example, JP-B-39-300
No. 60, that is, an aromatic tetracarboxylic dianhydride and an aromatic diamine are reacted in an organic polar solvent to obtain a polyamic acid solution, which is then thermally dehydrated and ring-closed. Thereafter, there is a method in which the polyimide resin powder is obtained by drying with a vacuum drier and then heating at 325 ° C. for 16 hours. Also,
As disclosed in JP-B-39-9078 and JP-A-61-252228, an aromatic tetracarboxylic dianhydride and an aromatic diamine are reacted in an organic polar solvent to form a polyamic acid solution. Then, the solution is brought into contact with a poor solvent for polyamic acid such as water, toluene, hexane, etc. to obtain a polyamic acid as a powder, and heating to obtain a polyimide resin powder. As disclosed in the above publication, a method can be found in which an aromatic tetracarboxylic acid component is reacted with an aromatic diisocyanate in an organic polar solvent to directly obtain a polyimide resin powder. [Problems to be Solved by the Invention] According to these conventional methods, a polyimide resin powder having a large specific surface area and a high imidization ratio of about 100% and high crystallinity or a small specific surface area and a low imidization ratio and a low crystallinity A polyimide resin powder having properties is obtained. However, the specific surface area of the polyimide resin powder is closely related to the specific gravity and mechanical properties of the compact, and when the specific surface area is small, the cohesion between the powders in the compact becomes insufficient. The proportion of voids in the body increases, the specific gravity of the molded body,
Decreases mechanical properties. If the imidation ratio and the crystallinity of the polyimide resin powder are too high, the interaction between the powders during compression molding and during the heat treatment of the compact becomes insufficient, and the mechanical properties of the compact deteriorate. That is, in order to improve the mechanical properties of the polyimide resin molded article, it is an object to develop a polyimide resin powder having a specific surface area of not less than a certain value and an appropriate imidization ratio and crystallinity. Means for Solving the Problems The present inventors have conducted intensive studies in view of such problems, and as a result, obtained a polyimide resin powder for producing a polyimide resin molded article having both excellent heat resistance and mechanical properties, and the resin powder. To provide a polyimide resin molded article having high strength and high toughness obtained by compression molding. Specifically, it has a specific surface area of 20 m 2 / g or more and 90
%, Which enables the production of essentially crystalline polyimide resin powder having an imidation ratio of less than 10%, and furthermore, by using such a polyimide resin powder, a polyimide molded article whose specific gravity, strength and toughness are greatly improved can be obtained. The inventors have found that the present invention is possible, and have reached the present invention. The present invention provides a compound represented by the general formula (I): (Wherein R 0 is a tetravalent aromatic group having 6 to 30 carbon atoms, R 1 is a divalent aromatic group having 6 to 30 carbon atoms, and n represents a positive integer). Aromatic polyimide resin powder comprising a powder having a specific surface area of 20 m 2 / g or more, an imidization ratio of less than 90%, and being essentially crystalline. It is. Further, the present invention relates to a polyimide resin molded product obtained by compression-molding the polyimide resin powder and performing a heat treatment at the same time as the compression molding and / or after the compression molding and without pressure. . [Examples] The polyimide resin powder of the present invention has a specific surface area of at least 1 m 2 / g, preferably at least 10 m 2 / g, particularly preferably at least 20 m 2 / g, and an imidization ratio of less than 95%. , Preferably having a characteristic value of less than 90%, being essentially crystalline and having an inherent viscosity of, for example, 30 g at a concentration of 0.5 g / 100 ml as a solution of concentrated sulfuric acid. 0.1 to 2.degree.
It has a value of 0, but is preferably at least 0.1 or more. Even if a polyimide resin powder having a value of less than 0.1 is used, a polyimide resin molded product obtained therefrom does not exhibit sufficient mechanical strength. Therefore, the polyimide resin molded article obtained by compression molding the powder of the present invention has high specific gravity, high strength and high toughness in addition to excellent heat resistance. Here, the imidation ratio refers to a ratio of the amide acid closed to the imide, and is calculated, for example, by measuring a Fourier transform infrared absorption spectrum. Specifically, first, the ratio of the absorbance of the absorption around 880 cm -1 in the first based on the absorption and the benzene ring in the vicinity of 720 cm -1 based on the imide ring (hereinafter, this ratio and r) obtained. Next, the imidation ratio of the polyamic acid was set to 0%, and a method as disclosed in JP-B-39-30060, that is, an aromatic tetracarboxylic dianhydride and an aromatic diamine were reacted in an organic polar solvent. The polyimide resin powder produced by a method of thermally dehydrating and ring-closing the polyamic acid solution was further heated at 300 ° C. for 5 hours, and the imidation ratio of the powder obtained was set to 100%. It is given as a relative value proportional to the magnitude. In the polyimide of the present invention containing a repeating unit represented by the general formula (I), R 0
Is preferably a tetravalent aromatic group having 6 to 30 carbon atoms. Specific examples of such groups include pyromellitic acid, 3,3 ', 4,4'-biphenyltetracarboxylic acid, 3,3', 4,4'-benzophenonetetracarboxylic acid, 3,3 ', 4, 4 '
-Diphenylsulfonetetracarboxylic acid, 3,3 ', 4,4'-diphenylethertetracarboxylic acid, naphthalene-1,2,5,6-tetracarboxylic acid, 2,
Examples thereof include a residue obtained by removing a carboxylic acid group from 2-hexafluoropropylidene-bisphthalic acid, and these can be used alone or as a mixture of two or more. Of these, a pyromellitic acid residue is particularly preferred. Further, R 1 is preferably a divalent organic group containing an aromatic group having 6 to 30 carbon atoms, and a group in which a carbon atom forming an aromatic ring serves as a bond. Specific examples of such groups include 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, and 4,4'-
Diaminodiphenyl sulfide, 4,4'-bis (4-aminophenoxy) biphenyl, 4,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, 2,5-diaminobenz 4-amide, bis {4- (4-aminophenoxy) phenyl} sulfone, bis {4- (
3-aminophenoxy) phenyl} sulfone, bis {4- (2-aminophenoxy) phenyl} sulfone, 1,4-bis (4-aminophenoxy) benzene, 1,
3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenyl) benzene, bis {4- (
4-aminophenoxy) phenyl} ether, 4,4 ″ -diaminodiphenylmethane, bis (3-ethyl-4-aminophenyl) methane, bis (3-methyl-
4-aminophenyl) methane, bis (3-chloro-4-aminophenyl) methane, 4,4'-diaminobiphenyl, 4,4'-diaminooctafluorobiphenyl, 3,3'-dimethoxy-4,4'- Diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dichloro-4,4'-diaminobiphenyl, 2,2 ', 5,5'-tetrachloro-4,4' -Diaminobiphenyl, 3,3'-dicarboxy-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 2,4-diaminotoluene, 1,3
-Diaminobenzene, 1,4-diaminobenzene, 2,2'-bis {4- (4-
Aminophenoxy) phenyl} propane, 2,2′-bis {4- (4-aminophenoxy) phenyl} hexafluoropropane, 2,2′-bis (4-aminophenyl) propane, 2,2′-bis (4 -Aminophenyl) hexafluoropropane, 2,2'-bis (3-hydroxy-4-aminophenyl) propane, 2,
2'-bis (3-hydroxy-4-aminophenyl) hexafluoropropane,
Examples include 9,9'-bis (4-aminophenyl) -10-hydroanthracene, a residue obtained by removing an amino group from ortho-tolidine sulfone, and these can be used alone or as a mixture of two or more. Among these, a residue obtained by removing an amino group from 4,4'-diaminodiphenyl ether is preferable. The polyimide resin powder of the present invention comprises an aromatic tetracarboxylic dianhydride such as pyromellitic dianhydride and an aromatic diamine such as 4,4'-diaminodiphenyl ether, for example, pyridine, N, N -Polyamide acid solution is prepared by reacting in an organic polar solvent such as -dimethylacetamide or N, N-dimethylformamide, and then the polyamic acid solution is heated to dehydrate and ring-close the polyamic acid, followed by cooling and filtration. The obtained powder can be manufactured by a method of drying the powder at a temperature of about 200 ° C. or less. That is, the polyimide resin powder according to the present invention is essentially crystalline having both a large specific surface area and a low imidation ratio necessary for producing a molded article having excellent mechanical properties, and for example, It is characterized in that it can be produced from a polyamic acid solution by a very simple method of thermally dehydrating and ring-closing and imidizing. As a method for producing the polyimide resin molded article of the present invention from the novel polyimide resin powder of the present invention, the following methods are known techniques. For example, the resin powder filled in a mold is subjected to compression molding at a pressure of several hundreds to several thousand kg / cm 2 , and simultaneously with this compression molding, in a pressurized state and / or compression molding, and In this state, after heating the polyimide resin at a temperature not lower than the glass transition temperature and not higher than the decomposition temperature, or after filling the resin powder in an elastic rubber case or the like, a CIP device (cold hydrostatic device) and And / or HIP device (hot isostatic device) at a pressure of several hundreds to several thousand kg / cm 2 , and at the same time, the glass transition temperature of the polyimide resin in a pressurized state and / or a non-pressurized state after the treatment. There is a method of performing heat treatment at a temperature not lower than the decomposition temperature and the like, and the polyimide resin molded article of the present invention can be manufactured by any of these methods. Further, the present invention will be specifically described with reference to the following examples, but the present invention is not limited to these examples. Example 1 4,4'-diaminodiphenyl ether (hereinafter referred to as ODA) under a nitrogen stream
After dissolving 20.02 g (0.10 mol) in a mixed solution of 250 ml of N, N-dimethylacetamide (hereinafter, referred to as DMAc) and 250 ml of pyridine (hereinafter, referred to as Py), pyromellitic acid was added under ice cooling. Anhydrous (hereinafter referred to as PMDA) 2
1.81 g (0.10 mol) of the powder was slowly added in about 30 minutes. After completion of the addition, stirring was continued for 60 minutes to obtain about 500 ml of a polyamic acid solution. Subsequently, the obtained polyamic acid solution was heated, and heating and stirring were continued. The internal temperature at this time was 110 ° C. After cooling, the filtered powder was washed with DMAc and methanol in that order, followed by filtration. Further, the powder was dried under reduced pressure at 150 ° C. for several hours, and then heat-treated at 200 ° C. in a perfect oven to obtain a completely dried state.
6 g were obtained. A part of the polyimide resin powder obtained by the above treatment was taken, and its specific surface area and imidation ratio were respectively measured by B.I. E. FIG. T. It was calculated by measuring the specific surface area using the method and measuring the infrared absorption spectrum. The diffraction intensity was measured using a wide-angle X-ray diffractometer to evaluate the crystallinity of the polyimide resin powder. As shown in the diffraction intensity curve in FIG. 1, peaks were observed at around 2 ° of 11 ° (peak 1), 14 ° (peak 2), 23 ° (peak 3), and 27 ° (peak 4). This means
This indicates that the polyimide resin powder is essentially crystalline. Thereafter, the remaining polyimide resin powder was filled in a mold, and pressed at 5,000 kg / cm 2 at room temperature for 3 minutes using a hydraulic compression molding machine. Further, a heat treatment was performed at 450 ° C. for 30 minutes under a nitrogen stream under no pressure to obtain a polyimide resin molded body. With respect to the polyimide resin molded body thus obtained, specific gravity (JIS K
7112), flexural strength and flexural modulus (JIS K 7203 method), tensile rupture strength and tensile rupture elongation (JIS K 6911 method), and V-notched Izod impact strength (JIS K 7110 method). . Table 1 shows the results together with the results of the specific surface area and the imidation ratio. Example 2 Instead of DMAc used in Example 1, N, N-dimethylformamide (hereinafter referred to as D
The reaction and treatment were carried out in the same manner as in Example 1 except that 250 ml of MF was used to obtain about 36 g of the polyimide resin powder of the present invention. A part of the obtained polyimide resin powder was taken, and its specific surface area and imidation ratio were calculated in the same manner as in Example 1. Thereafter, the remaining polyimide resin powder was treated in the same manner as in Example 1 to obtain a polyimide resin molded body. The specific gravity, bending strength and elastic modulus, tensile rupture strength and tensile rupture elongation, and Izod impact strength with V notch of the polyimide resin molded article thus obtained were measured in the same manner as in Example 1. Table 1 shows the results together with the results of the specific surface area and the imidation ratio. Comparative Example 1 The polyamic acid solution obtained in the same manner as in Example 1 was heated and heated and stirred. The internal temperature at this time was 132 ° C. After cooling, the filtered powder was washed with DMAc and methanol in that order, followed by filtration. Further, the powder was dried under reduced pressure at 150 ° C. for several hours and then treated at 200 ° C. in a perfect oven to obtain about 37 g of a polyimide resin powder. A part of the obtained polyimide resin powder was taken, and its specific surface area and imidation ratio were calculated in the same manner as in Example 1. Thereafter, the remaining polyimide resin powder was treated in the same manner as in Example 1 to obtain a polyimide resin molded body. The specific gravity, flexural strength and flexural modulus, tensile rupture strength and tensile rupture elongation, and V-notched Izod impact strength of the polyimide resin molded article thus obtained were measured in the same manner as in Example 1. Table 1 shows the results together with the results of the specific surface area and the imidation ratio. Comparative Example 2 100 ml of the polyamic acid solution obtained in the same manner as in Example 1 was taken, and D was added thereto.
After adding 40 ml of MAc and stirring sufficiently, methylene chloride 1200 was added under strong stirring.
The resulting mixture was gradually added to obtain a polyamic acid powder in the form of a slurry. The obtained polyamic acid powder was washed with methylene chloride and filtered repeatedly. Further, the powder was dried under reduced pressure at 150 ° C. for several hours and then treated at 200 ° C. in a perfect oven to obtain about 7.2 g of a polyimide resin powder. A part of the obtained polyimide resin powder was taken, and its specific surface area and imidation ratio were calculated in the same manner as in Example 1. Thereafter, the remaining polyimide resin powder was treated in the same manner as in Example 1 to obtain a polyimide resin molded body. The specific gravity, flexural strength, flexural modulus, tensile rupture strength, tensile rupture elongation, and Izod impact strength with V notch of the polyimide resin molded article thus obtained were measured in the same manner as in Example 1. Table 1 shows the results together with the results of the specific surface area and the imidation ratio. According to Table 1, the polyimide resin powder obtained from Examples 1 and 2 was 20 m 2 /
g and an imidation ratio of less than 90%.
The figure shows that this polyimide resin powder is essentially crystalline. A polyimide resin molded article obtained by compression-molding such a polyimide resin powder exhibits high specific gravity, high tensile strength at break and tensile elongation at break, high impact strength, and the like. [Effect of the Invention] An essentially crystalline polyimide resin powder having a large specific surface area and a low imidization ratio is obtained in the present invention. In addition, the polyimide resin molded product obtained by compression molding is extremely excellent in mechanical properties such as strength and toughness in addition to high heat resistance which is the original characteristic of aromatic polyimide resin, and it is suitable for machine parts etc. It can be used very widely and usefully.

【図面の簡単な説明】 第1図は実施例1にしたがってえられた本発明のポリイミド樹脂粉末の広角X 線による回折強度曲線である。[Brief description of the drawings]   FIG. 1 shows the wide angle X of the polyimide resin powder of the present invention obtained according to Example 1. It is a diffraction intensity curve by a line.

Claims (1)

【特許請求の範囲】 【請求項1】 一般式(I): (式中、R0は炭素数6〜30の4価の芳香族基、R1は炭素数6〜30の2価の
芳香族基、nは正の整数を表す)で示される繰返し単位を含む芳香族ポリイミド
樹脂粉末において、粉末の比表面積が20m2/g以上であり、かつイミド化率
が90%未満であって、本質的に結晶性であることを特徴とするポリイミド樹脂
粉末。 【請求項2】 請求項1記載のポリイミド樹脂粉末を圧縮成形し、かつ圧縮成
形と同時および/または圧縮成形したのち無圧の状態で加熱処理を施してなるこ
とを特徴とするポリイミド樹脂成形体。
[Claim 1] General formula (I): (Wherein, R 0 is a tetravalent aromatic group having 6 to 30 carbon atoms, R 1 is a divalent aromatic group having 6 to 30 carbon atoms, and n is a positive integer). An aromatic polyimide resin powder comprising a powder having a specific surface area of 20 m 2 / g or more, an imidation ratio of less than 90%, and being essentially crystalline. 2. A polyimide resin molded article obtained by subjecting the polyimide resin powder according to claim 1 to compression molding, and simultaneously with and / or after compression molding, and then subjecting it to a heat treatment without pressure. .

Family

ID=

Similar Documents

Publication Publication Date Title
CN107108926B (en) Method for producing polyimide film using porous particles and low dielectric constant polyimide film
WO2009098791A1 (en) Imide oligomer and polyimide resin obtained by thermal curing thereof
EP2520606B1 (en) Method for manufacturing a wholly aromatic polyimide resin having improved heat resistance and elongation properties in a high temperature range
Chung et al. Novel organosoluble fluorinated polyimides derived from 1, 6-bis (4-amino-2-trifluoromethylphenoxy) naphthalene and aromatic dianhydrides
JPH05170536A (en) Carbon film and its production
JPH0320412B2 (en)
JPH07179605A (en) Polyimide and its production
CN110818951B (en) Modified graphene oxide, slurry, composite film, and preparation method and application thereof
Koning et al. Synthesis and properties of α, θ-diaminoalkane based polyimides
JPH0733875A (en) Highly crystalline polyimide powder and its production
KR102484478B1 (en) Method for producing plate-shaped polyimide powder with improved mechanical property
JP2564028B2 (en) Polyimide resin powder and molded body
DE2366399C2 (en) Polyamide-polyimide copolymers and their use for the manufacture of industrial products
JP2564028C (en)
JP2631926B2 (en) Thermosetting resin composition
JPH082962B2 (en) Method for producing aromatic polythioether imide
JPH06345868A (en) Polyimide and its production
JPS61162526A (en) Novel polyamide-imide resin and production thereof
JPH0345625A (en) Polyimide resin powder and molding comprising same
Liou et al. New organo‐soluble aromatic polyimides based on 3, 3′, 5, 5′‐tetrabromo‐2, 2‐bis [4‐(3, 4‐dicarboxyphenoxy) phenyl] propane dianhydride and aromatic diamines
JP2980017B2 (en) Polyamidoimide resin prepolymer
KR102255484B1 (en) Method for producing plate-shaped polyimide powder
JPH04142332A (en) Production of polyimide resin powder
JP4282750B1 (en) Imide oligomer and polyimide resin obtained by heat curing this
JPH0345624A (en) Polyimide resin powder and its molding