JPH04142332A - Production of polyimide resin powder - Google Patents

Production of polyimide resin powder

Info

Publication number
JPH04142332A
JPH04142332A JP26741090A JP26741090A JPH04142332A JP H04142332 A JPH04142332 A JP H04142332A JP 26741090 A JP26741090 A JP 26741090A JP 26741090 A JP26741090 A JP 26741090A JP H04142332 A JPH04142332 A JP H04142332A
Authority
JP
Japan
Prior art keywords
polyimide resin
resin powder
formula
polyamic acid
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26741090A
Other languages
Japanese (ja)
Inventor
Kazuhiko Tamai
和彦 玉井
Renichi Akahori
廉一 赤堀
Kazunari Iwamoto
和成 岩本
Hiroshi Iwakiri
浩 岩切
Kazuya Yonezawa
米沢 和弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP26741090A priority Critical patent/JPH04142332A/en
Publication of JPH04142332A publication Critical patent/JPH04142332A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PURPOSE:To obtain a polyimide resin powder which has a large specific surface area and a low degree of imidization, is crystalline and can give a molding excellent mechanical properties by cyclizing a specified aromatic polyamic acid through thermal dehydration by heating. CONSTITUTION:An aromatic polyamic acid comprising repeating units of formula I (wherein R0 is a 6-30C tetravalent aromatic group; R1 is a 6-30C bivalent aromatic group; and n is a positive integer) is cyclized through thermal dehydration by heating in an organic polar solvent (e.g. N,N-dimethylacetamide) to obtain an aromatic polyimide resin powder comprising repeating units of formula II (wherein R0 and R1 are as defined above; and m is a positive integer). This powder is prepared so that it may have a specific surface area of 20m<2>/g or above and a degree of imidization of below 90%. It is very excellent in mechanical properties such as strength and toughness in addition to high heat resistance inherent in an aromatic polyimide resin and can give a molding which can be very extensively and usefully used as a machine part or the like.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ポリイミド樹脂粉末の製造法に関する。さら
に詳しくは、機械的特性に優れたポリイミド樹脂成形体
を製造しうるポリイミド樹脂粉末の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing polyimide resin powder. More specifically, the present invention relates to a method for producing polyimide resin powder that can produce polyimide resin molded articles with excellent mechanical properties.

[従来の技術] 芳香族ポリイミド樹脂成形体は、優れた耐熱性に加え、
耐摩耗性、耐薬品性、耐放射線性などの諸特性を有して
おり、摺動部材などの機構部品として、あるいは自動車
、事務機器、電気・電子機器、航空・宇宙、原子力、一
般産業機械分野などに広く利用されている。
[Conventional technology] Aromatic polyimide resin moldings have excellent heat resistance and
It has various properties such as wear resistance, chemical resistance, and radiation resistance, and can be used as mechanical parts such as sliding members, automobiles, office equipment, electrical/electronic equipment, aerospace, nuclear power, and general industrial machinery. It is widely used in various fields.

しかしながら、このような優れた諸特性を有するポリイ
ミド樹脂を、たとえば金属代替材料、精密構造材料なと
としてさらに用途を拡大していくためには、強度、靭性
といった機械的特性の改良が必須で、今日まで継続的な
努力か払われている。
However, in order to further expand the use of polyimide resins, which have such excellent properties, as metal substitute materials and precision structural materials, it is essential to improve mechanical properties such as strength and toughness. Continuous efforts are being made to this day.

このようなポリイミド樹脂は、−船釣に有機溶剤には不
溶でかつ加熱溶融しないため、厚物成形体の製造方法と
しては、ポリイミド樹脂の粉末を圧縮成形し、かつ圧縮
成形時ど同時および/または圧縮成形したのち無圧の状
態で加熱処理を施すという方法が用いられている。
Such polyimide resins are insoluble in organic solvents and do not melt by heating, so the method for producing thick molded products is to compress polyimide resin powder and simultaneously and/or during compression molding. Alternatively, a method is used in which compression molding is performed and then heat treatment is performed in a non-pressure state.

芳香族ポリイミド樹脂粉末の製造方法としては、たとえ
ば特公昭39−30080号に開示されているような方
法、すなわち芳香族テトラカルボン酸二無水物と芳香族
ジアミンとを有機極性溶媒中で反応させてポリアミド酸
の溶液をえ、ついでこれを熱的に脱水閉環させることに
よりポリイミド樹脂粉末をえる方法がある。また、特公
昭89−9078号、特開昭61−252228号など
に開示されているように、芳香族テトラカルボン酸二無
水物と芳香族ジアミンとを有機極性溶媒中で反応させて
ポリアミド酸の溶液をえ、ついでこの溶液を水、トルエ
ン、ヘキサンなどのようなポリアミド酸に対する貧溶媒
と接触させポリアミド酸を粉末としてえて、これを加熱
することによりポリイミド樹脂粉末をえる方法、さらに
は特公昭61−26926号に開示されているように、
芳香族テトラカルボン酸成分と芳香族ジイソシアナート
とを有機極性溶媒中で反応させて直接ポリイミド樹脂粉
末をえる方法などが見い出せる。
The aromatic polyimide resin powder can be produced by, for example, the method disclosed in Japanese Patent Publication No. 39-30080, in which aromatic tetracarboxylic dianhydride and aromatic diamine are reacted in an organic polar solvent. There is a method of obtaining a polyimide resin powder by preparing a polyamic acid solution and then thermally dehydrating and ring-closing the solution. In addition, as disclosed in Japanese Patent Publication No. 89-9078 and Japanese Patent Application Laid-open No. 61-252228, polyamic acid is produced by reacting aromatic tetracarboxylic dianhydride and aromatic diamine in an organic polar solvent. A method of obtaining a polyimide resin powder by preparing a solution, then contacting this solution with a poor solvent for polyamic acid such as water, toluene, hexane, etc. to obtain a polyamic acid powder, and heating this, and furthermore, As disclosed in No.-26926,
A method can be found in which a polyimide resin powder is directly obtained by reacting an aromatic tetracarboxylic acid component and an aromatic diisocyanate in an organic polar solvent.

[発明が解決しようとする課題] これらの従来の方法によると、大きい比表面積かつ高イ
ミド化率、高結晶性を有するポリイミド樹脂粉末あるい
は小さい比表面積かつ低イミド化率、低結晶性を有する
ポリイミド樹脂粉末かえられる。
[Problems to be Solved by the Invention] According to these conventional methods, polyimide resin powder having a large specific surface area, high imidization rate, and high crystallinity, or polyimide resin powder having a small specific surface area, low imidization rate, and low crystallinity. Resin powder can be changed.

しかしポリイミド樹脂粉末の比表面積は圧縮成形体の比
重および機械的特性と密接に関係していて、比表面積が
小さいばあいには圧縮成形体において粉末同士の合着性
が不充分となるため成形体中のボイドの割合が増加し、
成形体の比重、機械的特性を低下させる。またポリイミ
ド樹脂粉末のイミド化率、結晶性が高過ぎるばあいは圧
縮成形時および成形体加熱処理時における粉末間の相互
作用が不充分となり、成形体の機械的特性を低下させる
However, the specific surface area of polyimide resin powder is closely related to the specific gravity and mechanical properties of the compression molded product, and if the specific surface area is small, the cohesiveness of the powders in the compression molded product will be insufficient, so molding The proportion of voids in the body increases,
Decrease the specific gravity and mechanical properties of the molded product. Furthermore, if the imidization rate and crystallinity of the polyimide resin powder are too high, the interaction between the powders during compression molding and heat treatment of the molded product will be insufficient, resulting in a decrease in the mechanical properties of the molded product.

すなわち、ポリイミド樹脂成形体の機械的特性改良のた
めには、一定量上の大きい比表面積を有しかつ適当なイ
ミド化率、結晶性を有するポリイミド樹脂粉末を開発す
ることが目的となる。
That is, in order to improve the mechanical properties of a polyimide resin molded article, the objective is to develop a polyimide resin powder that has a specific surface area that is larger than a certain amount, and has an appropriate imidization rate and crystallinity.

口課題を解決するための手段] 本発明者らはかかる課題を鑑み鋭意検討の結果、優れた
耐熱性と機械的特性を兼ね備えたポリイミド樹脂成形体
を製造するためのポリイミド樹脂粉末の製造法を提供す
るに至った。具体的には、200127g以上の比表面
積を有しかつ90%より低いイミド化率を有し、さらに
は比重、機械強度が大幅に改善されたポリイミド成形体
をえることができるポリイミド樹脂粉末の製造を可能に
し、本発明に至った。
[Means for Solving the Problems] In view of the above problems, the present inventors have conducted extensive studies and have developed a method for producing polyimide resin powder for producing polyimide resin molded articles that have both excellent heat resistance and mechanical properties. We have come to offer it. Specifically, the production of polyimide resin powder that has a specific surface area of 200,127 g or more, has an imidization rate lower than 90%, and can yield a polyimide molded product with significantly improved specific gravity and mechanical strength. This has led to the present invention.

本発明は、有機極性溶媒中、一般式(1);(式中、R
oは炭素数6〜30の4価の芳香族基、R1は炭素数6
〜30の2価の芳香族基、nは正の整数を表す)で示さ
れる繰返し単位を含む芳香族ポリアミド酸を加熱し熱的
に脱水閉環してなる、一般式(II): (式中、Roは炭素数6〜30の4価の芳香族基、R1
は炭素数6〜30の2価の芳香族基、優は正の整数を表
す)で示される繰返し単位を含む芳香族ポリイミド樹脂
粉末を製造する方法において、えられるポリイミド樹脂
粉末の比表面積が20m2/g以上であり、かつイミド
化率が90%未満であることを特徴とするポリイミド樹
脂粉末、芳香族ポリアミド酸を3級アミンの存在下に加
熱し、熱的に脱水閉環することを特徴とするポリイミド
樹脂粉末、 3級アミンがピリジンであることを特徴とするポリイミ
ド樹脂粉末、 芳香族ポリアミド酸を95℃以上130℃以下の温度で
熱的に脱水閉環することを特徴とするポリイミド樹脂粉
末、 前記R8が からなる群より選ばれる少なくとも一種であるポリイミ
ド樹脂粉末および 前記R,が υ からなる群より選ばれる少なくとも一種であるポリイミ
ド樹脂粉末 の製造法に関するものである。
In the present invention, general formula (1); (wherein, R
o is a tetravalent aromatic group having 6 to 30 carbon atoms, R1 is a carbon number 6
- 30 divalent aromatic groups, n represents a positive integer) is heated and thermally dehydrated and ring-closed to form an aromatic polyamic acid containing the general formula (II): (in the formula , Ro is a tetravalent aromatic group having 6 to 30 carbon atoms, R1
is a divalent aromatic group having 6 to 30 carbon atoms, and excellent is a positive integer. /g or more and an imidization rate of less than 90%, and an aromatic polyamic acid is heated in the presence of a tertiary amine to thermally dehydrate and ring-close the polyimide resin powder. polyimide resin powder characterized in that the tertiary amine is pyridine; polyimide resin powder characterized in that aromatic polyamic acid is thermally dehydrated and ring-closed at a temperature of 95°C or higher and 130°C or lower; The present invention relates to a method for producing a polyimide resin powder in which R8 is at least one selected from the group consisting of υ, and a polyimide resin powder in which R is at least one selected from the group consisting of υ.

[実施例] 本発明の一般式(りで示される繰返し単位を含むポリア
ミド酸および一般式(11)で示される繰返し単位を含
むポリイミドにおいて、Roは炭素数6〜30の4価の
芳香族基であることが好ましい。そのような基の具体例
としてはピロメリット酸、8,3°、4,4−ビフェニ
ルテトラカルボン酸、3.3’、4.4−ベンゾフェノ
ンテトラカルボン酸、8.3’、4.4′−ジフェニル
スルホンテトラカルボン酸、3.8’、4.4−ジフェ
ニルエーテルテトラカルボン酸、ナフタレン−1,2,
5,6−テトラカルボン酸、2.2−へキサフルオロプ
ロピリデン−ビスフタル酸からカルボン酸基を除いた残
基などがあげられ、これらを単独もしくは2種以上の混
合物として用いることができる。これらの中ではピロメ
リット酸残基が特に好ましい。
[Example] In the polyamic acid containing a repeating unit represented by the general formula (RI) and the polyimide containing a repeating unit represented by the general formula (11) of the present invention, Ro is a tetravalent aromatic group having 6 to 30 carbon atoms. Specific examples of such groups include pyromellitic acid, 8,3°,4,4-biphenyltetracarboxylic acid, 3,3',4,4-benzophenonetetracarboxylic acid, and 8.3 ', 4,4'-diphenylsulfonetetracarboxylic acid, 3.8', 4,4-diphenyl ethertetracarboxylic acid, naphthalene-1,2,
Examples include residues obtained by removing the carboxylic acid group from 5,6-tetracarboxylic acid and 2,2-hexafluoropropylidene-bisphthalic acid, and these can be used alone or in a mixture of two or more. Among these, pyromellitic acid residues are particularly preferred.

また、R1は炭素数6〜30の芳香族基を含有する2価
の有機基であり、かつ芳香環を形成する炭素原子が結合
手となる基であることが好ましい。そのような基の具体
例としては、4,4−ジアミノジフェニルエーテル、3
.4’−ジアミノジフェニルエーテル、3,3−ジアミ
ノジフェニルエーテル、4,4−ジアミノジフェニルス
ルフィド、4.4−ビス(4−アミノフェノキン)ビフ
ェニル、4.4−ジアミノジフェニルスルホン、3.3
′〜ジアミノジフエニルスルホン、3.3’−ジアミノ
ベンゾフェノン、2.5−ジアミノベンスアミド、ビス
 (4−(4−アミノフェノキシ)フェニル) スルホ
ン、ビス +4−(3−アミノフェノキン)フェニル)
スルホン、ビス+4−(2−アミノフェノキシ)フェニ
ル)スルホン、1.4−ビス(4−アミノフェノキシ)
ベンゼン、1.3−ビス(3−アミノフェノキシ)ベン
ゼン、1.3−ビス(4−アミノフェノキシ)ベンゼン
、1.4−ビス(4−アミノフェニル)ベンゼン、ビス
+4−(4−アミノフェノキシ)フェニル)エーテル、
4.4−ジアミノジフェニルメタン、ビス(3−エチル
−4−アミノフェニル)メタン、ビス(3−メチル−4
−アミノフェニル)メタン、ビス(3−クロロ−4−ア
ミノフェニル)メタン、4.4−ジアミノビフェニル、
4.4°−ジアミノオクタフルオロビフェニル、3゜3
°−ジメトキシ−4,4−ジアミノビフェニル、38−
ジメチル−4,4−ジアミノビフェニル、3.3−ジク
ロロ−4,4゛−ジアミノビフェニル、2,25.5−
テトラクロロ−4,4−ジアミノビフェニル3.8−ジ
カルボキシ−4,4−ジアミノビフェニル3.3−ジヒ
ドロキシ−4,4゛−ジアミノビフェニル2.4−ジア
ミノトルエン、1.3−ジアミノベンゼン1.4−ジア
ミノベンゼン、2.2−ビス (4−(4−アミノフェ
ノキシ)フェニル)プロパン、2.2’−ビス(4−(
4−アミノフェノキシ)フェニル)へキサフルオロプロ
パン、2.2’−ビス(4−アミノフェニル)プロパン
、2.2−ビス(4−アミノフェニル)へキサフルオロ
プロパン、2.2’−ビス(3−ヒドロキシ−4−アミ
ノフェニル)プロパン2.2′−ビス(3−ヒドロキシ
−4−アミノフェニルヘキサフルオロプロパン、9.9
−ビス(4−アミノフェニル)−10−ヒドロアントラ
セン、オルトトリジンスルホンからアミノ基を除いた残
基などがあげられ、これらを単独もしくは2種以上の混
合物として用いることができる。これらの中では、4,
4−ジアミノジフェニルエーテルがらアミノ基を除いた
残基が好ましい。
Further, R1 is preferably a divalent organic group containing an aromatic group having 6 to 30 carbon atoms, and a group in which a carbon atom forming an aromatic ring serves as a bond. Specific examples of such groups include 4,4-diaminodiphenyl ether, 3
.. 4'-diaminodiphenyl ether, 3,3-diaminodiphenyl ether, 4,4-diaminodiphenyl sulfide, 4.4-bis(4-aminophenoquine)biphenyl, 4.4-diaminodiphenyl sulfone, 3.3
'~diaminodiphenylsulfone, 3,3'-diaminobenzophenone, 2,5-diaminobenzamide, bis (4-(4-aminophenoxy)phenyl) sulfone, bis +4-(3-aminophenoquine)phenyl)
Sulfone, bis+4-(2-aminophenoxy)phenyl)sulfone, 1,4-bis(4-aminophenoxy)
Benzene, 1.3-bis(3-aminophenoxy)benzene, 1.3-bis(4-aminophenoxy)benzene, 1.4-bis(4-aminophenyl)benzene, bis+4-(4-aminophenoxy) phenyl) ether,
4.4-diaminodiphenylmethane, bis(3-ethyl-4-aminophenyl)methane, bis(3-methyl-4
-aminophenyl)methane, bis(3-chloro-4-aminophenyl)methane, 4,4-diaminobiphenyl,
4.4°-Diaminooctafluorobiphenyl, 3°3
°-dimethoxy-4,4-diaminobiphenyl, 38-
Dimethyl-4,4-diaminobiphenyl, 3,3-dichloro-4,4'-diaminobiphenyl, 2,25.5-
Tetrachloro-4,4-diaminobiphenyl 3.8-dicarboxy-4,4-diaminobiphenyl 3.3-dihydroxy-4,4'-diaminobiphenyl 2.4-diaminotoluene, 1.3-diaminobenzene 1. 4-diaminobenzene, 2.2-bis(4-(4-aminophenoxy)phenyl)propane, 2.2'-bis(4-(
4-aminophenoxy)phenyl)hexafluoropropane, 2.2'-bis(4-aminophenyl)propane, 2.2-bis(4-aminophenyl)hexafluoropropane, 2.2'-bis(3 -Hydroxy-4-aminophenyl)propane 2.2'-bis(3-hydroxy-4-aminophenylhexafluoropropane, 9.9
Examples include -bis(4-aminophenyl)-10-hydroanthracene, a residue obtained by removing the amino group from orthotolidine sulfone, and these can be used alone or in a mixture of two or more. Among these, 4,
A residue obtained by removing the amino group from 4-diaminodiphenyl ether is preferred.

前記一般式(1)で示される繰返し単位を含むポリアミ
ド酸は公知の方法によって製造される。
The polyamic acid containing the repeating unit represented by the general formula (1) is produced by a known method.

たとえば、芳香族テトラカルボン酸二無水物成分と芳香
族ジアミン成分とを有機極性溶媒中、100℃以下の温
度で反応させることによって製造されるが、その他の方
法によって製造されてもよい。また、ここてえられるポ
リアミド酸の対数粘度は、たとえばN、N−ジメチルア
セトアミドの溶液として0.5g/100m1の濃度で
30℃で測定したとき、少なくとも0.1以上であるこ
とが好ましい。
For example, it is produced by reacting an aromatic tetracarboxylic dianhydride component and an aromatic diamine component in an organic polar solvent at a temperature of 100° C. or lower, but it may be produced by other methods. Further, the logarithmic viscosity of the polyamic acid obtained here is preferably at least 0.1 when measured at 30° C. at a concentration of 0.5 g/100 ml as a solution of N,N-dimethylacetamide, for example.

本発明の一般式(I +)で示される繰返し単位を含む
ポリイミド樹脂粉末の製造方法としては、前記の方法に
よって製造される一般式(1)で示される繰返し単位を
含むポリアミド酸を、有機極性溶媒中、ある特定の条件
のもとて加熱し、熱的に脱水閉環させる方法があげられ
る。
As a method for producing a polyimide resin powder containing a repeating unit represented by the general formula (I An example is a method of thermally dehydrating and ring-closing by heating under certain conditions in a solvent.

ポリアミド酸から本発明のポリイミド樹脂粉末を製造す
るのに使用される有機極性溶媒としてはたとえば、ジメ
チルスルホキシド、ジエチルスルホキシドなどのスルホ
キシド系溶媒、N。
Examples of the organic polar solvent used for producing the polyimide resin powder of the present invention from polyamic acid include sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide;

N−ジメチルホルムアミド、N、N−ジエチルホルムア
ミドなどのホルムアミド系溶媒、N、N−ジメチルアセ
トアミド、N、N−ジエチルアセトアミドなどのアセト
アミド系溶媒、N−メチル−2−ピロリドン、N−アセ
チル−2−ピロリドン、N−ビニル−2ピロリドンなど
のピロリドン系溶媒、フェノール、0−クレゾール、m
−クレゾール、p−クレゾール、キシレノール、ハロゲ
ン化フェノール、カテコールなどのフェノール系溶媒あ
るいはヘキサメチルホスホルアミド、γ−ブチロラクト
ンなどをあげることができ、これらを単独もしくは2種
以上の混合物として用いることができる。これらの中で
は、ポリアミド酸の溶解性などの点からホルムアミド系
、アセトアミド系、ピロリドン系のアミド系溶媒が好ま
しい。
Formamide solvents such as N-dimethylformamide and N,N-diethylformamide, acetamide solvents such as N,N-dimethylacetamide and N,N-diethylacetamide, N-methyl-2-pyrrolidone, N-acetyl-2- pyrrolidone solvents such as pyrrolidone, N-vinyl-2-pyrrolidone, phenol, 0-cresol, m
- Phenolic solvents such as cresol, p-cresol, xylenol, halogenated phenol, and catechol, hexamethylphosphoramide, and γ-butyrolactone can be used, and these can be used alone or in a mixture of two or more. . Among these, formamide-based, acetamide-based, and pyrrolidone-based amide solvents are preferred from the viewpoint of solubility of polyamic acid.

さらに、n−ヘキサン、シクロヘキサン、n−オクタン
、ベンゼン、トルエン、キシレンなどの炭化水素系溶媒
、アセトン、メチルエチルケトン、メチルイソブチルケ
トンなどのケトン系溶媒、ジエチルエーテルなどのエー
テル系溶媒、塩化メチレン、クロロホルム、トリクロロ
トリフルオロエタンなどのハロゲン系炭化水素類なども
一部使用可能である。
Furthermore, hydrocarbon solvents such as n-hexane, cyclohexane, n-octane, benzene, toluene, and xylene, ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, ether solvents such as diethyl ether, methylene chloride, chloroform, Some halogenated hydrocarbons such as trichlorotrifluoroethane can also be used.

また、ポリアミド酸からポリイミド樹脂粉末への転換反
応は、3級アミンの存在下に行なうことが重要である。
Furthermore, it is important that the conversion reaction from polyamic acid to polyimide resin powder is carried out in the presence of a tertiary amine.

3級アミンはポリアミド酸の加水分解による重合体主鎖
の切断を防くとともに、ポリイミドへの脱水閉環反応の
反応速度を増加させる効果があることが知られている。
Tertiary amines are known to have the effect of preventing cleavage of the polymer main chain due to hydrolysis of polyamic acid and increasing the reaction rate of the dehydration ring closure reaction to form polyimide.

このような効果をもたらす3級アミンは脂肪族、芳香族
、ヘテロ環化合物など全てを含み、その具体例としては
、トリメチルアミン、トリエチルアミン、N、N−ジメ
チルベンジルアミン、N、N−ジメチルドデシルアミン
、トリエチレンジアミン、N、N−ジメチルアニリン、
3.4−ルチジン、3゜5−ルチジン、2,4.6−コ
リジン、2,6−ルチジン、ピリジン、4−ベンジルピ
リジン、2−メチルピリジン、3−メチルピリジン、4
−メチルピリジン、2−エチルピリジン、キノリン、イ
ンキノリンなどがあげられ、これらを単独もしくは2種
以上の混合物として用いることができる。これらの中で
は、ポリアミド酸を溶解させ、ポリイミドへの転換反応
の溶媒としても用いることかできることからピリジンが
好ましい。
Tertiary amines that bring about such effects include all aliphatic, aromatic, and heterocyclic compounds, and specific examples include trimethylamine, triethylamine, N,N-dimethylbenzylamine, N,N-dimethyldodecylamine, triethylenediamine, N,N-dimethylaniline,
3.4-lutidine, 3゜5-lutidine, 2,4.6-collidine, 2,6-lutidine, pyridine, 4-benzylpyridine, 2-methylpyridine, 3-methylpyridine, 4
-Methylpyridine, 2-ethylpyridine, quinoline, inquinoline, etc., and these can be used alone or in a mixture of two or more. Among these, pyridine is preferred because it can dissolve polyamic acid and can also be used as a solvent for the conversion reaction into polyimide.

これら3級アミンの使用量は、使用する3級アミンの塩
基性の強さやポリアミド酸の溶解性に依存するので一律
に規定することは難しいが、概してポリアミド酸のカル
ボン酸残基1モルに対して0.1当量以上、好ましくは
0.5当量以上、さらに好ましくは1.0当量以上、と
くに好ましくは2.0当量以上を用いる。
The amount of these tertiary amines to be used depends on the basic strength of the tertiary amine used and the solubility of the polyamic acid, so it is difficult to specify it uniformly, but in general, it is per mole of carboxylic acid residue of the polyamic acid. 0.1 equivalent or more, preferably 0.5 equivalent or more, more preferably 1.0 equivalent or more, particularly preferably 2.0 equivalent or more.

またこれら3級ア、ミンは、ポリアミド酸をポリイミド
に転換する際の加熱工程中、もしくは加熱前の任意の工
程中に一括または分割して添加すればよい。たとえば、
ポリアミド酸の合成前や合成工程中、あるいはポリアミ
ド酸の合成終了後で加熱開始前に添加すればよい。
Further, these tertiary amines and amines may be added all at once or in portions during the heating step for converting polyamic acid into polyimide or during any step before heating. for example,
It may be added before the synthesis of polyamic acid, during the synthesis process, or after the synthesis of polyamic acid is completed and before heating is started.

該ポリアミド酸は前記の有機極性溶媒および3級アミン
の混合液体に1〜30重量%、好ましくは1〜20重量
%、さらに好ましくは1〜15重量%の濃度で溶解され
る。
The polyamic acid is dissolved in the mixed liquid of the organic polar solvent and tertiary amine at a concentration of 1 to 30% by weight, preferably 1 to 20% by weight, and more preferably 1 to 15% by weight.

該ポリアミド酸の溶液を加熱し熱的に脱水閉環反応させ
、ポリイミド粉末を析出させてポリイミド樹脂粉末に転
換する本発明のポリイミド樹脂粉末の製造法においては
、加熱条件がきわめて重要となる。加熱温度は使用する
溶媒や3級アミンの種類およびその使用量に依存し一律
に規定するのは難しいが、概して95℃以上140℃以
下、好ましくは95℃以上130℃以下である。
In the method for producing polyimide resin powder of the present invention, in which the polyamic acid solution is heated to cause a thermal dehydration ring-closing reaction to precipitate polyimide powder and convert it into polyimide resin powder, heating conditions are extremely important. The heating temperature depends on the type and amount of the solvent and tertiary amine used and is difficult to uniformly define, but is generally 95°C or higher and 140°C or lower, preferably 95°C or higher and 130°C or lower.

これよりも低い温度ではポリイミドへの転換反応が著し
く遅く、均質なポリイミドの粉末をえることが困難とな
り、またこれよりも高い温度ではえられるポリイミド粉
末のイミド化率が高くなりすぎるので好ましくない。た
とえば、有機極性溶媒/3級アミンとしてN、N−ジメ
チルアセトアミド/ピリジン(重量比、■=1)、ポリ
アミド酸の溶液濃度10重量%(すなわちピリジンはポ
リアミド酸のカルボン酸残基1モルに対して約12当量
か使用される)に調整したときには、100〜120℃
の範囲で行なうことか重要となる。
At a temperature lower than this, the conversion reaction to polyimide is extremely slow, making it difficult to obtain a homogeneous polyimide powder, and at a temperature higher than this, the imidization rate of the polyimide powder obtained becomes too high, which is not preferable. For example, N,N-dimethylacetamide/pyridine (weight ratio, ■=1) as an organic polar solvent/tertiary amine, a solution concentration of 10% by weight of polyamic acid (that is, pyridine is added to 1 mole of carboxylic acid residue of polyamic acid) (approximately 12 equivalents are used), 100-120℃
It is important to do this within the range of

また、加熱時間は、加熱温度かより低いほど長く、より
高いほど短くする必要があるか、概して0.1〜50時
間、好ましくは0.1〜30時間である。
The heating time should be longer as the heating temperature is lower and shorter as the heating temperature is higher; it is generally 0.1 to 50 hours, preferably 0.1 to 30 hours.

前記の特定の条件のもとてポリアミド酸の溶液を加熱す
ることによってイミド閉環反応か進行しポリイミドが不
溶化して粉末として析出してくる。
By heating the polyamic acid solution under the above-mentioned specific conditions, the imide ring closure reaction proceeds, and the polyimide becomes insolubilized and precipitated as a powder.

こうしてえられたポリイミド粉末のスラリー溶液を冷却
後、濾別、洗浄、乾燥することによって本発明の特性を
有するポリイミド樹脂粉末かえられる。
The thus obtained slurry solution of polyimide powder is cooled, filtered, washed and dried to obtain a polyimide resin powder having the characteristics of the present invention.

ただし乾燥温度は300℃以下、好ましくは250℃以
下で行なう必要がある。これよりも高い乾燥温度で数時
間処理すると、ポリイミド樹脂粉末のイミド化率が高く
なりすぎるため好ましくない。
However, the drying temperature must be 300°C or lower, preferably 250°C or lower. If the drying temperature is higher than this for several hours, the imidization rate of the polyimide resin powder becomes too high, which is not preferable.

このように本発明の製造法によってえられるポリイミド
樹脂粉末は、比表面積が少なくとも1lI2/g以上、
好ましくは 10m2/g以上で、特に好ましくは20
m27g以上であり、かつイミド化率か95%未満、好
ましくは90%未満の特性値を有していることを必須要
件としており、またその対数粘度は、たとえば濃硫酸の
溶液として0.5g/100+nlの濃度で80℃で測
定すると一般に0.1〜2.0の値を有するが、少なく
とも0.1以上であることが好ましい。0.1未満の値
を有するポリイミド樹脂粉末を用いても、これからえら
れるポリイミド樹脂成形体は充分な機械的強度か発現さ
れない。なおここていうイミド化率とは、アミド酸かイ
ミドに閉環した割合のことであり、たとえばフーリエ変
換赤外吸収スペクトルの測定により算出される。詳しく
は、まず第一にイミド環に基づ< 720 c+n−1
付近の吸収およびベンゼン環に基づ<8800ffl−
1付近の吸収の吸光度の比(以下、この比を特とする請
求める。次にポリアミド酸のイミド化率を0%とし、特
公昭39−30080号に開示されているような方法、
すなわち芳香族テトラカルボン酸二無水物と芳香族ジア
ミンとを有機極性溶媒中で反応させてポリアミド酸の溶
液をえ、ついでこれを熱的に脱水閉環させる方法により
製造したポリイミド樹脂粉末を、さらに300℃で5時
間加熱処理することによりえた粉末のイミド化率を10
0%として、rの大小に比例した相対値として与えられ
る。
The polyimide resin powder obtained by the production method of the present invention has a specific surface area of at least 1lI2/g or more,
Preferably 10m2/g or more, particularly preferably 20m2/g or more
The essential requirements are that the imidization rate is less than 95%, preferably less than 90%, and the logarithmic viscosity is, for example, 0.5 g/m as a solution of concentrated sulfuric acid. When measured at 80° C. at a concentration of 100+nl, it generally has a value of 0.1 to 2.0, but preferably at least 0.1. Even if a polyimide resin powder having a value of less than 0.1 is used, the polyimide resin molded article obtained therefrom will not exhibit sufficient mechanical strength. The imidization rate referred to here refers to the rate of ring closure of amic acid to imide, and is calculated, for example, by measurement of Fourier transform infrared absorption spectrum. In detail, first of all, based on the imide ring < 720 c+n-1
<8800ffl- based on nearby absorption and benzene ring
The ratio of the absorbance of the absorption around 1 (hereinafter, this ratio can be specifically claimed).Next, the imidization rate of the polyamic acid is set to 0%, and the method as disclosed in Japanese Patent Publication No. 39-30080,
That is, a polyimide resin powder produced by a method of reacting an aromatic tetracarboxylic dianhydride and an aromatic diamine in an organic polar solvent to obtain a solution of polyamic acid, and then thermally dehydrating and ring-closing this, was The imidization rate of the powder obtained by heat treatment at ℃ for 5 hours was 10
It is given as a relative value proportional to the magnitude of r, assuming 0%.

すなわち、本発明は優れた機械的特性を有する成形体を
製造するために必要である大きい比表面積および低いイ
ミド化率を合わせ持つポリイミド樹脂粉末をポリアミド
酸溶液から熱的に脱水閉環させイミド化させるというき
わめて簡便な方法により製造しつることを特徴としてい
る。
That is, the present invention imidizes a polyimide resin powder, which has both a large specific surface area and a low imidization rate necessary for producing a molded article with excellent mechanical properties, by thermally dehydrating and ring-closing a polyamic acid solution. It is characterized by being manufactured by an extremely simple method.

このような製造法によりえられたポリイミド樹脂粉末を
圧縮成形することによりえられるポリイミド樹脂成形体
は優れた耐熱性に加え、高比重、高引張強度、高引張破
断伸びおよび高衝撃強度などの優れた機械特性を有して
いる。
The polyimide resin molded product obtained by compression molding the polyimide resin powder obtained by this manufacturing method has excellent heat resistance, as well as high specific gravity, high tensile strength, high tensile elongation at break, and high impact strength. It has excellent mechanical properties.

さらに以下の実施例によって本発明を具体的に説明する
が、本発明はこれら実施例のみに限定されるものではな
い。
Further, the present invention will be specifically explained with reference to the following examples, but the present invention is not limited only to these examples.

実施例1 窒素気流下、4.4−ジアミノジフェニルエーテル(以
下、ODAとする)  20.02g(0,10mol
)をN、N−ジメチルアセトアミド(以下、DMAcと
する) 2501とピリジン(以下、pyとする)25
01の混合溶液に溶解したのち、水冷下、ピロメリット
酸二無水物(以下、PMDAとする) 21.81g(
0,10mol)を粉末のまま約30分間で徐々に添加
した。添加終了後60分間撹拌を続け、ポリアミド酸溶
戒約5001をえた。
Example 1 Under a nitrogen stream, 20.02 g (0.10 mol) of 4,4-diaminodiphenyl ether (hereinafter referred to as ODA)
) with N,N-dimethylacetamide (hereinafter referred to as DMAc) 2501 and pyridine (hereinafter referred to as py) 25
After dissolving in the mixed solution of 01, 21.81 g of pyromellitic dianhydride (hereinafter referred to as PMDA) was added under water cooling.
0.10 mol) was gradually added as a powder over about 30 minutes. After the addition was completed, stirring was continued for 60 minutes to obtain a polyamic acid concentration of about 5001.

引き続きえられたポリアミド酸溶液を加熱し、加熱撹拌
を続けた。この時の内温は110℃であった。この間ポ
リイミドが不溶化し、粉末として析出してきた。放冷後
濾過しえられた粉末をDMAc、メタノールの順に洗浄
、濾過を繰返した。
Subsequently, the obtained polyamic acid solution was heated and continued to be heated and stirred. The internal temperature at this time was 110°C. During this time, the polyimide became insolubilized and precipitated as a powder. After cooling, the filtered powder was washed with DMAc and methanol in this order, and the filtration was repeated.

さらに粉末を150℃で数時間減圧乾燥したのち、パー
フェクトオーブンにおいて200℃て処理し、本発明の
ポリイミド樹脂粉末的38gをえた。
Further, the powder was dried under reduced pressure at 150° C. for several hours, and then treated in a perfect oven at 200° C. to obtain 38 g of the polyimide resin powder of the present invention.

以上の処理によりえられたポリイミド樹脂粉末の一部を
取り、その比表面積およびイミド化率を各々、B、E、
T、法を用いた比表面積測定および赤外吸収スペクトル
の測定により算出した。
A part of the polyimide resin powder obtained by the above treatment was taken, and its specific surface area and imidization rate were determined as B, E,
It was calculated by measuring the specific surface area using the T, method and measuring the infrared absorption spectrum.

またこのポリイミド樹脂粉末の結晶性を評価するために
回折強度を広角X線回折計を用いて測定した。第1図に
その回折強度曲線を示すように2θが11° (ピーク
1)、14° (ピーク2)、23° (ピーク3)お
よび27° (ピーク4)付近に各々ピークが観察され
た。このことは、このポリイミド樹脂粉末は本質的に結
晶性であることを示している。
Furthermore, in order to evaluate the crystallinity of this polyimide resin powder, the diffraction intensity was measured using a wide-angle X-ray diffractometer. As shown in the diffraction intensity curve of FIG. 1, peaks were observed near 2θ of 11° (peak 1), 14° (peak 2), 23° (peak 3), and 27° (peak 4). This indicates that this polyimide resin powder is essentially crystalline.

こののち、残りのポリイミド樹脂粉末を金型内に充填し
、油圧式圧縮成形機を用いて、室温にて5000kg/
ca+2圧力で3分間加圧した。さらに無圧の状態で窒
素気流下、450℃で30分間加熱処理を施しポリイミ
ド樹脂成形体をえた。
After that, the remaining polyimide resin powder was filled into the mold, and a hydraulic compression molding machine was used to produce 5,000 kg/mold at room temperature.
Pressure was applied for 3 minutes at ca+2 pressure. Further, heat treatment was performed at 450° C. for 30 minutes under a nitrogen stream in a non-pressure state to obtain a polyimide resin molded body.

このようにしてえられたポリイミド樹脂成形体について
、比重(JIS K 7112の方法)、曲げ強度なら
びに曲げ弾性率(JIS K 7203の方法)、引張
破断強度ならびに引張破断伸び (JIS K 8911の方法)、■ノツチ付アイゾツ
ト衝撃強度(JIS K 7110の方法)を測定した
。これらの結果を比表面積およびイミド化率の結果と合
わせて第1表に示す。
Regarding the polyimide resin molding thus obtained, specific gravity (method of JIS K 7112), bending strength and flexural modulus (method of JIS K 7203), tensile strength at break and tensile elongation at break (method of JIS K 8911) were measured. , (2) Notched Izot impact strength (method of JIS K 7110) was measured. These results are shown in Table 1 together with the results of specific surface area and imidization rate.

実施例2 窒素気流下、ODA 20.02g(0,lOmol)
をN、N−ジメチルホルムアミド(以下、DMPとする
)2001とPy 200+nlの混合溶液に溶解した
のち、氷冷下、PMDA 21.81g(0,1Oio
1)を粉末のまま約30分間で徐々に添加した。添加終
了後60分間撹拌を続け、ポリアミド酸溶液的4001
をえた。
Example 2 Under nitrogen flow, ODA 20.02g (0,1Omol)
was dissolved in a mixed solution of N,N-dimethylformamide (hereinafter referred to as DMP) 2001 and Py 200+nl, and then 21.81 g of PMDA (0.1 Oio
1) was gradually added as a powder over about 30 minutes. After the addition was completed, stirring was continued for 60 minutes, and the polyamic acid solution 4001
I got it.

引き続きえられたポリアミド酸溶液を加熱し、加熱撹拌
を続けた。このときの内温は107℃であった。この間
ポリイミドが不溶化し、粉末として析出してきた。放冷
後濾過しえられた粉末をDMF 、メタノールの順に洗
浄、濾過を繰返した。
Subsequently, the obtained polyamic acid solution was heated and continued to be heated and stirred. The internal temperature at this time was 107°C. During this time, the polyimide became insolubilized and precipitated as a powder. After cooling, the filtered powder was washed with DMF and then methanol, and the filtration was repeated.

さらに粉末を150℃で数時間減圧乾燥したのち、パー
フェクトオーブンにおいて200℃で処理し、本発明の
ポリイミド樹脂粉末的36gをえた。
Further, the powder was dried under reduced pressure at 150° C. for several hours, and then treated in a perfect oven at 200° C. to obtain 36 g of the polyimide resin powder of the present invention.

またえられたポリイミド樹脂粉末の一部を取り、その比
表面積およびイミド化率をそれぞれ実施例1と同様に算
出した。さらにこのポリイミド樹脂粉末の結晶性を評価
するために回折強度を広角X線回折計を用いて測定した
ところ実施例1と同様なピークか観察された。このこと
は、このポリイミド樹脂粉末は本質的に結晶性であるこ
とを示している。
A portion of the obtained polyimide resin powder was also taken, and its specific surface area and imidization rate were calculated in the same manner as in Example 1. Furthermore, in order to evaluate the crystallinity of this polyimide resin powder, the diffraction intensity was measured using a wide-angle X-ray diffractometer, and the same peaks as in Example 1 were observed. This indicates that this polyimide resin powder is essentially crystalline.

こののち、残りのポリイミド樹脂粉末を実施例1と同様
に処理してポリイミド樹脂成形体をえた。
Thereafter, the remaining polyimide resin powder was treated in the same manner as in Example 1 to obtain a polyimide resin molded body.

このようにしてえられたポリイミド樹脂成形体について
、比重、曲げ強度ならびに曲げ弾性率、引張破断強度な
らびに引張破断伸び、■ノツチ付アイゾツト衝撃強度を
それぞれ実施例1と同様の方法で測定した。これらの結
果を比表面積およびイミド化率の結果と合わせて第1表
に示す。
Regarding the polyimide resin molded article thus obtained, specific gravity, bending strength, bending modulus, tensile strength at break, tensile elongation at break, and notched isot impact strength were measured in the same manner as in Example 1. These results are shown in Table 1 together with the results of specific surface area and imidization rate.

実施例3 窒素気流下、ODA 20.02g(0,10io1)
をDMAC2501に溶解したのち、氷冷下、PMDA
21.81g(0,lOmol)を粉末のまま約30分
間で徐々に添加した。添加終了後60分間撹拌を続け、
ポリアミド酸溶液的2501をえた。つぎにPy 20
0m1を添加し、30分間撹拌した。
Example 3 Under nitrogen flow, ODA 20.02g (0.10io1)
After dissolving in DMAC2501, PMDA was added under ice cooling.
21.81 g (0.1 Omol) was gradually added as a powder over about 30 minutes. Continue stirring for 60 minutes after the addition is complete.
Polyamic acid solution 2501 was obtained. Next Py 20
0ml was added and stirred for 30 minutes.

引き続きえられたポリアミド酸溶液を加熱し、加熱撹拌
を続けた。このときの内温は115℃であった。この間
ポリイミドが不溶化し、粉末として析出してきた。放冷
後濾過しえられた粉末をDMAc、メタノールの順に洗
浄、濾過を繰返した。
Subsequently, the obtained polyamic acid solution was heated and continued to be heated and stirred. The internal temperature at this time was 115°C. During this time, the polyimide became insolubilized and precipitated as a powder. After cooling, the filtered powder was washed with DMAc and methanol in this order, and the filtration was repeated.

さらに粉末を150℃で数時間減圧乾燥したのち、パー
フェクトオーブンにおいて200℃で処理し、本発明の
ポリイミド樹脂粉末的38gをえた。
Further, the powder was dried under reduced pressure at 150°C for several hours, and then treated in a perfect oven at 200°C to obtain 38 g of polyimide resin powder of the present invention.

またえられたポリイミド樹脂粉末の一部を取リ、その比
表面積およびイミド化率をそれぞれ実施例1と同様に算
出した。さらにこのポリイミド樹脂粉末の結晶性を評価
するために回折強度を広角X線回折計を用いて測定した
ところ実施例1と同様なピークが観察された。このこと
は、このポリイミド樹脂粉末は本質的に結晶性であるこ
とを示している。
A portion of the obtained polyimide resin powder was also removed, and its specific surface area and imidization rate were calculated in the same manner as in Example 1. Furthermore, in order to evaluate the crystallinity of this polyimide resin powder, the diffraction intensity was measured using a wide-angle X-ray diffractometer, and the same peaks as in Example 1 were observed. This indicates that this polyimide resin powder is essentially crystalline.

こののち、残りのポリイミド樹脂粉末を実施例1と同様
に処理してポリイミド樹脂成形体をえた。
Thereafter, the remaining polyimide resin powder was treated in the same manner as in Example 1 to obtain a polyimide resin molded body.

このようにしてえられたポリイミド樹脂成形体について
、比重、曲げ強度ならびに曲げ弾性率、引張破断強度な
らびに引張破断伸び、Vノツチ付アイゾツト衝撃強度を
それぞれ実施例1と同様の方法で測定した。これらの結
果を比表面積およびイミド化率の結果と合わせて第1表
に示す。
The specific gravity, bending strength, bending modulus, tensile strength at break, tensile elongation at break, and V-notched Izo impact strength of the polyimide resin molded article thus obtained were measured in the same manner as in Example 1. These results are shown in Table 1 together with the results of specific surface area and imidization rate.

比較例1 実施例1と同様にしてえられたポリアミド酸溶液を加熱
し、加熱撹拌を続けた。この時の内温は132℃であっ
た。この間ポリイミドが不溶化し、粉末として析出して
きた。放冷後濾過しえられた粉末をDM^c1メタノー
ルの順に洗浄、濾過を繰返した。
Comparative Example 1 A polyamic acid solution obtained in the same manner as in Example 1 was heated and continued to be heated and stirred. The internal temperature at this time was 132°C. During this time, the polyimide became insolubilized and precipitated as a powder. After cooling, the filtered powder was washed with DM^c1 methanol and filtered repeatedly.

さらに粉末を150℃で数時間減圧乾燥したのち、パー
フェクトオーブンにおいて200 ℃で処理し、ポリイ
ミド樹脂粉末的37gをえた。
Further, the powder was dried under reduced pressure at 150°C for several hours, and then treated in a perfect oven at 200°C to obtain 37 g of polyimide resin powder.

またえられたポリイミド樹脂粉末の一部を取り、その比
表面積およびイミド化率をそれぞれ実施例1と同様に算
出した。
A portion of the obtained polyimide resin powder was also taken, and its specific surface area and imidization rate were calculated in the same manner as in Example 1.

こののち、残りのポリイミド樹脂粉末を実施例1と同様
に処理して、ポリイミド樹脂成形体をえた。
Thereafter, the remaining polyimide resin powder was treated in the same manner as in Example 1 to obtain a polyimide resin molded body.

このようにしてえられたポリイミド樹脂成形体について
、比重、曲げ強度ならびに曲げ弾性率、引張破断強度な
らびに引張破断伸び、■ノツチ付アイゾツト衝撃強度を
それぞれ実施例1と同様の方法で測定した。これらの結
果を比表面積およびイミド化率の結果と合わせて第1表
に示す。
Regarding the polyimide resin molded article thus obtained, specific gravity, bending strength, bending modulus, tensile strength at break, tensile elongation at break, and notched isot impact strength were measured in the same manner as in Example 1. These results are shown in Table 1 together with the results of specific surface area and imidization rate.

比較例2 窒素気流下、ODA 20.02g(0,10nol)
をN−メチル−2−ピロリドン(以下、NMPとする)
 400m1に溶解したのち、氷冷下、PMD^21.
81g(0,10sol)を粉末のまま約30分間で徐
々に添加した。
Comparative Example 2 Under nitrogen flow, ODA 20.02g (0.10nol)
is N-methyl-2-pyrrolidone (hereinafter referred to as NMP)
After dissolving in 400ml, PMD^21.
81 g (0.10 sol) was gradually added as a powder over about 30 minutes.

添加終了後60分間撹拌を続け、ポリアミド酸溶液をえ
た。つぎに、N、N−ジメチルベンジルアミン27.0
gを添加し、30分間撹拌した。
After the addition was completed, stirring was continued for 60 minutes to obtain a polyamic acid solution. Next, N,N-dimethylbenzylamine 27.0
g and stirred for 30 minutes.

引き続きえられたポリアミド酸溶液を加熱し、加熱撹拌
を続けた。このとき、内温は170℃であった。この間
ポリイミドか不溶化し、粉末として析出してきた。放冷
後濾過しえられた粉末をNMP 、メタノールの順に洗
浄、濾過を繰返した。
Subsequently, the obtained polyamic acid solution was heated and continued to be heated and stirred. At this time, the internal temperature was 170°C. During this time, the polyimide became insolubilized and precipitated as a powder. After cooling, the filtered powder was washed with NMP and methanol in that order, and the filtration was repeated.

さらに粉末を150℃で数時間減圧乾燥したのち、パー
フェクトオープンにおいて250℃で処理し、ポリイミ
ド樹脂粉末的37gをえた。
Further, the powder was dried under reduced pressure at 150° C. for several hours, and then treated in Perfect Open at 250° C. to obtain 37 g of polyimide resin powder.

またえられたポリイミド樹脂粉末の一部を取り、その比
表面積およびイミド化率をそれぞれ実施例1と同様に算
出した。
A portion of the obtained polyimide resin powder was also taken, and its specific surface area and imidization rate were calculated in the same manner as in Example 1.

二ののち、残りのポリイミド樹脂粉末を実施例1と同様
に処理してポリイミド樹脂成形体をえた。
After that, the remaining polyimide resin powder was treated in the same manner as in Example 1 to obtain a polyimide resin molded body.

このようにしてえられたポリイミド樹脂成形体について
、比重、曲げ強度ならびに曲げ弾性率、引張破断強度な
らびに引張破断伸び、■ノツチ付アイゾツト衝撃強度を
それぞれ実施例1と同様の方法で測定した。これらの結
果を比表面積およびイミド化率の結果と合わせて第1表
に示す。
Regarding the polyimide resin molded article thus obtained, specific gravity, bending strength, bending modulus, tensile strength at break, tensile elongation at break, and notched isot impact strength were measured in the same manner as in Example 1. These results are shown in Table 1 together with the results of specific surface area and imidization rate.

比較例3 窒素気流下、ODA 20.02g(0,10io1)
をPy 5001に溶解したのち、氷冷下、PMD^2
1.81g(0,10nol)を粉末のまま約30分間
で徐々に添加した。
Comparative Example 3 Under nitrogen flow, ODA 20.02g (0.10io1)
After dissolving in Py 5001, under ice cooling, PMD^2
1.81 g (0.10 nol) was gradually added as a powder over about 30 minutes.

添加終了後60分間撹拌を続け、ポリアミド酸溶液をえ
た。
After the addition was completed, stirring was continued for 60 minutes to obtain a polyamic acid solution.

引き続きえられたポリアミド酸溶液を還流するまで加熱
し、加熱撹拌を続けた。このときの内温は110℃であ
った。この間ポリイミドが不溶化し、粉末として析出し
てきた。放冷後濾過しえられた粉末をDM^C1メタノ
ールの順に洗浄、濾過を繰返した。
Subsequently, the obtained polyamic acid solution was heated to reflux, and heating and stirring were continued. The internal temperature at this time was 110°C. During this time, the polyimide became insolubilized and precipitated as a powder. After cooling, the filtered powder was washed with DM^C1 methanol and filtered repeatedly.

さらに粉末を150℃で数時間減圧乾燥したのち、パー
フェクトオーブンにおいて200℃で処理し、ポリイミ
ド樹脂粉末的82gをえた。
Further, the powder was dried under reduced pressure at 150° C. for several hours, and then treated in a perfect oven at 200° C. to obtain 82 g of polyimide resin powder.

またえられたポリイミド樹脂粉末の一部を取り、その比
表面積およびイミド化率をそれぞれ実施例1と同様に算
出した。
A portion of the obtained polyimide resin powder was also taken, and its specific surface area and imidization rate were calculated in the same manner as in Example 1.

こののち、残りのポリイミド樹脂粉末を実施例1と同様
に処理してポリイミド樹脂成形体をえた。
Thereafter, the remaining polyimide resin powder was treated in the same manner as in Example 1 to obtain a polyimide resin molded body.

このようにしてえられたポリイミド樹脂成形体について
、比重、曲げ強度ならびに曲げ弾性率、引張破断強度な
らびに引張破断伸び、Vノツチ付アイゾツト衝撃強度を
それぞれ実施例1と同様の方法で測定した。これらの結
果を比表面積およびイミド化率の結果と合わせて第1表
に示す。
The specific gravity, bending strength, bending modulus, tensile strength at break, tensile elongation at break, and V-notched Izo impact strength of the polyimide resin molded article thus obtained were measured in the same manner as in Example 1. These results are shown in Table 1 together with the results of specific surface area and imidization rate.

[発明の効果コ 本発明により大きい比表面積かつ低いイミド化率を有し
本質的に結晶性であるポリイミド樹脂粉末の製造法が提
供された。また芳香族ポリイミド樹脂の本来の特性であ
る高耐熱性に加え、強度、靭性などの機械的特性におい
てもきわめて優れており、機械部品などにきわめて広範
囲かつ有用に使用されうるポリイミド樹脂成形体をえる
ためのポリイミド樹脂粉末の製造が可能となった。
[Effects of the Invention] The present invention provides a method for producing essentially crystalline polyimide resin powder having a large specific surface area and a low imidization rate. In addition to the high heat resistance, which is the original property of aromatic polyimide resins, it also has extremely excellent mechanical properties such as strength and toughness, producing polyimide resin molded products that can be used extremely widely and usefully in machine parts. It has become possible to produce polyimide resin powder for

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1にしたがってえられた本発明のポリイ
ミド樹脂粉末の広角X線による回折強度曲線である。 特 許
FIG. 1 is a wide-angle X-ray diffraction intensity curve of the polyimide resin powder of the present invention obtained according to Example 1. patent

Claims (1)

【特許請求の範囲】 1 有機極性溶媒中、一般式( I ): ▲数式、化学式、表等があります▼( I ) (式中、R_0は炭素数6〜30の4価の芳香族基、R
_1は炭素数6〜30の2価の芳香族基、nは正の整数
を表す)で示される繰返し単位を含む芳香族ポリアミド
酸を加熱し熱的に脱水閉環してなる、一般式(II): ▲数式、化学式、表等があります▼(II) (式中、R_0は炭素数6〜30の4価の芳香族基、R
_1は炭素数6〜30の2価の芳香族基、mは正の整数
を表す)で示される繰返し単位を含む芳香族ポリイミド
樹脂粉末を製造する方法において、えられるポリイミド
樹脂粉末の比表面積が20m^2/g以上であり、かつ
イミド化率が90%未満であることを特徴とするポリイ
ミド樹脂粉末の製造法。 2 芳香族ポリアミド酸を3級アミンの存在下に加熱し
、熱的に脱水閉環することを特徴とする請求項1記載の
ポリイミド樹脂粉末の製造法。 3 3級アミンがピリジンであることを特徴とする請求
項2記載のポリイミド樹脂粉末の製造法。 4 芳香族ポリアミド酸を95℃以上130℃以下の温
度で熱的に脱水閉環することを特徴とする請求項1記載
のポリイミド樹脂粉末の製造法。 5 前記R_0が ▲数式、化学式、表等があります▼、▲数式、化学式、
表等があります▼、▲数式、化学式、表等があります▼
、 ▲数式、化学式、表等があります▼ からなる群より選ばれる少なくとも一種である請求項1
記載のポリイミド樹脂粉末の製造法。 6 前記R_1が ▲数式、化学式、表等があります▼、▲数式、化学式、
表等があります▼、 ▲数式、化学式、表等があります▼、▲数式、化学式、
表等があります▼、 ▲数式、化学式、表等があります▼、▲数式、化学式、
表等があります▼ からなる群より選ばれる少なくとも一種である請求項1
記載のポリイミド樹脂粉末の製造法。
[Claims] 1 General formula (I) in an organic polar solvent: ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) (In the formula, R_0 is a tetravalent aromatic group having 6 to 30 carbon atoms, R
_1 is a divalent aromatic group having 6 to 30 carbon atoms, and n is a positive integer). ): ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) (In the formula, R_0 is a tetravalent aromatic group having 6 to 30 carbon atoms, R
_1 is a divalent aromatic group having 6 to 30 carbon atoms, m is a positive integer) In the method for producing an aromatic polyimide resin powder containing a repeating unit represented by 20 m^2/g or more and an imidization rate of less than 90%, a method for producing polyimide resin powder. 2. The method for producing a polyimide resin powder according to claim 1, wherein the aromatic polyamic acid is heated in the presence of a tertiary amine to thermally dehydrate and ring-close it. 3. The method for producing polyimide resin powder according to claim 2, wherein the tertiary amine is pyridine. 4. The method for producing polyimide resin powder according to claim 1, wherein the aromatic polyamic acid is thermally dehydrated and ring-closed at a temperature of 95° C. or higher and 130° C. or lower. 5 The above R_0 has ▲a mathematical formula, a chemical formula, a table, etc.▼, ▲a mathematical formula, a chemical formula,
There are tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼
, ▲There are mathematical formulas, chemical formulas, tables, etc.▼ Claim 1
A method for producing the polyimide resin powder described above. 6 The above R_1 has ▲a mathematical formula, a chemical formula, a table, etc.▼, ▲a mathematical formula, a chemical formula,
There are tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ Mathematical formulas, chemical formulas,
There are tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ Mathematical formulas, chemical formulas,
Claim 1 is at least one selected from the group consisting of ▼
A method for producing the polyimide resin powder described above.
JP26741090A 1990-10-03 1990-10-03 Production of polyimide resin powder Pending JPH04142332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26741090A JPH04142332A (en) 1990-10-03 1990-10-03 Production of polyimide resin powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26741090A JPH04142332A (en) 1990-10-03 1990-10-03 Production of polyimide resin powder

Publications (1)

Publication Number Publication Date
JPH04142332A true JPH04142332A (en) 1992-05-15

Family

ID=17444460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26741090A Pending JPH04142332A (en) 1990-10-03 1990-10-03 Production of polyimide resin powder

Country Status (1)

Country Link
JP (1) JPH04142332A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6916898B2 (en) 2000-03-13 2005-07-12 Mitsui Chemicals, Inc. Process for producing polyimide
CN109369915A (en) * 2018-09-29 2019-02-22 杭州超通科技有限公司 A kind of method of synthesis of polyimides

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163937A (en) * 1985-01-16 1986-07-24 Toray Ind Inc Production of polyimide molding
JPS61250030A (en) * 1985-04-26 1986-11-07 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー Polyimide molding resin and molded product
JPH0218420A (en) * 1988-07-06 1990-01-22 Toray Ind Inc Production of spherical polyimide powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163937A (en) * 1985-01-16 1986-07-24 Toray Ind Inc Production of polyimide molding
JPS61250030A (en) * 1985-04-26 1986-11-07 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー Polyimide molding resin and molded product
JPH0218420A (en) * 1988-07-06 1990-01-22 Toray Ind Inc Production of spherical polyimide powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6916898B2 (en) 2000-03-13 2005-07-12 Mitsui Chemicals, Inc. Process for producing polyimide
CN109369915A (en) * 2018-09-29 2019-02-22 杭州超通科技有限公司 A kind of method of synthesis of polyimides
CN109369915B (en) * 2018-09-29 2021-05-14 杭州超通科技有限公司 Method for synthesizing polyimide

Similar Documents

Publication Publication Date Title
KR101385279B1 (en) Asymmetric diamine compounds containing two functional groups, and polymers therefrom
Yang et al. Organosoluble and optically transparent fluorine-containing polyimides based on 4, 4′-bis (4-amino-2-trifluoromethylphenoxy)-3, 3′, 5, 5′-tetramethylbiphenyl
Hsiao et al. Synthesis and characterization of novel fluorinated polyimides derived from 1, 3-bis (4-amino-2-trifluoromethylphenoxy) naphthalene and aromatic dianhydrides
Hsiao et al. Synthesis and characterization of novel fluorinated polyimides based on 2, 7‐bis (4‐amino‐2‐trifluoromethylphenoxy) naphthalene
Chung et al. Novel organosoluble fluorinated polyimides derived from 1, 6-bis (4-amino-2-trifluoromethylphenoxy) naphthalene and aromatic dianhydrides
Yang et al. Organosoluble and light‐colored fluorinated polyimides from 4, 4′‐bis (4‐amino‐2‐trifluoromethylphenoxy) biphenyl and aromatic dianhydrides
Shao et al. Synthesis and characterization of soluble polyimides derived from a novel unsymmetrical diamine monomer: 1, 4-(2′, 4 ″-diaminodiphenoxy) benzene
EP0268091B1 (en) Crystalline polyimides containing cumulative phenylene sulfide units
JPH01178522A (en) Low-melting polyimide copolymer and its production
Wang et al. Synthesis and characterization of novel polyimides derived from 2, 6-bis [4-(3, 4-dicarboxyphenoxy) benzoyl] pyridine dianhydride and aromatic diamines
US5101005A (en) Crosslinkable polyimides from bis (aminophenoxy) benzonitriles
WO2011076674A1 (en) New polyamide, polyimide or polyamide-imide comprising dibenzodiazocine units
JPH02140232A (en) Low elasticity polyimide and its production
EP0213573A2 (en) Crystalline polyimides containing cumulative phenylene sulfide units
Yang et al. Synthesis and properties of novel organosoluble polyimides derived from bis [3-(4-amino-2-trifluoromethylphenoxy) phenyl] ether
Liou et al. Synthesis and properties of new soluble aromatic polyamides and polyimides on the basis of N, N′‐bis (3‐aminobenzoyl)‐N, N′‐diphenyl‐1, 4‐phenylenediamine
US5290908A (en) Acetylenic end-capped polyimides
JPH04142332A (en) Production of polyimide resin powder
Yan et al. Optical transparency and light colour of highly soluble fluorinated polyimides derived from a novel pyridine-containing diamine m, p-3FPAPP and various aromatic dianhydrides
JP2854395B2 (en) Method for producing polyimide
JPS6128526A (en) Production of organic solvent-soluble polyimide compound
Ramalingam et al. Synthesis and characterisation of organosoluble polyimides containing the anisyl moiety
JPS63199239A (en) Novel solvent-soluble polyimide and production thereof
JPS61162526A (en) Novel polyamide-imide resin and production thereof
JPH04106129A (en) Polyimide resin powder and molding