JP2563673B2 - Cooling structure for electrical equipment - Google Patents

Cooling structure for electrical equipment

Info

Publication number
JP2563673B2
JP2563673B2 JP2323246A JP32324690A JP2563673B2 JP 2563673 B2 JP2563673 B2 JP 2563673B2 JP 2323246 A JP2323246 A JP 2323246A JP 32324690 A JP32324690 A JP 32324690A JP 2563673 B2 JP2563673 B2 JP 2563673B2
Authority
JP
Japan
Prior art keywords
tube
resin
cooling
coil
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2323246A
Other languages
Japanese (ja)
Other versions
JPH04197059A (en
Inventor
秀夫 赤堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP2323246A priority Critical patent/JP2563673B2/en
Publication of JPH04197059A publication Critical patent/JPH04197059A/en
Application granted granted Critical
Publication of JP2563673B2 publication Critical patent/JP2563673B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は渦電流の発生しない冷却チューブを用いた電
気機器の冷却構造に関する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a cooling structure for an electric device using a cooling tube in which eddy current is not generated.

(従来の技術) 電気機器の大容量化および小形軽量化の要請により、
様々な冷却方法が開発されてきた。空気などの気体を用
いる気体冷却方式は広く用いられているが、冷却効率が
劣り、騒音などの問題があるため、上述の要請に応える
ことができない。
(Prior Art) Due to the demand for larger capacity, smaller size and lighter weight of electrical equipment,
Various cooling methods have been developed. Although a gas cooling method using a gas such as air is widely used, it is not possible to meet the above-mentioned demand because of a problem such as poor cooling efficiency and noise.

水などの液体を用いる液体冷却方式は、気体に比べ冷
却効率が格段に向上し、騒音等の問題も無いため、広く
使用されている。例えば、タービン発電機では中空導体
に水を流す方式が採用されている。また、ステンレスチ
ューブなどを配管しておき、その後に樹脂を用いてコイ
ル全体を固定化し、液体冷却方式により冷却することも
容易に考えられる。
A liquid cooling method using a liquid such as water has been widely used because it has a significantly improved cooling efficiency as compared with a gas and does not have a problem such as noise. For example, a turbine generator employs a method of flowing water through a hollow conductor. In addition, it is also conceivable that a stainless tube or the like is piped and then the entire coil is fixed with a resin and then cooled by a liquid cooling method.

しかし、金属材料に磁場が印加されると渦電流が発生
するため、核磁気共鳴現象を用いたMRI装置などのよう
に、高磁場精度を要求される場合は金属製チューブを用
いることができない。
However, when a magnetic field is applied to a metal material, an eddy current is generated, and therefore a metal tube cannot be used when high magnetic field accuracy is required, such as in an MRI apparatus using the nuclear magnetic resonance phenomenon.

(発明が解決しようとする課題) このように、金属材料に磁場が印加されると渦電流が
発生するため、核磁気共鳴現象を用いたMRI装置などの
ように、高磁場精度を要求される場合は金属製チューブ
を用いることができない。
(Problems to be Solved by the Invention) As described above, since an eddy current is generated when a magnetic field is applied to a metal material, high magnetic field accuracy is required as in an MRI apparatus using a nuclear magnetic resonance phenomenon. In that case, a metal tube cannot be used.

本発明は上記の欠点に鑑みなされたもので、磁場の印
加により渦電流の発生しない電気機器の冷却構造を提供
することを目的とする。
The present invention has been made in view of the above-mentioned drawbacks, and an object of the present invention is to provide a cooling structure for an electric device in which an eddy current is not generated by applying a magnetic field.

〔発明の構成〕[Structure of Invention]

(課題を解決するための手段) 上記目的を達成するため本発明では、冷却媒体を循環
させるプラスチック製の冷却チューブを内部に配設し、
冷却チューブとコイルを樹脂の含浸により固定し、ま
た、冷却チューブと含浸樹脂の接着強度を冷却チューブ
の引張り強度以下としたことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, a plastic cooling tube for circulating a cooling medium is provided inside,
The cooling tube and the coil are fixed by resin impregnation, and the adhesive strength between the cooling tube and the impregnated resin is set to be equal to or lower than the tensile strength of the cooling tube.

(作 用) プラスチック製チューブには渦電流が発生しないの
で、磁場精度には悪影響を与えない。また、チューブと
含浸樹脂の接着強度を冷却チューブの引張り強度以下に
したことにより、樹脂にクラックが生じた場合であって
も、冷却チューブの破断が生じる前に、チューブと含浸
樹脂の間で剥離が生じるので、樹脂に発生する応力の影
響を受けない。従って、金属製チューブに比べ機械特性
の劣るプラスチック製チューブを使用することができ
る。さらに、硬化時に収縮性を有する含浸樹脂を用いる
と、含浸樹脂とチューブの接着力がない場合であって
も、含浸樹脂の収縮により樹脂とチューブの間の剥離が
防止できるので、冷却性能に対する悪影響を低減でき、
含浸樹脂とチューブの接着力がない場合であっても実用
上の問題は無くなる。
(Operation) Since no eddy current is generated in the plastic tube, it does not adversely affect the magnetic field accuracy. Also, by making the adhesive strength between the tube and the impregnated resin less than the tensile strength of the cooling tube, even if the resin cracks, peeling occurs between the tube and the impregnated resin before the cooling tube breaks. Therefore, it is not affected by the stress generated in the resin. Therefore, a plastic tube having inferior mechanical properties to a metal tube can be used. Furthermore, when an impregnating resin having shrinkage property is used during curing, even if there is no adhesive force between the impregnating resin and the tube, peeling between the resin and the tube can be prevented by the shrinkage of the impregnating resin, which adversely affects the cooling performance. Can be reduced,
Even if there is no adhesive force between the impregnated resin and the tube, there is no practical problem.

(実施例) 第1図および第2図は、本発明の一実施例の概念を示
す図面である。
(Embodiment) FIG. 1 and FIG. 2 are drawings showing the concept of an embodiment of the present invention.

第1図に示すように、内筒1(長さ2m、外径0.6m)に
コイル(図示せず)を取り付け、コイル表面を平滑にす
るため、プリプレグガラスシート(図示せず)を巻き付
けて、内側コイル2を完成させる。この後、フッソ樹脂
製チューブ3(商品名:PFAチューブ潤工社製、外径8m
m、内径7mm)をスパイラル状に巻き付けて、冷却チュー
ブとする。チューブ3の表面には、損傷を防止する目的
でガラスシート(図示せず)を巻回する。
As shown in FIG. 1, a coil (not shown) is attached to the inner cylinder 1 (length 2 m, outer diameter 0.6 m), and a prepreg glass sheet (not shown) is wound to smooth the coil surface. , Complete the inner coil 2. After this, the Fluoro resin tube 3 (Product name: PFA Tube Junko, external diameter 8m
m, inner diameter 7 mm) is spirally wound to form a cooling tube. A glass sheet (not shown) is wound around the surface of the tube 3 for the purpose of preventing damage.

続いて、FRP製中筒(長さ2m、外径0.7m)にコイル
(図示せず)を取りつけ、外側コイル4を製作する。
Then, a coil (not shown) is attached to the FRP middle cylinder (length 2 m, outer diameter 0.7 m) to manufacture the outer coil 4.

第2図に示すように、内側コイル2と外側コイル4を
組み立てた後、含浸樹脂を保持するために、外筒5(長
さ2.2m、外径0.8m)を取り付け、エポキシ樹脂を真空加
圧含浸させて、MRI用傾斜磁場コイルを完成させた。
As shown in FIG. 2, after the inner coil 2 and the outer coil 4 are assembled, the outer cylinder 5 (length 2.2 m, outer diameter 0.8 m) is attached to hold the impregnated resin, and the epoxy resin is vacuum-applied. After pressure impregnation, the gradient magnetic field coil for MRI was completed.

次に、上記構成の作用について説明する。 Next, the operation of the above configuration will be described.

非金属性のプラスチック製チューブを用いたことによ
り、渦電流が発生しないので、磁場精度が向上し、従来
のMRI用傾斜磁場コイルに比べ、より鮮明な画像が得ら
れることを確認した。例えば、画像の歪みは従来のコイ
ルでは1.5%であったものが、0.5%以下になることが判
明した。
By using a non-metallic plastic tube, it was confirmed that eddy currents do not occur, the magnetic field accuracy is improved, and a clearer image is obtained compared to the conventional gradient magnetic field coil for MRI. For example, it was found that the distortion of an image was 1.5% in the conventional coil, but was 0.5% or less.

また、PFA中チューブは非接着性を有するため、含浸
樹脂との接着強度は冷却チューブの引張り強度にくらべ
はるかに小さい。本実施例で使用したエポキシ樹脂の引
張り強さは60MPaであり、PFAの引張り強さは30MPaであ
る。従って、樹脂にクラックが生じ樹脂とPFAチューブ
の接着力がPFAの引張り強さ以上であると、樹脂にクラ
ックが発生した場合、PFAチューブに破断が生じ、水漏
れなどの重大事故の原因となる。
Also, since the PFA medium tube has non-adhesiveness, the adhesive strength with the impregnated resin is much smaller than the tensile strength of the cooling tube. The tensile strength of the epoxy resin used in this example is 60 MPa, and the tensile strength of PFA is 30 MPa. Therefore, if the resin cracks and the adhesive strength between the resin and PFA tube is greater than the tensile strength of PFA, if the resin cracks, the PFA tube will break and cause a serious accident such as water leakage. .

樹脂にクラックが生じた場合であっても、チューブの
破断が発生しないことを検証するため、表1に示すチュ
ーブを用いて、同筒形モデル(外径0.7m、厚み20mm)を
製作し、冷熱サイクル(0℃−120℃)を実施した。こ
の結果、写真1および写真2に示すように、試料1では
冷却チューブの破断が生じる前に、チューブと含浸樹脂
の間で剥離が生じるので、樹脂に発生する応力の影響を
受けず、チューブの破断は発生しない。試料2は、ナト
リウムエッチング処理(潤工社製品名:テトラH処理)
を施したため、チューブの破断が発生した。
In order to verify that the tube does not break even if the resin cracks, we manufactured the same tubular model (outer diameter 0.7 m, thickness 20 mm) using the tubes shown in Table 1. A thermal cycle (0 ° C-120 ° C) was performed. As a result, as shown in Photo 1 and Photo 2, in Sample 1, peeling occurs between the tube and the impregnated resin before the cooling tube breaks, so that the tube is not affected by the stress generated in the resin. No breakage occurs. Sample 2 is a sodium etching treatment (Junkosha product name: Tetra H treatment)
As a result, the tube was broken.

試料1の断面を電子顕微鏡で観察したところ、チュー
ブと含浸樹脂の間の剥離距離は1〜10μmとわずかであ
った。これは、今回使用したエポキシ樹脂が硬化時に収
縮するため、チューブとエポキシ樹脂が密着しており、
剥離が生じてもその距離が小さくなったものと考えられ
る。従って、剥離層による温度上昇はわずかであり、実
用上は問題無い。
When the cross section of Sample 1 was observed with an electron microscope, the peeling distance between the tube and the impregnated resin was as small as 1 to 10 μm. This is because the epoxy resin used this time shrinks during curing, so the tube and epoxy resin are in close contact,
Even if peeling occurs, it is considered that the distance becomes smaller. Therefore, the temperature rise due to the release layer is slight, and there is no problem in practical use.

以上説明したように、非金属性のプラスチック製チュ
ーブを用いたことにより、渦電流が発生せず、かつ樹脂
にクラックが生じた場合であっても、チューブの破断が
発生しない水冷却形MRI用傾斜磁場コイルを製造するこ
とができた。
As explained above, by using a non-metallic plastic tube, eddy current does not occur, and even if the resin cracks, the tube does not break, for water-cooled MRI A gradient coil could be manufactured.

本発明の実施例として、MRI用傾斜磁場コイルについ
て説明したが、全ての電気機器の冷却に用いることがで
きるのは言うまでもない。
Although the gradient magnetic field coil for MRI has been described as an example of the present invention, it goes without saying that it can be used for cooling all electric devices.

なお、電気機器に直接組み込まずに、冷却チューブの
みを樹脂でかためて冷却媒体とする場合なども、樹脂と
の接着強度が冷却チューブの引張り強度にくらべはるか
に小さい場合は、本発明の範囲に含まれる。
Note that, even when the cooling medium is hardened with a resin as a cooling medium without being directly incorporated in an electric device, if the adhesive strength with the resin is much smaller than the tensile strength of the cooling tube, the scope of the present invention include.

〔発明の効果〕〔The invention's effect〕

本発明によれば、高磁場精度を要求される場合の電気
機器の冷却構造を提供することができ、機器の縮小化や
大電流化が可能になる。
According to the present invention, it is possible to provide a cooling structure for an electric device when high magnetic field accuracy is required, and it is possible to downsize the device and increase the current.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図は、本発明の一実施例の概念を示す
図面である。 1……内筒、2……内側コイル、 3……冷却チューブ、4……外側コイル、 5……外筒。
1 and 2 are drawings showing the concept of one embodiment of the present invention. 1 ... Inner cylinder, 2 ... Inner coil, 3 ... Cooling tube, 4 ... Outer coil, 5 ... Outer cylinder.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】樹脂を含浸させコイルを固定する電気機器
において、冷却媒体を循環させるプラスチック製の冷却
チューブを内部に配設し、該冷却チューブと前記コイル
とを樹脂の含浸により固定したことを特徴とする電気機
器の冷却構造。
1. In an electric device impregnated with a resin to fix a coil, a plastic cooling tube for circulating a cooling medium is provided inside, and the cooling tube and the coil are fixed by impregnation of the resin. A characteristic cooling structure for electrical equipment.
【請求項2】特許請求の範囲第1項記載の電気機器の冷
却構造において、冷却チューブと含浸樹脂の接着強度が
冷却チューブの引張り強度以下であることを特徴とする
電気機器の冷却構造。
2. The cooling structure for an electric device according to claim 1, wherein the adhesive strength between the cooling tube and the impregnated resin is not more than the tensile strength of the cooling tube.
JP2323246A 1990-11-28 1990-11-28 Cooling structure for electrical equipment Expired - Lifetime JP2563673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2323246A JP2563673B2 (en) 1990-11-28 1990-11-28 Cooling structure for electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2323246A JP2563673B2 (en) 1990-11-28 1990-11-28 Cooling structure for electrical equipment

Publications (2)

Publication Number Publication Date
JPH04197059A JPH04197059A (en) 1992-07-16
JP2563673B2 true JP2563673B2 (en) 1996-12-11

Family

ID=18152639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2323246A Expired - Lifetime JP2563673B2 (en) 1990-11-28 1990-11-28 Cooling structure for electrical equipment

Country Status (1)

Country Link
JP (1) JP2563673B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7464558B2 (en) 2003-11-19 2008-12-16 General Electric Company Low eddy current cryogen circuit for superconducting magnets

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5066708A (en) * 1973-10-17 1975-06-05
JPS58135A (en) * 1981-06-25 1983-01-05 Fujitsu Ltd Manufacture of semiconductor device
JPH02104762U (en) * 1989-02-08 1990-08-21

Also Published As

Publication number Publication date
JPH04197059A (en) 1992-07-16

Similar Documents

Publication Publication Date Title
JP2014099642A (en) Superconducting electromagnet having coil combined with support structure
Caspi et al. Design of an 18-T canted cosine–theta superconducting dipole magnet
JP2563673B2 (en) Cooling structure for electrical equipment
Bermudez et al. Status of the MQXFB Nb 3 Sn quadrupoles for the HL-LHC
JP2008071789A (en) Superconducting coil
CN115621040B (en) Insulation repair structure and repair method for helium inlet and outlet pipes of superconducting magnet coil
JPH10188692A (en) Forced cooling superconductor, its manufacture, and manufacture of forced cooling type superconductive coil
KR20110055387A (en) A method of manufacturing a transfoemer coil
JP2013143460A (en) High-temperature superconducting coil and method of manufacturing the same
CN114300253A (en) Method for reinforcing runway type superconducting coil
Andreev et al. Development and test of single-bore cos-/spl thetav/Nb/sub 3/Sn dipole models with cold iron yoke
Humer et al. Dielectric strength, swelling and weight loss of the ITER Toroidal Field Model Coil insulation after low temperature reactor irradiation
JPH06163241A (en) Electromagnet for magnetic field generating device
JP2656381B2 (en) Manufacturing method of coil for electromagnet
CN115555797B (en) Insulation repair structure and repair method for high-voltage measuring line fracture
JPH06325932A (en) Superconducting coil
JP2002231523A (en) Compound-based superconductive coil and its manufacturing method
JPS61208205A (en) Cryostat
JPH03179710A (en) Manufacture of superconducting coil
Noyes et al. Construction of a Mirror-Configuration Stress-Managed $ rm Nb_3rm Sn $ Block-Coil Dipole
Hosoyama et al. A status report on the development of 5-cm aperture, 1-m long SSC dipole magnet at KEK
JPS5945117A (en) Forming method of curved pipe
JPS63150906A (en) Manufacture of superconducting magnet
JPS59127563A (en) Manufacture of cylindrical superconductive coil with outside bobbin
JPH05154124A (en) Superconducting magnet for mri device