JP2563455B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2563455B2
JP2563455B2 JP63070028A JP7002888A JP2563455B2 JP 2563455 B2 JP2563455 B2 JP 2563455B2 JP 63070028 A JP63070028 A JP 63070028A JP 7002888 A JP7002888 A JP 7002888A JP 2563455 B2 JP2563455 B2 JP 2563455B2
Authority
JP
Japan
Prior art keywords
film
substrate
silicon nitride
annealing
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63070028A
Other languages
Japanese (ja)
Other versions
JPH01241820A (en
Inventor
秀利 古川
正博 萩尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63070028A priority Critical patent/JP2563455B2/en
Publication of JPH01241820A publication Critical patent/JPH01241820A/en
Application granted granted Critical
Publication of JP2563455B2 publication Critical patent/JP2563455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明はUHFTVや衛生通信等に用いられる、GaAs IC
や、GaAsロジックICなどの半導体装置の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION INDUSTRIAL APPLICABILITY The present invention relates to a GaAs IC used for UHFTV, satellite communication and the like.
And a method for manufacturing a semiconductor device such as a GaAs logic IC.

従来の技術 近年GaAs ICは、その優れた高周波特性,高速性等を
いかして、衛星通信や高速ロジックなどの幅広い用途に
用いられるようになってきている。
2. Description of the Related Art In recent years, GaAs ICs have come to be used in a wide range of applications such as satellite communication and high-speed logic by taking advantage of their excellent high frequency characteristics and high speed.

第4図に、GaAs IC基本構成素子である電解効果トラ
ンジスタ(FET)の製造工程の概略を示す。先ず半絶縁
性GaAs基板3の表面に選択的にフォトレジスト1を形成
し、全面にSiイオンを注入することにより、フォトレジ
スト1で被覆されない部分に2つのn+領域2を形成する
(第4図(a))。次に前記2つのn+領域2の上および
それらの間の部分を除いて再びフォトレジストを形成し
てSiイオンを注入することにより活性層となるn層4を
形成する(第4図(b))。次にこれらのイオン注入領
域2および4の活性化のため熱処理(アニール)を行
う。次にn+領域2の上部にソース電極およびドレイン電
極となるオーミック電極5を形成し(第4図(c))、
更にn層4の上部にショットキー電極(ゲート電極)6
を形成する(第4図(d))。
Fig. 4 shows the outline of the manufacturing process of the field effect transistor (FET) which is the basic component of GaAs IC. First, the photoresist 1 is selectively formed on the surface of the semi-insulating GaAs substrate 3, and Si ions are implanted into the entire surface to form two n + regions 2 in a portion not covered with the photoresist 1 (fourth). Figure (a)). Next, a photoresist is formed again except on the two n + regions 2 and a portion between them, and Si ions are implanted to form an n layer 4 serving as an active layer (see FIG. 4 (b). )). Next, heat treatment (annealing) is performed to activate these ion-implanted regions 2 and 4. Next, an ohmic electrode 5 serving as a source electrode and a drain electrode is formed on the n + region 2 (FIG. 4 (c)),
Further, a Schottky electrode (gate electrode) 6 is formed on the n layer 4.
Are formed (FIG. 4 (d)).

イオン注入層の活性化熱処理の手法としては、これま
で注入基板をダミー基板で挟んで熱処理を行う手法(キ
ャップレスアニールと呼ばれる)が広く使われてきた
が、注入イオンの活性化率の基板面内での均一性が悪い
という問題があった。このため、これに代るアニール方
法として、注入基板に保護膜を被せた後、熱処理を行う
といった手法(キャップアニールと呼ばれる)が試みら
れている。
As a method of activating heat treatment for the ion-implanted layer, a method of performing heat treatment by sandwiching the implanted substrate with a dummy substrate (called capless annealing) has been widely used until now. There was a problem of poor uniformity within. Therefore, as an alternative annealing method, a method of covering the implantation substrate with a protective film and then performing heat treatment (called cap annealing) has been attempted.

このアニール用保護膜としてシリコン窒化膜が、ち密
な堆積できることから、有望視されている。
A silicon nitride film is promising as a protective film for this annealing because it can be densely deposited.

発明が解決しようとする課題 シリコン窒化膜は、プラズマCVD法により、通常基板
温度を約300℃に保って形成されている。基板温度を約3
00℃の高温に保つのは、シリコン窒化膜のち密さをよく
するためである。しかしながら、このようにして作られ
たプラズマシリコン窒化膜は、膜厚が一定以上になる
と、アニール時の熱による内部応力の増大や、膜の熱収
縮により膜破損が発生する。一方膜破損が起きない程度
まで膜厚を薄くすると、アニール時におけるGaAs基板表
面からのAs脱けを防ぐことができず、その結果、注入イ
オンの活性化率が極端に減少するという欠点を有してい
た。このようにプラズマシリコン窒化膜を用いたキャッ
プアニールは、従来満足しうるものではなかった。
Problems to be Solved by the Invention A silicon nitride film is usually formed by a plasma CVD method while keeping the substrate temperature at about 300 ° C. Substrate temperature about 3
The reason why the temperature is kept at a high temperature of 00 ° C. is to improve the denseness of the silicon nitride film. However, in the plasma silicon nitride film thus produced, when the film thickness exceeds a certain value, internal stress increases due to heat during annealing and film damage occurs due to thermal contraction of the film. On the other hand, if the film thickness is thin enough not to cause film damage, it is not possible to prevent As from coming off from the GaAs substrate surface during annealing, and as a result, the activation rate of implanted ions is extremely reduced. Was. As described above, the cap annealing using the plasma silicon nitride film has hitherto been unsatisfactory.

本発明は、上記欠点に鑑み、アニール時におけるGaAs
基板からのAs脱けも発生せず、しかもシリコン窒化膜の
膜破損も起こさずにアニールを行うことができる半導体
装置の製造方法を提供するものである。
In view of the above drawbacks, the present invention is directed to GaAs during annealing.
Provided is a method for manufacturing a semiconductor device, which can perform annealing without causing As removal from the substrate and without causing damage to the silicon nitride film.

課題を解決するための手段 上記課題を解決するために、本発明の半導体装置製造
方法は、不純物イオンを注入した基板を100℃以上、200
℃以下の温度に保って、プラズマCVDにより前記基板の
表面にシリコン窒化膜を1200Å〜2200Åの厚さに堆積し
た後、イオン注入不純物の活性化熱処理を行うものであ
る。
Means for Solving the Problems In order to solve the above problems, the semiconductor device manufacturing method of the present invention is a substrate in which impurity ions are implanted, 100 ° C. or higher, 200
A silicon nitride film is deposited on the surface of the substrate by plasma CVD to a thickness of 1200 Å to 2200 Å while maintaining the temperature at ℃ or less, and then heat treatment for activation of ion-implanted impurities is performed.

作用 この構成により、膜の内部応力が緩和され、As脱けし
ない程度に厚く堆積したシリコン窒化膜でも、アニール
による膜破損の発生を防ぐことができ、したがって注入
イオンの活性化率の均一性,再現性の良いキャップアニ
ールが可能となる。
Action With this configuration, the internal stress of the film is relaxed, and even if the silicon nitride film is deposited thick enough to prevent As removal, it is possible to prevent the occurrence of film damage due to annealing. Cap annealing with good reproducibility is possible.

実 施 例 以下に詳細な堆積条件を列記する。Practical example The detailed deposition conditions are listed below.

使用ガス及び流量:5% SiH4/N2 500SCCM(1分当り50
0cc)(SCCM:standard cubic centimeter per minute)
NH3 5SCCM 堆積時のガス圧力:0.5Torr 堆積時の基板温度:100℃〜310℃の範囲で変化させた。
Gas used and flow rate: 5% SiH 4 / N 2 500SCCM (50 per minute
0cc) (SCCM: standard cubic centimeter per minute)
NH 3 5 SCCM during deposition gas pressure: 0.5 Torr during deposition substrate temperature: was changed in a range of 100 ° C. to 310 ° C..

電力密度:0.104W/cm2(13.56MHz) 電極間隔:30mm 上記の条件でGaAs基板上にシリコン窒化膜の堆積を行
った場合のデータを以下に示す。第1図は5000Åの厚さ
に堆積を行ったシリコン窒化膜の室温における内部応力
と堆積時の基板温度との関係を示すが、基板温度が150
℃で膜の内部応力は、1×109dyn/cm2以下という非常に
小さな値になることがわかった。窒素雰囲気中で800℃,
40分間の熱処理を施すと基板温度200℃で堆積した膜
は、膜厚が2200Åを越えると、アニール後膜破損が生
じ、250℃で堆積した膜は1500Åの膜厚でアニール後膜
破損が生じた。また膜厚が1200Å以上あれば、GaAs基板
表面からのAs脱けを防止できることがわかった。このよ
うに、200℃以下の低温条件での膜の堆積を行ったと
き、膜厚が2200Å以下なら膜破損が発生しないのは、膜
中のSi−H結合の割合を増加させることができ、それに
より膜の内部応力が、第1図に示すように±0.5×1010d
yn/cm2以下という低い値に抑えられることによる。な
お、基板温度が100℃以下の場合は、シリコン窒化膜は
均一に堆積されなかった。
Power density: 0.104 W / cm 2 (13.56 MHz) Electrode spacing: 30 mm The following is the data when the silicon nitride film was deposited on the GaAs substrate under the above conditions. Figure 1 shows the relationship between the internal stress at room temperature of a silicon nitride film deposited to a thickness of 5000Å and the substrate temperature during deposition.
It was found that the internal stress of the film at 0 ° C. was a very small value of 1 × 10 9 dyn / cm 2 or less. 800 ℃ in nitrogen atmosphere,
The film deposited at a substrate temperature of 200 ° C after heat treatment for 40 minutes has film damage after annealing when the film thickness exceeds 2200Å, and the film deposited at 250 ° C has film damage after annealing at a film thickness of 1500Å. It was It was also found that if the film thickness is 1200 Å or more, As can be prevented from coming off the GaAs substrate surface. In this way, when the film is deposited under the low temperature condition of 200 ° C. or less, the film damage does not occur if the film thickness is 2200 Å or less because the ratio of Si—H bond in the film can be increased. As a result, the internal stress of the film is ± 0.5 × 10 10 d as shown in Fig. 1.
Because it can be suppressed to a low value of yn / cm 2 or less. When the substrate temperature was 100 ° C or lower, the silicon nitride film was not uniformly deposited.

第2図は基板温度150℃で堆積した膜を用いて、キャ
ップアニールを行った時の、膜厚dと基板面内での平均
活性化率との関係を示す図であり、第3図はその活性化
率の基板面内での標準偏差σと膜厚との関係を示す図で
ある。第2図に示すように、膜厚が1200Åから2500Åの
範囲では、基板面内での平均活性化率は、45%から60%
程度である。また第3図に示すように、上記の膜厚範囲
内での活性化率の標準偏差σは、活性化率の平均値の3
%前後の小さな値となっている。
FIG. 2 is a diagram showing the relationship between the film thickness d and the average activation rate within the substrate surface when cap annealing is performed using a film deposited at a substrate temperature of 150 ° C., and FIG. It is a figure which shows the relationship between the standard deviation (sigma) in the board | substrate surface of the activation rate, and film thickness. As shown in Fig. 2, in the film thickness range of 1200Å to 2500Å, the average in-plane activation rate is 45% to 60%.
It is a degree. Further, as shown in FIG. 3, the standard deviation σ of the activation rate within the above film thickness range is 3 of the average value of the activation rate.
It is a small value around%.

なお、上記の結果は、主に膜堆積時の基板温度による
ものであり、他の堆積条件は前記の値に限ったものでは
ない。
The above results are mainly due to the substrate temperature during film deposition, and other deposition conditions are not limited to the above values.

発明の効果 以上のように、本発明の半導体装置の製造方法は200
℃以下の基板温度で、プラズマCVD法によりシリコン窒
化膜を堆積したのち、活性化熱処理を行うことにより、
イオン注入不純物の活性化が均一性,再現性良く行なう
ことができ、その実行的効果は大なるものがある。
As described above, the manufacturing method of the semiconductor device of the present invention is 200
After the silicon nitride film is deposited by the plasma CVD method at the substrate temperature of ℃ or less, by performing the activation heat treatment,
The activation of the ion-implanted impurities can be performed with good uniformity and reproducibility, and its practical effect is great.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の半導体装置の製造方法の一実施例にお
いて作製したシリコン窒化膜の内部応力と基板温度との
関係を示す図、第2図は本発明の一実施例におけるシリ
コン窒化膜の膜厚と基板面内での平均活性化率との関係
を示す図、第3図は基板面内での活性化率の標準偏差を
示す図、第4図は電界効果トランジスタの従来の製造工
程の概略を示す図である。 1……フォトレジスト、2……n+領域、3……半絶縁性
GaAs基板、4……n層、5……オーミック電極(ソース
電極,ドレイン電極)、6……ショットキー電極(ゲー
ト電極)。
FIG. 1 is a diagram showing the relationship between the internal stress of a silicon nitride film produced in an embodiment of the method for manufacturing a semiconductor device of the present invention and the substrate temperature, and FIG. 2 is a diagram of the silicon nitride film in an embodiment of the present invention. The figure which shows the relationship between film thickness and the average activation rate in a board surface, FIG. 3 is a figure which shows the standard deviation of the activation rate in a board surface, and FIG. 4 is the conventional manufacturing process of a field effect transistor. It is a figure which shows the outline of. 1 ... Photoresist, 2 ... n + region, 3 ... Semi-insulating property
GaAs substrate, 4 ... N layer, 5 ... Ohmic electrode (source electrode, drain electrode), 6 ... Schottky electrode (gate electrode).

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】不純物イオンを注入した基板を100℃以
上、200℃以下の温度に保って、プラズマCVDにより前記
基板の表面にシリコン窒化膜を1200Å〜2200Åの厚さに
堆積した後、イオン注入不純物の活性化熱処理を行うこ
とを特徴とする半導体装置の製造方法。
1. A substrate in which impurity ions are implanted is maintained at a temperature of 100 ° C. or higher and 200 ° C. or lower, a silicon nitride film is deposited on the surface of the substrate by plasma CVD to a thickness of 1200Å to 2200Å, and then ion implantation is performed. A method for manufacturing a semiconductor device, which comprises performing heat treatment for activation of impurities.
JP63070028A 1988-03-24 1988-03-24 Method for manufacturing semiconductor device Expired - Fee Related JP2563455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63070028A JP2563455B2 (en) 1988-03-24 1988-03-24 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63070028A JP2563455B2 (en) 1988-03-24 1988-03-24 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH01241820A JPH01241820A (en) 1989-09-26
JP2563455B2 true JP2563455B2 (en) 1996-12-11

Family

ID=13419732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63070028A Expired - Fee Related JP2563455B2 (en) 1988-03-24 1988-03-24 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2563455B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7309254B2 (en) 2005-09-29 2007-12-18 Japan Aviation Electronics Industry Limited Connector which can be increased in holding strength with respect to a substrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191329A (en) * 1983-04-13 1984-10-30 Sharp Corp Manufacture of ion-implanted gaas element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7309254B2 (en) 2005-09-29 2007-12-18 Japan Aviation Electronics Industry Limited Connector which can be increased in holding strength with respect to a substrate

Also Published As

Publication number Publication date
JPH01241820A (en) 1989-09-26

Similar Documents

Publication Publication Date Title
JPH07106280A (en) Manufacture of semiconductor device
JPH0282629A (en) Self-aligning gallium arsenide (gaas) field effect transistor making use of multilayer resist
JP2563455B2 (en) Method for manufacturing semiconductor device
JPS58212177A (en) Insulated gate type transistor and manufacture thereof
KR100280797B1 (en) Manufacturing method of semiconductor device
JPH0684938A (en) Manufacture of semiconductor device
JPH07161996A (en) Insulated-gate field-effect device and its manufacture
JP3042803B2 (en) TFT polysilicon thin film making method
JP2003197636A (en) Thin film semiconductor element and its manufacturing method
JPH04241453A (en) Semiconductor device and manufacture thereof
JPH0684893A (en) Manufacture of semiconductor device
JPS58131748A (en) Formation of interelement isolation region
JPH0272669A (en) Thin film semiconductor device and manufacture thereof
JPS61203682A (en) Semiconductor device and manufacture thereof
JPH02292831A (en) Manufacture of semiconductor device
JPH0963955A (en) Film-forming device, film formation and manufacture of single crystal film
JPH0770546B2 (en) Method for manufacturing GaAs field effect transistor
JPH07221302A (en) Manufacture of semiconductor device
JPH01238126A (en) Manufacture of semiconductor device
KR0139574B1 (en) Channel polysilicone film forming method of thin film transistor
JPH06196704A (en) Thin film semiconductor device
JPH0770544B2 (en) Method for manufacturing semiconductor device
JPS61290771A (en) Manufacture of semiconductor memory device
JPH0354830A (en) Semiconductor device and manufacture thereof
JP2940487B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees