JP2563196B2 - Coupled distributed feedback semiconductor laser - Google Patents

Coupled distributed feedback semiconductor laser

Info

Publication number
JP2563196B2
JP2563196B2 JP63058012A JP5801288A JP2563196B2 JP 2563196 B2 JP2563196 B2 JP 2563196B2 JP 63058012 A JP63058012 A JP 63058012A JP 5801288 A JP5801288 A JP 5801288A JP 2563196 B2 JP2563196 B2 JP 2563196B2
Authority
JP
Japan
Prior art keywords
modulation
semiconductor laser
current
distributed feedback
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63058012A
Other languages
Japanese (ja)
Other versions
JPH01231390A (en
Inventor
陽 杉村
達也 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63058012A priority Critical patent/JP2563196B2/en
Priority to DE8888303709T priority patent/DE3873398T2/en
Priority to EP88303709A priority patent/EP0289250B1/en
Priority to US07/186,181 priority patent/US4847856A/en
Publication of JPH01231390A publication Critical patent/JPH01231390A/en
Application granted granted Critical
Publication of JP2563196B2 publication Critical patent/JP2563196B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06258Controlling the frequency of the radiation with DFB-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/124Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts
    • H01S5/1246Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts plurality of phase shifts

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はコヒーレント光伝送などに用いられる光FM用
半導体レーザに関し、特に光の位相を1/4波長変化させ
る位相変化部分を3箇所有する結合分布帰還型半導体レ
ーザに関するものである。
TECHNICAL FIELD The present invention relates to a semiconductor laser for optical FM used for coherent optical transmission and the like, and particularly to a coupling having three phase changing portions for changing the phase of light by 1/4 wavelength. The present invention relates to a distributed feedback semiconductor laser.

〔従来の技術〕[Conventional technology]

コヒーレント光伝送などに用いられる光FM用半導体レ
ーザの従来技術の一例を第3図に示して説明する。第3
図において、11は光増幅を行う活性層1と、光閉じ込め
のためのクラツド層2,3と、この活性層1とクラツド層
2の境界に光を分布的に帰還させるための回折格子4
と、電極5,6とから構成される分布帰還型半導体レーザ
(以下、DFBレーザ)であり、12はこのDFBレーザ11に並
置された、活性層1と、クラツド層2,3と、電極5,6から
なる半導体レーザである。ここで、DFBレーザ11には一
定電流を流し、安定なモードで発振させる。そして、前
記レーザ12の注入電流をしきい値以下で変調をかける
と、このレーザ12の屈折率変調によりDFBレーザ11の右
端末での反射が変調をうけ、周波数変調がかかるものと
なつている。
An example of a conventional technique of a semiconductor laser for optical FM used for coherent optical transmission will be described with reference to FIG. Third
In the figure, 11 is an active layer 1 for optical amplification, cladding layers 2 and 3 for confining light, and a diffraction grating 4 for returning the light in a distributed manner to the boundary between the active layer 1 and the cladding layer 2.
And a distributed feedback semiconductor laser (hereinafter referred to as a DFB laser) 12 composed of electrodes 5 and 6, and 12 is an active layer 1, a cladding layer 2 and 3 and a electrode 5 arranged in parallel with the DFB laser 11. It is a semiconductor laser composed of 6 and 6. Here, a constant current is passed through the DFB laser 11 to oscillate in a stable mode. Then, when the injection current of the laser 12 is modulated below a threshold value, the reflection at the right terminal of the DFB laser 11 is modulated by the refractive index modulation of this laser 12, and frequency modulation is applied. .

また、他の例として第4図に示すものがある。これ
は、第4図に示すように、活性層1と、クラツド層2,3
と、光を分布的に帰還させるための回折格子4とからDF
Bレーザ13を構成し、その一方の電極5を3分割した構
造を有している。この構造のDFBレーザは、分割された
各電極5に異なる注入電流をかけることで、屈折率分布
に非対称性を導入することができ、発振モードを変化さ
せることができる。そして、各電極5に丁度良い条件の
バイアス電流を流し、その真中と端の各電極に逆相の変
調電流の流すと、単一モードで発振し、かつAM成分のな
いFMを得ることができる。
Another example is shown in FIG. As shown in FIG. 4, this is the active layer 1 and the cladding layers 2, 3
And the diffraction grating 4 for returning the light in a distributed manner
The B laser 13 has a structure in which one electrode 5 is divided into three. The DFB laser having this structure can introduce asymmetry in the refractive index distribution by applying different injection currents to the divided electrodes 5 and can change the oscillation mode. Then, when a bias current of exactly good conditions is applied to each electrode 5 and a modulation current of opposite phase is applied to each of the middle and end electrodes, an FM oscillating in a single mode and having no AM component can be obtained. .

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし、第3図に示す構造のものでは、DFBレーザ11
の回折格子4つまりグレーテイングの端面での位相に対
し、周波数変調のかかり方が異なり、変調特性が素子間
でバラつくという問題を有している。
However, in the structure shown in FIG. 3, the DFB laser 11
There is a problem in that the frequency modulation is applied differently to the phase at the diffraction grating 4, that is, at the end face of the grating, and the modulation characteristics vary among the elements.

一方、第4図に示す構造のものでは、発振周波数や変
調特性が動作条件により変化するため、条件設定を一回
毎に行う必要があり、長時間動作時の安定性,離れた場
所での素子特性の均一性に問題がある。
On the other hand, in the structure shown in FIG. 4, the oscillation frequency and the modulation characteristics change depending on the operating conditions, so it is necessary to set the condition once, which results in stability during long-term operation and in remote locations. There is a problem in the uniformity of device characteristics.

本発明は以上の点に鑑み、このような問題を解決する
ためになされたもので、その目的は、動作条件の調整過
程が少なく、かつ素子間のバラつきも小さく、安定に動
作する光FM用半導体レーザを提供することにある。
In view of the above points, the present invention has been made to solve such a problem, and an object thereof is to provide a stable operation for an optical FM that has a small number of adjustment processes of operating conditions and a small variation between elements. It is to provide a semiconductor laser.

〔課題を解決するための手段〕[Means for solving the problem]

上記の目的を達成するため、本発明は、DFBレーザを
4分割し、その各部分間をλ/4(ただし、λ:光の波
長)位相シフトを介して結合させ、この各部分に一様な
バイアス電流と四重極的に符号が逆につている一定の変
調電流を加えることを主要な特徴とするものである。
In order to achieve the above-mentioned object, the present invention divides a DFB laser into four parts, and couples each part between them through a λ / 4 (where λ: wavelength of light) phase shift, and makes each part uniform. The main feature is to add a constant modulation current whose sign is quadrupolarly opposite to that of the normal bias current.

〔作用〕[Action]

したがつて、本発明においては、DFBレーザにλ/4位
相シフトを3個所設け、この4分割された各部分に四重
極的に符号が逆になつている変調電流を加えることによ
り、純粋の周波数変調(FM)が得られる。そのため、従
来の動作条件の調整による変調特性の設定を行うことな
く、構造的に変調特性を設定することが可能になる。
Therefore, according to the present invention, the DFB laser is provided with three λ / 4 phase shifts, and a quadrupole modulation current whose sign is reversed in quadrupole is added to each of the four divided parts to obtain a pure current. Frequency modulation (FM) of is obtained. Therefore, it is possible to structurally set the modulation characteristic without setting the modulation characteristic by adjusting the conventional operation condition.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例に基づいて詳細に説
明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第1図は本発明による結合位相シフト型DFBレーザの
一実施例を示す基本的な構造断面図である。同図におい
て、101,102,103及び104は光増幅を行う活性層1と、光
閉じ込めのためのクラツド層2,3と、回折格子4とから
構成されるDFBレーザであり、7,8及び9は光の位相をλ
/4だけ変える位相シフト部分である。この位相シフト部
分7〜9の具体的としては、第1図に示すように、各DF
Bレーザ101,102,103及び104を互いに密着させ、各分布
帰還を与えるための活性層幅の変調をその位相が1/2波
長ずれるように構成する方法がある。また、この部分も
導波路で構成し、その幅を活性層幅よりも狭くする構造
でもよい。さらに、各DFBレーザ101,102,103及び104
分離してその間を空気とし、その光学距離が位相差λ/4
になるように決め、また端面反射がもとに戻らないよう
にした構造でもよい。そして、DFBレーザ101〜104は一
方の電極5がそれぞれ独立に形成され、他方の電極6が
共通にして形成されている。なお、図中、同一符号は同
一または相当部分を示している。
FIG. 1 is a basic structural sectional view showing one embodiment of a coupled phase shift type DFB laser according to the present invention. In the figure, 10 1 , 10 2 , 10 3 and 10 4 are DFB lasers composed of an active layer 1 for optical amplification, cladding layers 2 and 3 for optical confinement, and a diffraction grating 4, 7,8 and 9 are the phase of light
This is the phase shift part that changes by / 4. As shown in FIG. 1, each of the phase shift parts 7 to 9 has a specific DF
There is a method in which the B lasers 10 1 , 10 2 , 10 3, and 10 4 are brought into close contact with each other, and the modulation of the active layer width for giving each distributed feedback is configured so that the phase thereof is shifted by a half wavelength. Further, this portion may be formed of a waveguide and the width thereof may be narrower than the width of the active layer. Further, the DFB lasers 10 1 , 10 2 , 10 3 and 10 4 are separated from each other to form air, and the optical distance thereof has a phase difference of λ / 4.
It is also possible to adopt a structure in which the edge reflection is not returned to the original. Then, DFB lasers 10 1 to 10 4 are formed on one of the electrodes 5 are each independently the other electrode 6 is formed in the common. In the drawings, the same reference numerals indicate the same or corresponding parts.

かかる構造において、DFBレーザ101,102,103及び104
の各電極5,6にしきい値以上の一定の電流を流し、レー
ザ発振させると、その時、発振光の周波数は構造的に設
定されるブラツグ周波数に一致して、安定な単一モード
動作を行いかつ発振スペクトル幅が狭くなることは、既
に同一出願人に係る特願昭62−104065号にて明らかにさ
れている。ここでは更に各電極5,6に異なる変調電流を
加える。これにより、各DFBレーザ101〜104のi番目
(i=I,II,III,IV)の活性層1中のキヤリア密度が変
化するが、この半導体中ではキヤリア数変化は屈折率変
化をひき起すため、そのレーザ中の右進行光波動R,左進
行光波動Sを決める結合モード方程式は、i領域では となる。ただし、λはブラツグ波長、Δηは電流注入
による屈折率変化、αthはしきい値ゲイン、δは発振周
波数のブラツグ周波数からのずれである。なお、各DFB
レーザ101,102,103及び104の領域間では光波動はλ/4の
位相シフトをうける。また、両端面からの反射は無反射
コーテイングなどを施すことにより無いものとする。注
入電流が変化した時、一般的には出力光の振幅,光周波
数ともに変化する。ここでは、1番目〜4番目のDFBレ
ーザ101〜104つまりI〜IV領域のうちI,IV領域とII,III
領域に符号が逆で振幅の等しい電流変調を加える。この
変調方法は四重極的プツシユプル変調と呼ぶことができ
る。各領域に対する上記方程式(1),(2)と境界条
件を用いれば、この系の固有値方程式が得られる。この
方程式を線形近似して、変調電流が0の場合のαth
からのずれΔαth及びΔδを求めると、 Δαth−jΔδ=jK2πΔη/λ ……(3) と計算される。ただし、Kは変調をかけない時のαth
びδの関数であり、DFBレーザの帰還量κ及び全共振器
長Lの積κLの関数である。計算によると、本発明構造
である結合位相シフト型DFBレーザのように、δ=0の
時、Kは実数となる。従つて、上記(3)式によりΔα
th=0,Δδ=−K2πΔη/λとなる。四重極プツシユプ
ル変調では、全変調電流の和は0である。従つて、Δα
th=0であれば、全くAM変調をうけないことになる。そ
れに対して、Δδ≠0であるので、純粋のFM変調がかか
ることになる。
In such a structure, the DFB lasers 10 1 , 10 2 , 10 3 and 10 4
When a constant current above the threshold is applied to each of the electrodes 5 and 6 to cause laser oscillation, the oscillation light frequency at that time matches the structurally set Bragg frequency, and stable single-mode operation is performed. Moreover, it has already been clarified in Japanese Patent Application No. 62-104065 relating to the same applicant that the oscillation spectrum width becomes narrow. Here, different modulation currents are further applied to the electrodes 5 and 6. Thus, i-th of each DFB laser 10 1 ~10 4 (i = I , II, III, IV) varies the carrier density in the active layer 1, the refractive index change carrier number change in the semiconductor in Therefore, the coupled mode equation that determines the right traveling light wave R and the left traveling light wave S in the laser is Becomes Here, λ is the Bragg wavelength, Δη i is the refractive index change due to current injection, α th is the threshold gain, and δ is the deviation of the oscillation frequency from the Bragg frequency. In addition, each DFB
Light waves between laser 10 1, 10 2, 10 3 and 10 4 of the region undergoes a phase shift of lambda / 4. Also, reflection from both end surfaces is eliminated by applying non-reflective coating or the like. When the injection current changes, both the amplitude and the optical frequency of the output light generally change. Here, I of the first to fourth th DFB laser 10 1 to 10 4 ie I~IV region, IV region and II, III
Current modulation with opposite sign and equal amplitude is applied to the region. This modulation method can be called quadrupole push-pull modulation. Using the above equations (1) and (2) and the boundary conditions for each region, the eigenvalue equation of this system can be obtained. By linearly approximating this equation, α th , δ when the modulation current is 0
When the deviations Δα th and Δδ from are calculated, Δα th −jΔδ = jK2πΔη / λ (3) However, K is a function of α th and δ when no modulation is applied, and is a function of the product κ L of the feedback amount κ of the DFB laser and the total cavity length L. According to the calculation, K becomes a real number when δ = 0 as in the coupled phase shift DFB laser having the structure of the present invention. Therefore, according to the above equation (3), Δα
th = 0, Δδ = −K2πΔη / λ. In quadrupole push-pull modulation, the sum of all modulation currents is zero. Therefore, Δα
If th = 0, no AM modulation is received. On the other hand, since Δδ ≠ 0, pure FM modulation is applied.

ここで、電流変調方法が上に述べたもの以外の色々な
ものについて同様の計算を行つた結果を第1表に示す。
この第1表は、結合位相シフト型DFBレーザ構造の分割
された各電極に様々な変調の仕方で変調をかけた時のAM
及びFM変調のかかり方を表わす表である。
Table 1 shows the results of similar calculations performed for various current modulation methods other than those described above.
This Table 1 shows the AM when the divided electrodes of the coupled phase shift type DFB laser structure are modulated by various modulation methods.
2 is a table showing how FM modulation is applied.

ただし、第1表において、記号+,−及び0は各電極
に加える変調電流の極性を示す。同表から明らかなよう
に、変調方法としての同表のa,b及びeの方法が純粋のF
Mを得ることができる。
However, in Table 1, the symbols +, − and 0 indicate the polarities of the modulation currents applied to the respective electrodes. As is clear from the table, the methods a, b and e in the table as the modulation method are pure F
You can get M.

以上のことから、純粋のFMを得るには、4分割電極5
のうち外側の2個にかける合計変調電流と内側の2個に
かける合計変調電流が同じ大きさで、かつ符号が逆にな
るように動作させればよいことになる。このような変調
方法は、四重極プツシユプル変調と呼ぶことができる。
From the above, in order to obtain pure FM
It suffices to operate so that the total modulation current applied to the two outer ones and the total modulation current applied to the two inner ones have the same magnitude and opposite signs. Such a modulation method can be called quadrupole push-pull modulation.

次に、FMの変調深さの数値例を示す。上記(3)式の
Δηはキヤリヤ密度の変調Δnによつてひき起こされ、
両者の関係は Δη=(λα/2π)agΔn ……(4) で与えられる。ただし、agは微粉利得、αは半導体レー
ザの線幅増大因子である。上記(3),(4)式を用
い、Δδを周波数変異Δfになおすと、周波数fの光に
対するFMの変調深さΔfは Δf/f=(KλαagΓ/2πη)Δn ……(5) となる。KのκL依存性を用い、1.55μmInGaAsP結合位
相シフトDFBレーザについてのΔfのκL依存性を求め
た結果を第2図に示す。ここで、上記特願昭62−104065
号で明らかにされている最も狭いスペクトル線幅を与え
るκLは2.5である。よつて、κLがこの2.5の時、Δf
はキヤリヤ密度変調が1%の場合、約500MHzとなる。
Next, a numerical example of the modulation depth of FM is shown. Δη in the above equation (3) is caused by the modulation Δn of the carrier density,
The relationship between the two is given by Δη = (λα / 2π) a g Δn ...... (4). Here, a g is the fine powder gain, and α is the line width increasing factor of the semiconductor laser. (3), (4) used, the cure of Δδ frequency variant Delta] f, FM modulation depth Delta] f with respect to light having a frequency f Δf / f = (Kλαa g Γ / 2πη) Δn ...... (5) Becomes Using κL dependent K, shows the result of obtaining κL dependence Δf for 1.55μmI n G a A s P combined phase shift DFB laser in Figure 2. Here, the above-mentioned Japanese Patent Application No. 62-104065
The .kappa.L which gives the narrowest spectral line width disclosed in No. 2.5 is 2.5. Therefore, when κL is 2.5, Δf
Is about 500MHz when the carrier density modulation is 1%.

なお、以上の説明では、4分割されたDFBレーザの各
部分の長さは等しいとしたが、純粋FM変調はλ/4位相シ
フトの存在によつて可能になつているのであり、長さが
少し異なつても純粋FMが得られるものである。
In the above description, the lengths of the four parts of the DFB laser divided into four are equal, but pure FM modulation is possible due to the existence of the λ / 4 phase shift. Pure FM can be obtained even if it is slightly different.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明は、光の位相を1/4波長
変化させる位相変化部分を3箇所有する結合DFB型半導
体レーザにおいて、前記3箇所の位相変化部分により4
分割された各部所に独立に形成された電極を有し、該4
個の電極にしきい値以上の一定電流を流すとともに、こ
の電流に更に変調電流を加え、該変調電流として上記4
個の電極のうち外側の2個にかける変調電流の和と内側
の2個にかける変調電流の和が同じ大きさで、かつ符号
が逆になるようにして発光させることにより、純粋のFM
を得ることができる。従つて、中心周波数,変調特性な
どは、この構造のデバイスを作つた時に決定され、動作
時に動作条件の調整を必要としない。そのため、長時間
の動作安定性が得られ、素子間のバラつきが小さく、離
れた場所で複数個用いる場合、均一な素子特性が得られ
る利点があつた。
As described above, according to the present invention, in the coupled DFB semiconductor laser having three phase changing portions for changing the phase of light by 1/4 wavelength, it is possible to reduce the number of phase changing portions by three of the phase changing portions.
Each of the divided parts has an electrode formed independently,
A constant current equal to or higher than a threshold value is applied to each electrode, and a modulation current is further added to this current to obtain the modulation current as described above.
By emitting light with the sum of the modulation currents applied to the outer two of the electrodes and the sum of the modulation currents applied to the inner two being the same, and with the signs reversed, pure FM
Can be obtained. Therefore, the center frequency, the modulation characteristic, etc. are determined when the device having this structure is manufactured, and it is not necessary to adjust the operating conditions during operation. Therefore, there are advantages that long-term operation stability is obtained, variation between elements is small, and uniform element characteristics are obtained when a plurality of elements are used at distant locations.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による結合位相シフト型DFBレーザの一
実施例を示す基本的な構造断面図、第2図は上記実施例
における四重極プツシユプル変調をうけた1.55μmInGaA
sP結合位相シフト型DFBレーザのFM変調深さのκL依存
性の一例を示す図、第3図及び第4図はそれぞれ従来の
光FM変調器の構造断面図である。 1……活性層、2,3……クラツド層、4……回折格子、
5,6……電極、7,8,9……光位相をλ/4シフトさせる位相
シフト部分、101,102,103,104……DFBレーザ。
FIG. 1 is a basic structural sectional view showing an embodiment of a coupled phase shift type DFB laser according to the present invention, and FIG. 2 is a quadrupole push-pull modulation 1.55 μm I n G a A in the above embodiment.
FIG. 3 shows an example of the .kappa.L dependence of the FM modulation depth of the s P coupling phase shift type DFB laser, and FIG. 3 and FIG. 4 are structural cross-sectional views of a conventional optical FM modulator. 1 ... Active layer, 2, 3 ... Cladding layer, 4 ... Diffraction grating,
5,6 …… Electrodes, 7,8,9 …… Phase shift part that shifts the optical phase by λ / 4, 10 1 , 10 2 , 10 3 , 10, 4 DFB laser.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光の位相を1/4波長変化させる位相変化部
分を3箇所有する結合分布帰還型半導体レーザにおい
て、前記3箇所の位相変化部分により4分割されて各部
所に独立に形成された電極を有し、該4個の電極にしき
い値以上の一定電流を流すとともに、この電流に更に変
調電流を加え、該変調電流として上記4個の電極のうち
外側の2個にかける変調電流の和と内側の2個にかける
変調電流の和が同じ大きさで、かつ符号が逆になるよう
にして発光させることを特徴とする結合分布帰還型半導
体レーザ。
1. A coupled distributed feedback semiconductor laser having three phase changing portions for changing the phase of light by 1/4 wavelength. The coupled distributed feedback semiconductor laser is divided into four parts by the three phase changing portions and formed independently at each part. A constant current equal to or higher than a threshold value is applied to the four electrodes, a modulation current is further added to this current, and the modulation current applied to the outer two of the four electrodes as the modulation current. A coupled distributed feedback semiconductor laser, wherein the sum and the sum of the modulation currents applied to the inner two have the same magnitude and emit light such that the signs are opposite.
JP63058012A 1987-04-27 1988-03-11 Coupled distributed feedback semiconductor laser Expired - Fee Related JP2563196B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63058012A JP2563196B2 (en) 1988-03-11 1988-03-11 Coupled distributed feedback semiconductor laser
DE8888303709T DE3873398T2 (en) 1987-04-27 1988-04-25 PHASE SHIFTED SEMICONDUCTOR LASER WITH DISTRIBUTED FEEDBACK.
EP88303709A EP0289250B1 (en) 1987-04-27 1988-04-25 Phase-shift distributed-feedback semiconductor laser
US07/186,181 US4847856A (en) 1987-04-27 1988-04-26 Phase-shift distributed-feedback semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63058012A JP2563196B2 (en) 1988-03-11 1988-03-11 Coupled distributed feedback semiconductor laser

Publications (2)

Publication Number Publication Date
JPH01231390A JPH01231390A (en) 1989-09-14
JP2563196B2 true JP2563196B2 (en) 1996-12-11

Family

ID=13072055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63058012A Expired - Fee Related JP2563196B2 (en) 1987-04-27 1988-03-11 Coupled distributed feedback semiconductor laser

Country Status (1)

Country Link
JP (1) JP2563196B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2804838B2 (en) * 1990-10-11 1998-09-30 国際電信電話株式会社 Tunable semiconductor laser

Also Published As

Publication number Publication date
JPH01231390A (en) 1989-09-14

Similar Documents

Publication Publication Date Title
CA2137596C (en) Alternating grating tunable dbr laser
US5568311A (en) Wavelength tunable semiconductor laser device
JP2610802B2 (en) Semiconductor device
EP0314490B1 (en) Semiconductor laser
EP1478064A1 (en) Widely tunable sampled-grating distributed feedback laser diode
JPS6154690A (en) Semiconductor laser device
EP0289250B1 (en) Phase-shift distributed-feedback semiconductor laser
US4680769A (en) Broadband laser amplifier structure
KR970007117B1 (en) Semiconductor laser
JP3198338B2 (en) Semiconductor light emitting device
JP3237733B2 (en) Semiconductor laser
US5392311A (en) Laser element
JPH06103778B2 (en) Optical device including semiconductor distributed feedback laser and method of driving the same
JP2708467B2 (en) Tunable semiconductor laser
JP2563196B2 (en) Coupled distributed feedback semiconductor laser
JP2010050162A (en) Semiconductor wavelength variable laser
JPH0311554B2 (en)
JPH06125138A (en) Laser
JPH06112570A (en) Distributed bragg-reflection type semiconductor laser
JPH0470794B2 (en)
JPS6134988A (en) Semiconductor laser
JPH0642577B2 (en) Driving method of multi-electrode distributed feedback semiconductor laser
JP2770900B2 (en) Distributed reflector and tunable semiconductor laser using the same
JPH02305488A (en) Semiconductor light emitting device
JPH06196799A (en) Distributed-feedback semiconductor laser

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees