JP2561325B2 - Three-dimensional shape forming method - Google Patents

Three-dimensional shape forming method

Info

Publication number
JP2561325B2
JP2561325B2 JP63248558A JP24855888A JP2561325B2 JP 2561325 B2 JP2561325 B2 JP 2561325B2 JP 63248558 A JP63248558 A JP 63248558A JP 24855888 A JP24855888 A JP 24855888A JP 2561325 B2 JP2561325 B2 JP 2561325B2
Authority
JP
Japan
Prior art keywords
dimensional shape
light beam
angle
layer
photocurable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63248558A
Other languages
Japanese (ja)
Other versions
JPH0295829A (en
Inventor
良光 中村
昭吉 栗林
忍 池野
俊五 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP63248558A priority Critical patent/JP2561325B2/en
Publication of JPH0295829A publication Critical patent/JPH0295829A/en
Application granted granted Critical
Publication of JP2561325B2 publication Critical patent/JP2561325B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、三次元形状の形成方法に関し、光の照射
によって硬化する光硬化性樹脂を用いて、立体的な三次
元形状を有する物品を形成製造する方法に関するもので
ある。
Description: TECHNICAL FIELD The present invention relates to a method for forming a three-dimensional shape, and an article having a three-dimensional shape using a photocurable resin that is cured by irradiation with light. The present invention relates to a method of forming and manufacturing.

〔従来の技術〕[Conventional technology]

光硬化性樹脂を用いて三次元形状を形成する方法は、
複雑な三次元形状を、成形型や特別な加工工具等を用い
ることなく、簡単かつ正確に形成することができる方法
として、各種の製品モデルや立体模型の製造等に利用す
ることが考えられており、例えば、特開昭62−35966号
公報,特開昭61−114817号公報等に開示されている。
The method of forming a three-dimensional shape using a photo-curable resin,
As a method that can easily and accurately form a complicated three-dimensional shape without using a molding die or a special processing tool, it is considered to be used for manufacturing various product models and three-dimensional models. These are disclosed, for example, in JP-A-62-35966 and JP-A-61-114817.

第6図は、従来の一般的な、光硬化性樹脂を用いた三
次元形状の形成方法の一例を示しており、樹脂液槽1に
貯えられた液状の光硬化性樹脂2に対して、液面上方か
ら集光レンズ30で集光されたレーザービーム等の光ビー
ム3を照射することによって、光ビーム3の焦点位置付
近の、液面から一定の深さまでの光硬化性樹脂2を硬化
させ、光ビーム3の照射位置を順次移動させることによ
って、所定のパターンを有する光硬化層40を形成する。
この光硬化層40の上に新たな光硬化性樹脂液2を供給
し、この光硬化性樹脂液2を再び光ビーム3で所定のパ
ターン状に硬化させれば、前記光硬化層40の上に別のパ
ターンを有する光硬化層40が形成される。このようにし
て、複数層の光硬化層40…を順次積み重ねていけば、所
望の三次元形状を有する成形品4が形成できる。光ビー
ム3をレンズ30で集光して、液面付近で焦点を結ぶよう
にすることによって、この焦点位置近傍に強い光エネル
ギーが与えられるので、液面直下の一定厚みの光硬化性
樹脂2のみを効率良く硬化できるようになっている。
FIG. 6 shows an example of a conventional general method for forming a three-dimensional shape using a photo-curable resin. For a liquid photo-curable resin 2 stored in a resin liquid tank 1, By irradiating the light beam 3 such as a laser beam condensed by the condenser lens 30 from above the liquid surface, the photo-curable resin 2 near the focal position of the light beam 3 to a certain depth from the liquid surface is cured. Then, the irradiation position of the light beam 3 is sequentially moved to form the photo-curable layer 40 having a predetermined pattern.
When a new photo-curable resin liquid 2 is supplied onto the photo-curable layer 40 and the photo-curable resin liquid 2 is cured again by the light beam 3 in a predetermined pattern, Then, a photo-cured layer 40 having another pattern is formed. In this way, by sequentially stacking a plurality of photo-curing layers 40, the molded product 4 having a desired three-dimensional shape can be formed. By condensing the light beam 3 by the lens 30 and focusing it near the liquid surface, strong light energy is given near the focal position, so that the photo-curable resin 2 with a constant thickness just below the liquid surface is provided. Only one can be cured efficiently.

第7図は、光ビーム3が照射される液面付近の状態を
模式的に示しており、光ビーム3の焦点Fが液面位置に
あり、光ビーム3の集光角度αで垂直方向に照射してい
る。このような光ビーム3が照射されると、光ビーム3
の液面の焦点位置Fから一定の深さまで浸透して樹脂液
2を硬化させるので、液面の下に細長い円錐状の硬化領
域42が形成される。光ビーム3が水平方向に移動するこ
とによって、上記硬化領域42が順次移動し、一定パター
ンの光硬化層40が形成されるのである。したがって、光
硬化層40の外側端では、光ビーム3の硬化領域42の外形
状に対応して一定の傾斜角度θが形成される。第7図の
場合、上記光硬化層40の端面の傾斜角度θは、θ=90゜
−α/2で表され、αは比較的小さな角度であるので、θ
はほぼ90゜に近い角度になる。
FIG. 7 schematically shows a state in the vicinity of the liquid surface irradiated with the light beam 3, in which the focal point F of the light beam 3 is at the liquid surface position, and the light beam 3 is vertically converged at the converging angle α. Irradiating. When such a light beam 3 is irradiated, the light beam 3
Since the resin liquid 2 is hardened by penetrating from the focal point position F of the liquid surface to a certain depth, the elongated conical hardening region 42 is formed below the liquid surface. By moving the light beam 3 in the horizontal direction, the curing region 42 is sequentially moved to form the photocuring layer 40 having a constant pattern. Therefore, at the outer end of the photo-curing layer 40, a constant inclination angle θ is formed corresponding to the outer shape of the curing region 42 of the light beam 3. In the case of FIG. 7, the inclination angle θ of the end surface of the photo-curable layer 40 is represented by θ = 90 ° −α / 2, and α is a relatively small angle.
Is close to 90 °.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記のような、従来の三次元形状の形成方法では、一
定の厚みを有する光硬化層を積み重ねて三次元形状の成
形品を得るため、成形品の外表面に、各光硬化層毎の段
差が生じるという問題があった。
In the conventional method for forming a three-dimensional shape as described above, in order to obtain a three-dimensional shaped molded product by stacking photo-cured layers having a certain thickness, a step for each photo-cured layer is formed on the outer surface of the molded product. There was a problem that.

第8図は、従来の三次元形状の形成方法で形成された
成形品4の断面構造を示しており、例えば、二点鎖線で
示す滑らかな曲線状の外表面を有する三次元形状4′を
形成しようとしても、各光硬化層40はそれぞれ一定の厚
みを有する板状であって、しかも各光硬化層40の端面
は、前記した一定角度θを有する傾斜面であるので、各
光硬化層40毎に階段状の段差ができてしまい、実際に成
形された成形品4の外表面は滑らかにならない。
FIG. 8 shows a cross-sectional structure of a molded product 4 formed by a conventional three-dimensional shape forming method. For example, a three-dimensional shape 4'having a smooth curved outer surface indicated by a chain double-dashed line is shown. Even if it is attempted to form, each photo-curing layer 40 is a plate having a constant thickness, and the end face of each photo-curing layer 40 is an inclined surface having the above-mentioned constant angle θ. Since a step-like step is formed for each 40, the outer surface of the actually molded product 4 is not smooth.

そこで、この発明の課題は、上記したように、複数層
の光硬化層を積み重ねて三次元形状を形成する方法にお
いて、成形の外表面を滑らかに形成することができる三
次元形状の形成方法を提供することにある。
Therefore, as described above, an object of the present invention is to provide a method for forming a three-dimensional shape capable of smoothly forming an outer surface of molding in a method for forming a three-dimensional shape by stacking a plurality of photo-curing layers. To provide.

〔課題を解決するための手段〕 上記課題を解決する、この発明のうち、請求項1記載
の三次元形状の形成方法は、光硬化性樹脂に光を照射し
て光硬化層を形成し、この光硬化層を複数層積み重ね
て、所望の三次元形状を形成する方法において、照射す
る光ビームの焦点位置を光硬化性樹脂の表面に対して上
下方向に変えることによって、各光硬化層の外側端の傾
斜角度を変えるようにしている。
[Means for Solving the Problems] In the present invention for solving the above problems, the method for forming a three-dimensional shape according to claim 1 is to form a photocurable layer by irradiating a photocurable resin with light. In the method of stacking a plurality of photocurable layers to form a desired three-dimensional shape, by changing the focal position of the irradiation light beam in the vertical direction with respect to the surface of the photocurable resin, The inclination angle of the outer edge is changed.

請求項2記載の方法は、請求項1記載の方法と同様の
三次元形状の形成方法において、照射する光ビームの集
光角度を変えることによって、各光硬化層の外側端の傾
斜角度を変えるようにしている。
The method according to claim 2 is the same as the method according to claim 1, wherein the angle of inclination of the outer end of each photocurable layer is changed by changing the converging angle of the irradiation light beam. I am trying.

請求項3記載の方法は、請求項1記載の方法と同様の
三次元形状の形成方法において、照射する光ビームの照
射角度を変えることによって、各光硬化層の外側端の傾
斜角度を変えるようにしている。
According to a third aspect of the present invention, in the method for forming a three-dimensional shape similar to the method of the first aspect, the inclination angle of the outer end of each photocurable layer is changed by changing the irradiation angle of the light beam to be irradiated. I have to.

〔作用〕[Action]

光ビームの照射によって硬化する光硬化性樹脂の硬化
領域の形状を変えて、積層する光硬化層の外側端の傾斜
角度を変えれば、形成しようとする三次元形状の外表面
の形状に合わせて、個々の光硬化層の外側端の傾斜角度
を任意に設定することができ、滑らかな外表面を有する
三次元形状の成形品を得ることができる。
By changing the shape of the cured area of the photocurable resin that is cured by irradiation of the light beam and changing the inclination angle of the outer end of the photocurable layer to be laminated, the shape of the outer surface of the three-dimensional shape to be formed can be adjusted. The inclination angle of the outer end of each photo-curable layer can be arbitrarily set, and a three-dimensional molded article having a smooth outer surface can be obtained.

光硬化層の外側端の傾斜角度を変える手段のうち、請
求項1記載の方法によれば、焦点位置の上下で光ビーム
による硬化領域が逆方向の円錐状をなすことを利用し
て、照射する光ビームの焦点位置を光硬化性樹脂を表面
に対して上下方向に変えることによって、各光硬化層の
外側端の傾斜角度を逆方向に変えることができる。
Among the means for changing the inclination angle of the outer end of the photo-curing layer, according to the method of claim 1, the curing region by the light beam has a conical shape in the opposite direction above and below the focal position. By changing the focus position of the light beam to the vertical direction of the photocurable resin with respect to the surface, the inclination angle of the outer end of each photocurable layer can be changed in the opposite direction.

請求項2記載の方法によれば、光ビームによる硬化領
域が集光角度の大小によって変わることを利用して、各
光硬化層の外側端の傾斜角度を変えることができる。
According to the method of the second aspect, it is possible to change the inclination angle of the outer end of each photo-curing layer by utilizing the fact that the hardening region by the light beam changes depending on the size of the converging angle.

請求項3記載の方法によれば、光ビームによる硬化領
域が照射角度の傾きによって変わることを利用して、各
光硬化層の外側端の傾斜角度を変えることができる。
According to the method of the third aspect, it is possible to change the inclination angle of the outer end of each photo-curing layer by utilizing the fact that the curing region by the light beam changes depending on the inclination of the irradiation angle.

〔実 施 例〕〔Example〕

ついて、この発明を、実施例を示す図面を参照しなが
ら、以下に詳しく説明する。なお、基本的な形成方法、
および、それに用いる形成装置は、前記した従来技術と
同様であるので、共通する個所には同じ符号を付けると
ともに、重複する説明は省略する。
The present invention will be described below in detail with reference to the drawings showing the embodiments. In addition, the basic formation method,
Also, since the forming apparatus used therefor is the same as that of the above-described conventional technique, common portions are denoted by the same reference numerals, and overlapping description will be omitted.

第1図は、成形装置の全体構造を示している。樹脂液
槽1には液状の光硬化性樹脂2が溜められている。樹脂
液槽1の中には、その上で光硬化層40を形成する成形台
5が設けられている。成形台5は昇降アーム50等を介し
て、上下方向に昇降自在に設けられている。樹脂液槽1
の上方には、集光レンズ30およびレーザー発生装置(図
示せず)等からなる光ビームの照射機構が設けられてい
て、光硬化性樹脂液2の液面付近に焦点を結ぶように光
ビーム3を照射できるようになっている。
FIG. 1 shows the overall structure of the molding apparatus. A liquid photocurable resin 2 is stored in the resin liquid tank 1. A molding table 5 on which the photocurable layer 40 is formed is provided in the resin liquid tank 1. The molding table 5 is provided so as to be vertically movable via an elevating arm 50 and the like. Resin liquid tank 1
A light beam irradiation mechanism including a condenser lens 30 and a laser generator (not shown) is provided above the light beam, and the light beam is focused so as to focus near the liquid surface of the photocurable resin liquid 2. 3 can be irradiated.

光ビーム3は、焦点Fを中心にして上下に一定角度で
開いた円錐状に照射されるので、この円錐状の開き角度
を集光角度αとする。また、光ビーム3の中心軸と液面
とのなす角度を照射角度βとする。なお、第1図の場
合、光ビーム3の焦点Fが液面に一致しているととも
に、光ビーム3の液面に垂直に照射しているので照射角
度βが90゜になっている。
Since the light beam 3 is irradiated in a conical shape that is opened vertically at a constant angle around the focal point F, the conical opening angle is defined as the converging angle α. The angle formed by the central axis of the light beam 3 and the liquid surface is defined as the irradiation angle β. In the case of FIG. 1, the focal point F of the light beam 3 coincides with the liquid surface, and since the liquid beam of the light beam 3 is irradiated perpendicularly, the irradiation angle β is 90 °.

この装置では、上記した光ビーム3の焦点位置F、集
光角度α、照射角度βが可変になっている。光ビーム3
の焦点位置Fを液面に対して上下方向に変えるには、集
光レンズ3を含む光ビーム照射機構の光学系の全体もし
くは一部を上下方向に移動させることによって、焦点位
置Fを上下移動させることができる。集光角度αを変え
るには、上記光学系のレンズの移動によって焦点距離を
変えるなどして光ビーム3を調整すればよい。照射角度
βを変えるには、光ビーム照射機構または光学系の一部
もしくは全体を傾斜されればよい。これら焦点位置F、
集光角度α、照射角度βの可変機構は、既知のレーザー
照射システム等、通常の各種光学装置において採用され
ている機構や構造が適用されるので、詳細な説明は省略
する。この発明方法で用いる装置は、焦点位置F、集光
角度α、照射角度βの何れか一つの条件のみを可変にし
ていてもよいが、複数の条件もしくは全ての条件が可変
になるようなものでもよく、さらに照射時間も任意に可
変できるようにしてもよい。
In this device, the focal position F of the light beam 3, the converging angle α, and the irradiation angle β are variable. Light beam 3
In order to change the focus position F in the vertical direction with respect to the liquid surface, the focus position F is moved in the vertical direction by moving all or part of the optical system of the light beam irradiation mechanism including the condenser lens 3 in the vertical direction. Can be made. To change the converging angle α, the light beam 3 may be adjusted by changing the focal length by moving the lens of the optical system. In order to change the irradiation angle β, a part or the whole of the light beam irradiation mechanism or the optical system may be tilted. These focus positions F,
Since a mechanism or structure adopted in various ordinary optical devices such as a known laser irradiation system is applied to the variable mechanism of the converging angle α and the irradiation angle β, detailed description thereof will be omitted. The apparatus used in the method of the present invention may be such that only one of the focal position F, the converging angle α and the irradiation angle β is variable, but a plurality of conditions or all the conditions are variable. However, the irradiation time may be variable.

つぎに、上記のような装置を用いた三次元形状の形成
方法について説明する。
Next, a method for forming a three-dimensional shape using the above-described apparatus will be described.

この方法では、光硬化性樹脂液2の液面直下に成形台
5を沈め、成形台5と液面との間の一定厚みの光硬化性
樹脂液2に上方から光ビーム3を照射して光硬化層40を
形成し、つぎに、成形台5を下降させることによって、
形成された光硬化層40の上を新たな樹脂液2で覆い、再
び光ビームの照射によって第2層の光硬化層40を形成す
る。この光ビーム3の照射と成形台5の下降を1サイク
ルにして順次繰り返すことによって、光硬化層40がつぎ
つぎに積層され、所望の立体的な三次元形状を有する成
形品4が得られる。
In this method, the molding table 5 is submerged just below the liquid surface of the photocurable resin liquid 2, and the photocurable resin liquid 2 having a constant thickness between the molding table 5 and the liquid surface is irradiated with the light beam 3 from above. By forming the photocurable layer 40 and then lowering the molding table 5,
The formed photocurable layer 40 is covered with a new resin liquid 2, and the second photocurable layer 40 is formed by irradiating a light beam again. By sequentially repeating the irradiation of the light beam 3 and the lowering of the molding table 5 in one cycle, the photo-curing layers 40 are laminated one after another to obtain a molded product 4 having a desired three-dimensional shape.

つぎに、光硬化層40の外側端の傾斜角度を変える方法
について説明する。
Next, a method of changing the inclination angle of the outer end of the photo-curable layer 40 will be described.

まず、第2図は、焦点位置Fを変える場合であり、第
2図(a)は焦点位置Fが液面と一致する場合、第2図
(b)は焦点位置Fが液面よりも距離fだけ深く入って
いる場合、第2図(c)は焦点位置Fが液面よりも距離
fだけ上方にある場合である。それぞれの状態での硬化
領域42をみると、第2図(a)では、液面を頂点として
下方に拡がる円錐状をなしており、光硬化層40の外側端
となる硬化領域42の外周の傾斜角度θは、前記した従来
技術と同様に、θ=90゜−α/2となる。ところが、第2
図(b)では、硬化領域42が液面を底面とした円錐状に
なっているので、上記傾斜角度θは、θ=90゜+α/2と
なり、焦点位置Fの違いによって、光硬化層40の外側端
の傾斜角度θが変わる。特に、この場合には、傾斜が垂
直方向に対して全く逆方向になるので、後述する集光角
度αの変更等と組み合わせることによって、より複雑な
三次元形状にも対応できることになる。
First, FIG. 2 shows the case where the focal position F is changed. In FIG. 2 (a), the focal position F coincides with the liquid surface, and in FIG. 2 (b), the focal position F is farther than the liquid surface. FIG. 2 (c) shows the case where the focus position F is above the liquid surface by the distance f when the depth is f deep. Looking at the hardening region 42 in each state, in FIG. 2 (a), it has a conical shape which spreads downward with the liquid surface as the apex, and the outer circumference of the hardening region 42 which is the outer end of the photohardening layer 40. The inclination angle θ is θ = 90 ° −α / 2, as in the above-mentioned conventional technique. However, the second
In FIG. 6B, the hardening region 42 has a conical shape with the liquid surface as the bottom surface, so the inclination angle θ is θ = 90 ° + α / 2, and the photocuring layer 40 is different depending on the focal position F. The inclination angle θ of the outer edge of the changes. In particular, in this case, the inclination is completely opposite to the vertical direction, so that a more complicated three-dimensional shape can be dealt with by combining it with a change of the converging angle α described later.

なお、第2図(c)では、光エネルギーの強い範囲が
浅いので、第2図(a)の場合に比べて、硬化領域42の
厚みが薄くなるとともに、傾斜角度θが小さくなる効果
もある。これは、図では硬化領域42のパターンを模式化
して示しているため、焦点Fに近い位置も遠い位置も同
じ傾斜角度θになっているが、実際の硬化作用において
は、焦点F付近で上下の円錐形が滑らかな曲線状につな
がるように硬化領域42が形成されるので、焦点F付近で
は傾斜角度θが図示した状態よりも大きく、垂直すなわ
ち90゜に近くなる。そのため、第2図(a)に比べて、
焦点Fから遠い位置に硬化領域42ができる第2図(c)
の状態では、第2図(a)の場合よりも傾斜角度θが小
さくなるのである。
Note that in FIG. 2 (c), since the strong range of light energy is shallow, there is an effect that the thickness of the cured region 42 becomes thinner and the inclination angle θ becomes smaller than that in the case of FIG. 2 (a). . This is because the pattern of the hardening region 42 is schematically shown in the figure, and therefore the tilt angle θ is the same both at the position close to the focus F and at the position far from the focus F. Since the hardened region 42 is formed so that the conical shape of is connected to a smooth curved line, the inclination angle θ near the focal point F is larger than that shown in the figure, and is close to vertical, that is, 90 °. Therefore, compared to FIG. 2 (a),
A hardening region 42 is formed at a position far from the focal point F (FIG. 2 (c)).
In this state, the tilt angle θ becomes smaller than that in the case of FIG. 2 (a).

つぎに、第3図は集光角度αを変える場合である。傾
斜角度θは、第2図(a)の場合と同様に、θ=90゜−
α/2であるので、集光角度αの大きな第3図(e)の場
合は第3図(d)の場合よりも傾斜角度θが小さくな
る。
Next, FIG. 3 shows a case where the converging angle α is changed. The inclination angle θ is θ = 90 ° -as in the case of FIG. 2 (a).
Since it is α / 2, the inclination angle θ is smaller in the case of FIG. 3 (e) where the converging angle α is larger than in the case of FIG. 3 (d).

第4図は照射角度βを変える場合である。この場合、
傾斜角度θは、θ=β−α/2となり、βを変えることに
よって、傾斜角度θが自由に変えられるとともに、第3
図(f)と第3図(g)とを比べれば判るように、垂直
方向に対して逆方向に傾斜をつけることもできる。
FIG. 4 shows a case where the irradiation angle β is changed. in this case,
The inclination angle θ becomes θ = β−α / 2, and the inclination angle θ can be freely changed by changing β, and the third angle
As can be seen by comparing FIG. 3 (f) with FIG. 3 (g), it is possible to make an inclination in the opposite direction to the vertical direction.

第2図〜第4図では、集光位置F、集光角度α、照射
角度βの3つの条件を、それぞれ単独で変えた場合を示
しているが、各条件を任意に組み合わせることによっ
て、より複雑な傾斜角度θの設定が可能になり、三次元
形状の外表面を滑らかにすことができる。
2 to 4 show the case where the three conditions of the condensing position F, the converging angle α, and the irradiation angle β are independently changed, but by combining the respective conditions arbitrarily, A complicated inclination angle θ can be set, and the outer surface of the three-dimensional shape can be smoothed.

第5図は、上記のような、この発明にかかる三次元形
状の形成装置および方法によって形成された成形品4を
示しており、目的とする三次元形状4′に合わせて、各
光硬化層40の外側端の傾斜角度θを変えることによっ
て、前記第8図に示す従来例に比べて、はるかに外表面
が滑らかにつながった三次元形状を有する、外観品質に
優れた成形品4が得られる。
FIG. 5 shows a molded product 4 formed by the apparatus and method for forming a three-dimensional shape according to the present invention as described above, and each photo-curable layer according to the intended three-dimensional shape 4 '. By changing the inclination angle θ of the outer end of 40, a molded product 4 having a three-dimensional shape in which the outer surface is much smoother than that of the conventional example shown in FIG. 8 and having excellent appearance quality is obtained. To be

〔発明の効果〕〔The invention's effect〕

以上に説明した、この発明のうち、請求項1〜3に記
載の三次元形状の形成方法によれば、光ビームの焦点位
置、集光角度、照射角度を変えて、光ビームによる硬化
領域の形状を変えることによって、光硬化化層の外側端
の傾斜角度を変えることができるので、形成しようとす
る三次元形状の外表面の形状に合わせて、個々の光硬化
層の外側端の傾斜角度を任意に設定することができ、滑
らかな外表面を有する三次元形状の成形品を得ることが
できる。
According to the method for forming a three-dimensional shape according to any one of claims 1 to 3 of the invention described above, the focus position of the light beam, the converging angle, and the irradiation angle are changed so that the curing region of the light beam is changed. By changing the shape, the inclination angle of the outer edge of the photo-curing layer can be changed, so that the inclination angle of the outer edge of each photo-curing layer can be adjusted according to the shape of the outer surface of the three-dimensional shape to be formed. Can be arbitrarily set, and a three-dimensional molded article having a smooth outer surface can be obtained.

【図面の簡単な説明】 第1図はこの発明の実施例を示す三次元形状の形成装置
の全体構造図、第2図(a),(b),(c)は焦点位
置を変えた場合の照射状態を示す模式図、第3図
(d),(e)は集光角度を変えた場合の照射状態を示
す模式図、第4図(f),(g)は照射角度を変えた場
合の照射状態を示す模式図、第5図は形成された成形品
の断面図、第6図は従来例の概略構造図、第7図は照射
状態を示す模式図、第8図は形成された成形品の断面図
である。 2……光硬化性樹脂液、3……光ビーム、30…集光レン
ズ、4……成形品、40……光硬化層、42……硬化領域、
F……焦点位置、α……集光角度、β……照射角度、θ
……傾斜角度
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall structural view of a three-dimensional shape forming apparatus showing an embodiment of the present invention, and FIGS. 2 (a), (b) and (c) are cases where the focal position is changed. 3 (d) and 3 (e) are schematic views showing the irradiation state when the converging angle is changed, and FIGS. 4 (f) and 4 (g) are the irradiation angles changed. FIG. 5 is a cross-sectional view of the formed product, FIG. 6 is a schematic structural view of a conventional example, FIG. 7 is a schematic view showing the irradiation state, and FIG. 8 is formed. It is a sectional view of a molded product. 2 ... Photocurable resin liquid, 3 ... Light beam, 30 ... Condenser lens, 4 ... Molded product, 40 ... Photocured layer, 42 ... Cured area,
F: focus position, α: converging angle, β: irradiation angle, θ
...... Inclination angle

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光硬化性樹脂に光を照射して光硬化層を形
成し、この光硬化層を複数層積み重なて、所望の三次元
形状を形成する方法において、照射する光ビームの焦点
位置を光硬化性樹脂の表面に対して上下方向に変えるこ
とによって、各光硬化層の外側端の傾斜角度を変えるこ
とを特徴とする三次元形状の形成方法。
1. A method of irradiating a photocurable resin with light to form a photocurable layer, and stacking a plurality of the photocurable layers to form a desired three-dimensional shape. A method for forming a three-dimensional shape, which comprises changing the inclination angle of the outer end of each photocurable layer by changing the focal position in the vertical direction with respect to the surface of the photocurable resin.
【請求項2】光硬化性樹脂に光を照射して光硬化層を形
成し、この光硬化層を複数層積み重ねて、所望の三次元
形状を形成する方法において、照射する光ビームの集光
角度を変えることによって、各光硬化層の外側端の傾斜
角度を変えることを特徴とする三次元形状の形成方法。
2. A method for forming a photocurable layer by irradiating a photocurable resin with light to form a photocurable layer and stacking a plurality of the photocurable layers to form a desired three-dimensional shape. A method for forming a three-dimensional shape, characterized in that the inclination angle of the outer end of each photo-curing layer is changed by changing the angle.
【請求項3】光硬化性樹脂に光を照射して光硬化層を形
成し、この光硬化層を複数層積み重ねて、所望の三次元
形状を形成する方法において、照射する光ビームの照射
角度を変えることによって、各光硬化層の外側端の傾斜
角度を変えることを特徴とする三次元形状の形成方法。
3. A method of forming a photocurable layer by irradiating a photocurable resin with light to form a photocurable layer and stacking a plurality of the photocurable layers to form a desired three-dimensional shape. By changing the inclination angle of the outer end of each photo-curing layer.
JP63248558A 1988-10-01 1988-10-01 Three-dimensional shape forming method Expired - Lifetime JP2561325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63248558A JP2561325B2 (en) 1988-10-01 1988-10-01 Three-dimensional shape forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63248558A JP2561325B2 (en) 1988-10-01 1988-10-01 Three-dimensional shape forming method

Publications (2)

Publication Number Publication Date
JPH0295829A JPH0295829A (en) 1990-04-06
JP2561325B2 true JP2561325B2 (en) 1996-12-04

Family

ID=17179946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63248558A Expired - Lifetime JP2561325B2 (en) 1988-10-01 1988-10-01 Three-dimensional shape forming method

Country Status (1)

Country Link
JP (1) JP2561325B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2613928B2 (en) * 1988-10-13 1997-05-28 松下電工株式会社 Method and apparatus for forming a three-dimensional shape
JP2920329B2 (en) * 1991-04-04 1999-07-19 山梨県 Modeling equipment using laser lithography
JP3558095B2 (en) * 1994-12-22 2004-08-25 Jsr株式会社 Stereolithography
JP2021151708A (en) * 2020-03-24 2021-09-30 カシオ計算機株式会社 Molding apparatus and manufacturing method of molded product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144478A (en) * 1980-04-12 1981-11-10 Hideo Kodama Stereoscopic figure drawing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144478A (en) * 1980-04-12 1981-11-10 Hideo Kodama Stereoscopic figure drawing device

Also Published As

Publication number Publication date
JPH0295829A (en) 1990-04-06

Similar Documents

Publication Publication Date Title
KR0140699B1 (en) Method and apparatus for producing three-dimensional objects
JPH0757531B2 (en) Three-dimensional shape forming method
JPH07503915A (en) Method and device for manufacturing three-dimensional objects
JPH0757532B2 (en) Three-dimensional shape forming method
JP2004284346A (en) Method for producing molded article by using powder stereolithographic process or sintering process
JPH07501998A (en) Method and device for manufacturing three-dimensional objects
JPH0342233A (en) Optical shaping method
JP2561325B2 (en) Three-dimensional shape forming method
KR100241676B1 (en) Optic three dimensional forming method and apparatus
JP3578590B2 (en) Stereolithography equipment using lamps
JP2613929B2 (en) Method and apparatus for forming a three-dimensional shape
JP2617532B2 (en) Method and apparatus for forming a three-dimensional shape
JPH0698687B2 (en) Modeling method using heat-meltable powder
JP2558355B2 (en) Three-dimensional shape forming method
JP2919982B2 (en) 3D shape forming method
JP2613928B2 (en) Method and apparatus for forming a three-dimensional shape
JP2671534B2 (en) 3D shape forming method
JPH05169551A (en) Method of forming three-dimensional image
JP3988964B2 (en) Method for forming movable device for micromachine by stereolithography
JPH06114950A (en) Optically curably molding apparatus
JP3170832B2 (en) Optical molding method
JP3412278B2 (en) Stereolithography device and method
KR100236565B1 (en) Method and apparatus of the photosolidification
JP3215853B2 (en) 3D shape forming method
JP2527021B2 (en) Optical modeling