JP2560651Y2 - Vertical pump - Google Patents

Vertical pump

Info

Publication number
JP2560651Y2
JP2560651Y2 JP1990041532U JP4153290U JP2560651Y2 JP 2560651 Y2 JP2560651 Y2 JP 2560651Y2 JP 1990041532 U JP1990041532 U JP 1990041532U JP 4153290 U JP4153290 U JP 4153290U JP 2560651 Y2 JP2560651 Y2 JP 2560651Y2
Authority
JP
Japan
Prior art keywords
water
air
pump
air suction
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1990041532U
Other languages
Japanese (ja)
Other versions
JPH041692U (en
Inventor
研治 清田
信生 来田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1990041532U priority Critical patent/JP2560651Y2/en
Publication of JPH041692U publication Critical patent/JPH041692U/ja
Application granted granted Critical
Publication of JP2560651Y2 publication Critical patent/JP2560651Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、例えば雨水排水などに適用される立軸形ポ
ンプに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a vertical shaft pump applied to, for example, rainwater drainage.

〔従来の技術〕[Conventional technology]

従来、雨水排水用などに使用されている立軸形ポンプ
に於いては、吸込み側の水面、即ち吸水位が規定の吸水
位よりも低いときでも増水に備えて運転を行うことがあ
る。このような場合、吸込み側の水面に空気吸込み渦が
発生し易くなり、その渦の衝撃で立軸形ポンプの運転が
不可能となるため、各種の渦流防止策が行われている。
第4図は従来の立軸形ポンプの断面図である。図におい
て、本立軸形ポンプは吸水位が安全に吸込む限界の制限
吸水位に相当する水位A以上の場合は100%の速度で定
常の運転が行われるが、吸水位が水位A以下になると水
面に空気吸込み渦13が発生し易くなるため、水位A以下
で運転する場合には回転速度を落として吐出流量を制限
したり、渦流防止壁14を設けたりしている。
2. Description of the Related Art Conventionally, a vertical shaft pump used for rainwater drainage or the like sometimes operates in preparation for increasing water even when the water surface on the suction side, that is, when the water absorption level is lower than a specified water absorption level. In such a case, an air suction vortex is likely to be generated on the water surface on the suction side, and the impact of the vortex makes it impossible to operate the vertical shaft pump. Therefore, various eddy current prevention measures have been taken.
FIG. 4 is a sectional view of a conventional vertical pump. In the figure, this vertical shaft pump operates at 100% speed when the water absorption level is equal to or higher than the water absorption level A, which is the limit water absorption level at which the water can be safely sucked. In order to operate at a water level A or lower, the rotation speed is reduced to limit the discharge flow rate, and a vortex preventing wall 14 is provided.

第5図は従来の他の立軸形ポンプの正面図である。図
において、本立軸形ポンプは吸込口3を通常よりも長く
するとともに羽根車5が制限吸水位に相当する水位Aよ
りも上方に装着され、また羽根車5の直下に水切り管11
が取付けられて上部が気水切替装置12に接続されてい
る。吸水位が水位A以上の場合は100%の速度で定常の
運転が行われるが、吸水位が水位A以下になると空気吸
込み渦が発生し易くなるため、この場合は気水切替え装
置12から羽根車5の直下に空気を送って気水分離を行
い、100%の速度のままで気水攪拌しながら吐出流量が
零の状態で運転を行う。
FIG. 5 is a front view of another conventional vertical pump. In the figure, the vertical shaft type pump has a suction port 3 longer than usual, an impeller 5 mounted above a water level A corresponding to a limited water suction level, and a drain pipe 11 directly below the impeller 5.
Is mounted, and the upper portion is connected to the air / water switching device 12. When the water absorption level is equal to or higher than the water level A, steady operation is performed at 100% speed. However, when the water absorption level is equal to or lower than the water level A, the air suction vortex is likely to be generated. The air is sent directly below the car 5 to separate the water and water. The operation is performed with the discharge flow rate being zero while stirring the water and water at the speed of 100%.

〔考案が解決しようとする課題〕[Problems to be solved by the invention]

上記のように、従来の立軸形ポンプにおいては吸水位
が制限吸水位に相当する水位A以下の場合は減速または
気水分離を行うか、或いは渦流防止壁14を設ける必要が
あるが、そのために減速用の制御システムを必要とした
り、水切管11、気水切替え装置12などを必要とするとと
もに、羽根車5の取付け位置が高くなっていてそれだけ
揚水を開始する水位が上がり、立軸形ポンプの有効吸込
み水深が浅くなる。また、渦流防止壁14を設置しても吸
込み側の水面から空気を吸込まない限界の水深hは吸込
口3口径の1.2倍程度であり、この水深hを小さくする
ためにはやはり立軸形ポンプの回転速度や吐出弁の開度
などを制御して吐出流量の制限を必要とする。
As described above, in the conventional vertical pump, when the water absorption level is equal to or lower than the water level A corresponding to the limited water absorption level, it is necessary to perform deceleration or air / water separation or to provide the vortex prevention wall 14, but for that purpose, In addition to requiring a control system for deceleration, a drain pipe 11, a steam-water switching device 12, and the like, the mounting position of the impeller 5 is increased, and the water level at which pumping is started is increased by that amount. The effective suction water depth becomes shallow. Even if the vortex preventing wall 14 is installed, the limit water depth h at which air is not sucked from the water surface on the suction side is about 1.2 times as large as the diameter of the three suction ports. It is necessary to limit the discharge flow rate by controlling the rotation speed of the nozzle and the opening degree of the discharge valve.

〔課題を解決するための手段〕[Means for solving the problem]

本考案に係る立軸形ポンプは上記課題を解決すること
を目的にしており、吸込口の羽根車入口近傍に穿設され
た小穴と、上記吸込口に基端が開口し規定流量でポンプ
運転中に吸込み側の水面から空気吸込み渦が発生しない
水位に先端が開口するとともに開口面積がスロート部の
面積の0.5乃至3%の空気吸込み管とを備えた構成を特
徴とする。
The vertical shaft pump according to the present invention is intended to solve the above-described problems, and has a small hole drilled near the impeller inlet of the suction port, and a base end opening at the suction port to operate the pump at a specified flow rate. The air suction pipe is characterized in that it has an air suction pipe whose tip is open from the water surface on the suction side to a water level where no air suction vortex is generated and whose opening area is 0.5 to 3% of the area of the throat portion.

〔作用〕[Action]

即ち、本考案に係る立軸形ポンプにおいては、基端が
吸込口に開口し先端が規定流量でポンプ運転中に吸込み
側の水面から空気吸込み渦が発生しない水位に開口し開
口面積がスロート部の面積の0.5乃至3%の最適な大き
さで開口する空気吸込み管が装着されており、吸込み側
の液面が所定のレベルよりも低いときは空気吸込み管か
ら吸込口内へ適量の空気を吸込み、主軸のラジアルスラ
ストが特に増加することなく本ポンプの吐出流量が減少
することにより吸込み側の液面からの空気吸込み渦が発
生しない。また、吸込口の羽根車入口近傍に小穴が穿設
されており、吸込み側の液面が羽根車入口よりも低いと
きは空気吸込み管に併せて小穴からも吸込口内へ空気を
大量に吸込み、迅速に吸込口内が完全な気液分離の状態
になることにより極めて安定した気中運転が行われる。
That is, in the vertical shaft pump according to the present invention, the base end opens to the suction port, and the front end opens to the water level where the air suction vortex does not occur from the water surface on the suction side during the pump operation at the specified flow rate, and the opening area is the throat part. An air suction pipe that is opened with an optimal size of 0.5 to 3% of the area is installed, and when the liquid level on the suction side is lower than a predetermined level, an appropriate amount of air is sucked into the suction port from the air suction pipe, By reducing the discharge flow rate of the pump without particularly increasing the radial thrust of the main shaft, no air suction vortex is generated from the liquid surface on the suction side. Also, a small hole is drilled near the impeller inlet of the suction port, and when the liquid level on the suction side is lower than the impeller inlet, a large amount of air is sucked into the suction port from the small hole together with the air suction pipe, Since the inside of the suction port quickly becomes a state of complete gas-liquid separation, extremely stable in-air operation is performed.

〔実施例〕〔Example〕

第1図は本考案の一実施例に係る立軸形ポンプの構造
説明図、第2図はその作用説明図である。図において、
本実施例に係る立軸形ポンプは雨水排水用に使用される
もので、第1図に示すように吸込口3の羽根車5入口近
傍にスロート部15の面積の0.5〜3.0%に相当する大きさ
の小穴10が3個設けられている。また、吸込口3内の小
穴10とほぼ同一レベルに基端7が開口してスロート部15
の面積の0.5〜3.0%に相当する大きさの空気吸込み管8
が装着されている。この空気吸込み管8の先端9は、本
ポンプが規定の吐出流量で運転されているときに吸込み
側の水面から空気吸込み渦が発生しない水位Aに開口し
ており、水面から一旦立上って逆U字状をなしている。
なお、これら小穴10および空気吸込み管8の数は単数或
いは複数何れでもよい。また、1は主軸、2は案内羽根
である。
FIG. 1 is a structural explanatory view of a vertical shaft type pump according to an embodiment of the present invention, and FIG. 2 is an explanatory view of its operation. In the figure,
The vertical shaft type pump according to this embodiment is used for draining rainwater, and has a size corresponding to 0.5 to 3.0% of the area of the throat portion 15 near the inlet of the impeller 5 of the suction port 3 as shown in FIG. Three small holes 10 are provided. Further, the base end 7 is opened at substantially the same level as the small hole 10 in the suction port 3 and the throat portion 15 is opened.
Air suction pipe 8 having a size equivalent to 0.5 to 3.0% of the area of
Is installed. The distal end 9 of the air suction pipe 8 opens to a water level A where no air suction vortex is generated from the water surface on the suction side when the pump is operated at a specified discharge flow rate, and rises once from the water surface. It has an inverted U shape.
The number of the small holes 10 and the number of the air suction pipes 8 may be one or plural. 1 is a main shaft, and 2 is a guide blade.

第2図(a)に示すように吸込み側の水面、即ち吸水
位が小穴10以下のときは、吸込口3内が完全な気水分離
の状態にあり、本ポンプは空気も水も吸込むことなく、
安定した気中運転を行う。次に、同図(b)に示すよう
に吸水位が上昇して羽根車5の下端へ達すると羽根車5
の揚水作用により吸込口3から吸水を開始するが、スロ
ート部15は揚水時の流速をυ、圧力の損失計数をα、重
力の加速度をgとするとα×υ2/2gだけ圧力が低下して
大気圧よりも小さくなり、大気圧との圧力差ΔPに見合
う空気が空気吸込み管8から吸込まれる。この空気吸込
み管8から吸込まれた空気は羽根車5の翼間流路を閉塞
させて本ポンプの吐出流量を減少させる。スロート部15
の圧力は吸水位が低い程小さくなり、吸水位が羽根車5
の下端の場合では空気の吸水みにより例えば規程の吐出
流量の20%程度しか揚水されないため、吸込み側の水面
から空気吸込み渦は発生せず、振動の小さい安定した運
転が行われる。さらに、同図(c)に示すように吸水位
が上昇するとスロート部15の圧力が上昇し、空気吸込み
管8から空気を吸込む量が少なくなって吸込口3からの
吸水量が増大し、本ポンプの規定の吐出流量に近づく。
As shown in FIG. 2 (a), when the water surface on the suction side, that is, the water absorption level is smaller than the small hole 10, the inside of the suction port 3 is in a completely separated state of water and water, and the pump sucks both air and water. Not
Perform stable aerial driving. Next, as shown in FIG. 3B, when the water absorption level rises and reaches the lower end of the impeller 5, the impeller 5
Although the pumping action starts water from the suction port 3, the throat portion 15 of the flow rate at the time of pumping upsilon, the loss counts in the pressure alpha, acceleration only when α × υ 2 / 2g and g pressure of gravity is lowered As a result, air that is lower than the atmospheric pressure and matches the pressure difference ΔP from the atmospheric pressure is sucked from the air suction pipe 8. The air sucked from the air suction pipe 8 closes the flow path between the blades of the impeller 5 and reduces the discharge flow rate of the pump. Throat part 15
Is lower as the water absorption level is lower.
In the case of the lower end, since only about 20% of the prescribed discharge flow rate is pumped due to the water absorption, no air vortex is generated from the water surface on the suction side, and stable operation with small vibration is performed. Further, as shown in FIG. 3 (c), when the water absorption level rises, the pressure of the throat portion 15 rises, the amount of air sucked from the air suction pipe 8 decreases, and the amount of water absorbed from the suction port 3 increases. The specified discharge flow of the pump is approached.

そして、同図(d)に示すように吸水位が空気吸込み
管8の先端9、即ち水位Aよりも上昇すると、先端9が
水没するので空気は全く吸込まれなくなり、本ポンプは
規程の吐出流量で正常の運転を行う。このとき、空気吸
込管8ならびに小穴10から羽根車5に吸込まれる流れも
あるが、その流量は吸込口3から流入する流量に比べて
極めて少ないので不整流が生じることもなく、ポンプ性
能には何等の影響も与えない。
When the water absorption level rises above the tip 9 of the air suction pipe 8, that is, the water level A, as shown in FIG. For normal operation. At this time, there is a flow which is sucked into the impeller 5 through the air suction pipe 8 and the small hole 10, but since the flow rate is extremely small as compared with the flow rate flowing through the suction port 3, no unrectification occurs and the pump performance is not improved. Has no effect.

次に、同図(e)に示すように吸水位が低下して空気
吸込み管8の先端9以下になると、空気吸込み管8から
空気が吸込まれて本ポンプの吐出流量が減少するので、
水位A以下でも吸込み側の水面から空気吸込み渦は発生
しない。さらに、同図(f)に示すように吸水位が低下
して小穴10以下になると、空気吸込み管8ならびに小穴
10から空気が入って羽根車5の下端で気水分離が行わ
れ、羽根車5が気中で回転する状態となる。この場合、
仮に空気吸込み管8のみで小穴10が設けられていない
と、同図(g)に示すように空気吸込み管8の管路抵抗
と吸込口3内の流れによる基端7の閉塞とにより気水分
離が完全に行われず、揚水と気水分離とが交互に行われ
るハンチング現象が生じて過渡的な運転が続く場合があ
るが、小穴10を設けることにより水面が小穴10以下のと
きには気水分離が完全に行われ、安定した気中運転が行
われる。
Next, as shown in FIG. 3E, when the water absorption level decreases and becomes equal to or less than the tip 9 of the air suction pipe 8, air is sucked from the air suction pipe 8 and the discharge flow rate of the present pump decreases.
Even when the water level is equal to or lower than A, no air suction vortex is generated from the water surface on the suction side. Further, as shown in FIG. 3 (f), when the water absorption level decreases and becomes smaller than the small hole 10, the air suction pipe 8 and the small hole are reduced.
Air enters from 10, air-water separation is performed at the lower end of the impeller 5, and the impeller 5 rotates in the air. in this case,
If the small hole 10 is not provided only with the air suction pipe 8, as shown in FIG. 3G, the water resistance is reduced due to the pipe resistance of the air suction pipe 8 and the blockage of the base end 7 due to the flow in the suction port 3. The hunting phenomenon in which the separation is not completely performed and the pumping and the air / water separation are performed alternately may occur and the transient operation may continue.However, the provision of the small holes 10 allows the water / water separation when the water surface is smaller than the small holes 10. Is performed completely, and stable aerial driving is performed.

なお、これらの現象は実際の立軸形ポンプの吸込み側
の水面を上下動させて過渡的な状況を作りながら連続運
転試験を行うことにより確認することができた。即ち、
吸込み側の水面を過渡的な状況で上下動させた場合、空
気吸込み管8の開口面積により主軸1の半径方向のスラ
ストに変動が生じた。第3図(a)は空気吸込み管8の
開口面積をスロート部15の面積の0.5%にしたときに半
径方向のスラストが最小になることを示しており、それ
よりも小さくすると吸気の効果がなくなって半径方向の
スラストは大きくなる。また、開口面積を0.5%よりも
大きくすると半径方向のスラストも除々に増加するが、
3%を超えると空気吸込み管8からの吸気によるショッ
クにより半径方向のスラストが急激に増加する。従っ
て、空気吸込み管8の開口面積がスロート部15の面積の
0.5〜3%に相当する場合に適量の空気が吸い込まれ、
半径方向のスラストが小さくなることが判った。また、
小穴10は揚水が不要の水位で気水分離を確実に行うこと
ができ、この小穴10がないと水位が小穴10以下に低下し
た場合に不要な揚水運転が行われることになるが、同図
(b)はこの気水分離を行う小穴10のの開口面積をスロ
ート部15の面積の0.5%程度から徐々に大きくしていく
と、ポンプ効率が次第に低下していくことを示してい
る。これは、通常のポンプ運転中にはこの小穴10を通っ
て羽根車5に向かう流れが生じるが、羽根車5は流れが
常に主軸1の方向に向かうとして入口の角度が決められ
ており、小穴10を通って半径方向に向かう流れがポンプ
効率に悪影響を与えるためと考えられ、小穴10のの開口
面積は3%を限度とした。
These phenomena could be confirmed by performing a continuous operation test while making a transient state by moving the water surface on the suction side of the actual vertical shaft pump up and down. That is,
When the water surface on the suction side was moved up and down in a transient state, the thrust in the radial direction of the main shaft 1 fluctuated due to the opening area of the air suction pipe 8. FIG. 3A shows that the thrust in the radial direction is minimized when the opening area of the air suction pipe 8 is set to 0.5% of the area of the throat portion 15. When the opening area is smaller than 0.5%, the effect of the suction is reduced. And the radial thrust increases. Also, if the opening area is larger than 0.5%, the radial thrust gradually increases,
If it exceeds 3%, the thrust in the radial direction increases sharply due to the shock caused by the intake from the air suction pipe 8. Therefore, the opening area of the air suction pipe 8 is smaller than the area of the throat portion 15.
When it corresponds to 0.5-3%, an appropriate amount of air is sucked in,
It has been found that the radial thrust is reduced. Also,
The small hole 10 can reliably perform steam-water separation at the water level where pumping is unnecessary, and if there is no small hole 10, an unnecessary pumping operation will be performed if the water level drops below the small hole 10. (B) shows that the pump efficiency gradually decreases as the opening area of the small hole 10 for performing the water / water separation is gradually increased from about 0.5% of the area of the throat portion 15. This is because during normal operation of the pump, a flow is generated toward the impeller 5 through the small hole 10, but the impeller 5 is set so that the flow always flows in the direction of the main shaft 1 and the angle of the inlet is determined. It is thought that the flow in the radial direction through 10 adversely affects the pump efficiency, and the opening area of the small hole 10 was limited to 3%.

このように、本立軸形ポンプは吸水位がどのように低
下した状態においても羽根車5が気水攪拌したり吸込み
側の水面から空気吸込み渦を生じたりすることなく、常
に安定した正常な状態で運転が可能である。また、空気
吸込み管8の先端9が水面から一旦立上って逆U字状を
なしていることにより先端9から異物を、特に水面を浮
遊する異物、或いは空中を降下する異物を呑み込み難
く、また一旦吸い上げられた異物も水切れと同時に逆流
して吐出され易いなど、空気吸込管8の異物による閉塞
の可能性は非常に少ない。従って、雨水排水用など羽根
車5よりも下方の水位でも回転速度を落とさずに運転す
る必要のある場合に適しており、吸水位の変化に対して
ポンプ回転数の制御や吐出弁開度の制御など特別な運
転、装置を必要とせず、このような苛酷な使われ方をす
る場合でも従来の同種のポンプと変わらない寿命と信頼
性が得られる。
As described above, the vertical shaft pump is always in a stable and normal state without the impeller 5 agitating the air and generating the air suction vortex from the water surface on the suction side regardless of how the water suction level is lowered. Driving is possible. Further, since the tip 9 of the air suction pipe 8 once rises from the water surface to form an inverted U shape, it is difficult to swallow foreign matter from the tip 9, especially foreign matter floating on the water surface or foreign matter falling in the air, In addition, the possibility of the air suction pipe 8 being clogged by the foreign matter is very low, for example, the foreign matter once sucked up is likely to flow backward and be discharged simultaneously with the drainage. Therefore, it is suitable for the case where it is necessary to operate without lowering the rotation speed even at a water level lower than the impeller 5 such as for rainwater drainage. No special operation or device such as control is required, and even in such severe usage, the same life and reliability as conventional pumps of the same type can be obtained.

〔考案の効果〕[Effect of the invention]

本考案に係る立軸形ポンプは前記の通り構成されてお
り、吸込み側の液面が所定のレベルよりも低いときでも
液面からの空気吸込み渦が発生せず、また吸込み側の液
面が羽根車入口よりも低いときは安定した気中運転が行
われるので、特に渦流防止、減速、気液分離、吐出流量
の制限などの制御や装置などを必要とせず、常に安全に
安定した運転を行うことができる。
The vertical shaft pump according to the present invention is configured as described above. Even when the liquid surface on the suction side is lower than a predetermined level, no air suction vortex is generated from the liquid surface, and the liquid surface on the suction side has a blade. When it is lower than the car entrance, stable aerial operation is performed, so there is no need for control or equipment such as eddy current prevention, deceleration, gas-liquid separation, restriction of discharge flow, etc. be able to.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)は本考案の一実施例に係る立軸形ポンプの
断面図、同図(b)は同図(a)におけるb−b断面
図、第2図および第3図はその作用説明図、第4図は従
来の立軸形ポンプの断面図、第5図は従来の他の立軸形
ポンプの正面図である。 1……主軸、2……案内羽根、3……吸込口、5……羽
根車、7……基端、8……空気吸込み管、9……先端、
10……小穴、15……スロート部。
1 (a) is a sectional view of a vertical shaft type pump according to an embodiment of the present invention, FIG. 1 (b) is a sectional view taken along the line bb in FIG. 1 (a), and FIGS. FIG. 4 is a sectional view of a conventional vertical shaft pump, and FIG. 5 is a front view of another conventional vertical shaft pump. 1 ... spindle, 2 ... guide blade, 3 ... suction port, 5 ... impeller, 7 ... base end, 8 ... air suction pipe, 9 ... tip,
10 ... Small hole, 15 ... Throat part.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−78791(JP,A) 実開 昭62−28097(JP,U) 実開 昭63−121793(JP,U) 実開 昭63−150097(JP,U) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-78791 (JP, A) JP-A 62-28097 (JP, U) JP-A 63-121793 (JP, U) JP-A 63-280 150097 (JP, U)

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】吸込口の羽根車入口近傍に穿設された小穴
と、上記吸込口に基端が開口し規定流量でポンプ運転中
に吸込み側の水面から空気吸込み渦が発生しない水位に
先端が開口するとともに開口面積がスロート部の面積の
0.5乃至3%の空気吸込み管とを備えたことを特徴とす
る立軸形ポンプ。
1. A small hole drilled near an impeller inlet of a suction port, and a tip end at a water level where an air suction vortex does not occur from a water surface on a suction side from a water surface on a suction side during operation of a pump at a specified flow rate with a base end opening at the suction port. Is open and the opening area is
A vertical shaft type pump comprising a 0.5 to 3% air suction pipe.
JP1990041532U 1990-04-20 1990-04-20 Vertical pump Expired - Lifetime JP2560651Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1990041532U JP2560651Y2 (en) 1990-04-20 1990-04-20 Vertical pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1990041532U JP2560651Y2 (en) 1990-04-20 1990-04-20 Vertical pump

Publications (2)

Publication Number Publication Date
JPH041692U JPH041692U (en) 1992-01-08
JP2560651Y2 true JP2560651Y2 (en) 1998-01-26

Family

ID=31552280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1990041532U Expired - Lifetime JP2560651Y2 (en) 1990-04-20 1990-04-20 Vertical pump

Country Status (1)

Country Link
JP (1) JP2560651Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2977948B2 (en) * 1991-06-11 1999-11-15 株式会社日立製作所 Vertical pump
JP5322459B2 (en) * 2008-02-26 2013-10-23 株式会社クボタ Advance standby operation pump and operation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH034796Y2 (en) * 1985-08-02 1991-02-07
JPS63121793U (en) * 1987-01-31 1988-08-08
JPH0533752Y2 (en) * 1987-03-23 1993-08-26
JPH0623757Y2 (en) * 1989-05-08 1994-06-22 株式会社クボタ Vertical pump

Also Published As

Publication number Publication date
JPH041692U (en) 1992-01-08

Similar Documents

Publication Publication Date Title
JP2560651Y2 (en) Vertical pump
JPS622135B2 (en)
KR940007761B1 (en) Vertical shaft pump
JP4463484B2 (en) Vertical shaft pump
EP0501012B1 (en) Drainage pump
JPH08105400A (en) Vibration control device of precedent waiting type pump
JPS63134897A (en) Vertical shaft pump
JP2524872Y2 (en) Full-speed standby operation pump
JP2836659B2 (en) Siphon type pump
JPH0623756Y2 (en) Vertical pump
JP4422438B2 (en) Vertical shaft pump
JPH089438Y2 (en) Full speed standby pump
JP3070878B2 (en) Vertical pump
JP2558812Y2 (en) Vertical shaft pump
JP4012271B2 (en) Advance standby type vertical shaft pump
JPS645120Y2 (en)
JPS6390697A (en) Vertical shaft pump
JP2836660B2 (en) Siphon type pump
JPH0550098U (en) Vertical pump
JP3385511B2 (en) Vertical pump
JP2538662Y2 (en) Pumping pump equipment
JPH02291497A (en) Vertical shaft pump
JPH0622157Y2 (en) Vertical pump
JP2512778Y2 (en) Full-speed standby operation pump
JP4414707B2 (en) Vertical shaft pump with suction pipe

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term