JP2560561C - - Google Patents

Info

Publication number
JP2560561C
JP2560561C JP2560561C JP 2560561 C JP2560561 C JP 2560561C JP 2560561 C JP2560561 C JP 2560561C
Authority
JP
Japan
Prior art keywords
coil
superconducting
coil winding
winding
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Other languages
Japanese (ja)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Publication date

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】 本発明は密巻超電導コイルの安定性を改良し耐クエンチ性を向上させた超電導
コイル装置に係る。 【0002】 【従来の技術】 従来、密巻超電導コイルの巻線表面部での擾乱によるコイルクエンチを防止す
る方法として、特開平1−194308 号公報に記載のように、超電導コイルと冷媒を
内蔵したコイル容器の間にバネ部材を挿入し、振動によるコイルの動きを抑制す
ることにより摩擦熱による超電導コイルのクエンチを防止する方法が知られてい
る。さらに、特開昭57−124406号および、特開昭57−178306号公報に記載のよう
に、超電導コイルとコイル容器内面の絶縁物材間に低摩擦材を挿入し摩擦熱の発 生を少なくする方法,特開昭57−63809 号公報に記載のように、超電導コイル表
面に、所定間隔を配して摩擦係数及び熱伝導率の小さい絶縁物で構成された断熱
部材を設け、コイル容器に支持することによりコイル表面からの摩擦熱侵入によ
るクエンチを防止する方法,特開昭57−63808 号公報に記載のように、超電導コ
イルを極低温冷媒が流通する金属パイプを介して内部容器に固定することにより
、超電導コイル表面からの摩擦熱の侵入によるクエンチを防止する、等の方法が
知られている。 【0003】 【発明が解決しようとする課題】 上記従来技術は、いずれも超電導コイルがクエンチする原因となる擾乱を小さ
くしたり、擾乱によって発生した熱を超電導コイルに伝え難くする方法であるが
、現実には密巻超電導コイルの耐クエンチ性はほとんど改善されていない。すな
わち、いずれの従来技術も超電導コイルのクエンチを防止するには未だ不十分で
あることが分かる。 【0004】 本発明の目的は、上記従来技術の欠点を排除し耐クエンチ性を向上させた超電
導コイル装置を提供することにある。 【0005】 【問題を解決するための手段】 超電導磁気浮上列車は、車上側に超電導コイルを、地上側に常電導の短絡コイ
ルを設け、車両走行時に超電導コイルと地上コイルとの間で電磁誘導により生ず
る反発力によって浮上させるものである。一方、車両の推進はリニアシンクロナ
スモータ方式で、地上側に別途設けた常電導の推進コイルと車上の超電導コイル
との相互作用によって推進コイルの電流を反転させることにより同一コイルの推
進力を得るものである。 【0006】 超電導磁気浮上列車に使用さける超電導コイルは一般に図5に示すようにレー
ストラック状をしており、車両に搭載されるため経済性の観点からできるだけ軽
量・小型化することが要求される。 【0007】 このためには超電導コイル巻線部をできるだけコンパクトにし、コイル電流密
度を高めたものが要求される。そのため、図6に示す様に液体ヘリウム等の冷媒
は冷媒容器1と絶縁物2で構成される空間3におくようにし、コイル巻線部4は
超電導線と直接接する冷媒を持たない密巻構造がとられ、更に電流を通電する以
外の部分、例えば安定化材などの体積を極力小さくした、いわゆる低銅比超電導
線が用いられる。 【0008】 一方、磁気浮上列車用超電導コイルは、乗客を安全に輸送する必要から高度の
信頼性及び安定性が要求される。このためには超電導コイルの安定性マージンが
擾乱エネルギーよりも大きいことが不可欠である。この安定性マージンは超電導
コイルをクエンチさせるのに必要な最小のエネルギーのことである。ところが、
上記密巻低銅比超電導コイルは安定性マージンが小さく、僅かな擾乱エネルギー
でクエンチを生ずる可能性がある。 【0009】 特に磁気浮上列車用超電導コイルは、高速走行状態で使用されるため機械的振
動による超電導コイルの動きやトンネルや列車すれちがい等による衝撃荷重,風
圧,振動等による複雑な擾乱エネルギーが加わる苛酷な条件下で使用される。し
かしながらクエンチがコイル巻線内のどの部分から発生するかをなかなか特定化
できす、密巻超電導コイルの安定化理論はもとより、安定に動作させる具体的方
策はまだ確立されていない。 【0010】 本発明者らは、クエンチし易いコイル巻線部の安定性マージンを局部的に増大 させることによって、上記問題点を解決できることを見出した。 【0011】 すなわち、巻線表面部のみの安定性マージンを大きくして、巻線表面からクエ
ンチしないようにすれば、超電導コイルの耐クエンチ性は大幅に向上させること
ができることを明らかにした。 【0012】 具体的にはコイル巻線の両端部の安定性マージンをコイル巻線の他の部分の安
定性マージンより大きくすることにより、超電導コイルの耐クエンシ性を向上さ
せることができる。 【0013】 さらに、コイル巻線表面全体の安定性マージンを大きくして、コイル巻線表面
からクエンチしないようにしても、超電導コイルの耐クエンチ性は大幅に向上さ
せることができる。 【0014】 コイル巻線表面と他の部分とで安定性マージンを変える手段として、使用する
超電導線の安定化母材量を変える方法がある。すなわち、巻線表面の超電導線の
横断面積を他の部分の超電導線の横断面積より大きくしてやることによって達成
される。また高純度アルミニウムを積極的に導入することによっても達成される
。 【0015】 一方、コイル巻線表面の安定性を高める手段としては必ずしも巻線表面に安定
性マージンの高い超電導線を使用する必要はなく、他の何らかの手段を講ずるこ
とにより結果的に巻線表面での安定性マージンが高くなるようにしてもよい。本
発明の他の着目点はこの考えに基づくものであって、超電導線のコイル巻線表面
に銅やアルミニウム等の常電導金属を巻回し、コイル巻線表面と他の部分とで安
定性マージンを変えてもよい。 【0016】 【作用】 磁気浮上列車用超電導コイルは、電磁力や高速走行時の機械的振動による超電
導コイルの動きやトンネルや列車すれちがい等による衝撃荷重,風圧,振動等に
よる種々の擾乱が加わる。超電導コイルのクエンチしやすい場所としては、コイ
ル巻線内またはコイル巻線表面がある。超電導コイルの巻線は密巻構造を持ち、
エポキシ樹脂で含浸されるため、電磁力等による超電導線の動きは大幅に抑制で
きるのでクエンチしにくい。一方、コイル巻線表面については、絶縁物とコイル
巻線との摩擦によって生じる発熱による擾乱によりクエンチしやすい。 【0017】 したがって、コイル巻線表面全体の安定性マージンを大きくして、コイル巻線
表面からクエンチしないようにすれば、超電導コイルの耐クエンチ性は大幅に向
上させることができる。 【0018】 図6に示すように、磁気浮上列車用超電導コイルの巻線横断面は一般に長方形
をしており、コイル巻線4はコイル巻線両端部7およびコイル巻線の他の部分5
に大別できる。高速で磁気浮上列車が走行する場合には、コイルは後述するよう
にローリング,ピッチング,ヨーイング等の複雑な振動モードを解析し必要個所
のコイル巻線表面の安定性マージンを高めることによりクエンチを抑制できる。 コイル巻線表面と他の部分とで安定性マージンを変える手段として、使用する
超電導線の安定化母材量を変える方法があり、コイル巻線表面の超電導線の横断
面積をコイル巻線の他の横断面積より大きくしてやることによって達成される。
また高純度アルミニウムを積極的に導入することによっても達成される。すなわ
ち高純度アルミニウムは極低温において高純度銅と比較して電気抵抗率が約1/
10と小さく、熱伝導率が高純度銅の約6.4倍と大きいのでホットスポットが
出来にくく、さらに、アルミニウムは銅と比較して比重が小さいので軽量である 等の安定化母材として優れた特性を有する。したがって、上記コイル巻線表面に
銅を安定化母材とする超電導線の表面に高純度アルミニウムを必要量被覆するこ
とにより、局部的に安定性マージンを大きくすることができる。 【0019】 さらに、磁気浮上列車のように超電導コイルが永久電流モードで運転される場
合を考えると、コイル巻線内に超電導線の接続部を持たない方が、コイルの安定
性及び電流減衰率の観点からも好ましい。これは銅を安定化母材とする無接続の
超電導線の表面に必要な量の高純度アルミニウムを被覆することによって達成さ
れる。 【0020】 特に磁気浮上列車においては、高速で走行している場合に車載された超電導コ
イルのコイル中心を原点として列車の推進方向をx軸、上方向をz軸とする直角
座標をとると超電導コイルには地上コイルとの間で推進力(Fx),案内力(Fy)
,上下方向力(Fz)が働く。一方モーメント力としてx,y,z回りのモーメ
ントとしてそれぞれローリングモーメント(Mx),ピッチングモーメント(M
y),ヨーイングモーメント(Mz)の力が働く。今、磁気浮上列車が500k
m/hで定速走行している時に浮上コイルによって誘起される電流により超電導
コイルが受ける力及びモーメントを解析しその比率を求めた結果、略平均値でF
x:Fy:Fz=1:0.9:2.4,Mx:My:Mz=1:2.1:1.4で、
いずれも同じオーダの値を有することが分かった。従って超電導コイルにはこれ
ら力と各モーメントの合力が働き、超電導コイルとそのコイル容器間の相対変位
を生ぜしめ摩擦熱が生ずるが、上述のごとく全てのコイル巻線表面で同等の摩擦
熱が発生することが分かった。従って、磁気浮上列車をより安定に走行させるた
めには、全てのコイル巻線表面の安定性マージンを高めることが好ましい。 【0021】 【実施例】 以下、本発明の詳細を図示の実施例によって説明する。 【0022】 図1は、本発明に係る装置における超電導コイル断面構成を示すものである。
図1において、コイル巻線部4は、巻線中央部9と巻線表面部8とから構成され
、絶縁材2を介して冷媒容器1に固定され冷媒である液体ヘリウム3で冷却され
る。 【0023】 実施例1 まず、図1中の巻線両面8に超電導線Bを、巻線の他の部分9に超電導線Aを
以下に示すように作成した。すなわち、上記超電導線Aは公知の方法により直径
27μmのNbTiフィラメント1748本がツイストピッチ21mmで高純度銅
に埋め込まれたもので外寸法1.1mm×1.9mmに加工した後、その表面を約40
μmのポリビニールフォルマールで絶縁したもので、銅比(=安定化銅量/超電
導体量)が1.0の超電導線である。一方超電導線Bは、上記超電導線Aの表面
に押出法によって99.999%の高純度アルミニウムを0.3mm厚さ被覆し外寸
法1.7mm×2.5mmとした後、その表面に25μm厚さのポリイミドテープを1
/2ずつオーバラップして絶縁を施したものである。 【0024】 これらの超電導線Aおよび超電導線Bを、図1の構成において巻線両端部8が
コイル表面から4層までを構成するように半田付け接続しながら巻回し、内径約
100mm,外径約210mm,長さ約90mm,層数36,総ターン数1170,イ
ンダクタンス数0.165ヘンリーの円形超電導コイルを密巻した後、エポキシ
樹脂を真空中で含浸して超電導コイルPを得た。尚、得られた超電導コイルのコ
イル断面は、その寸法及び冷却条件が磁気浮上列車用超電導コイルと略同一とな
るように構成した。また、このコイルの巻線両端部8に絹巻きマンガニン線を導 体長手方向1cmにわたって無誘導巻きして構成したヒータが埋設されている。 【0025】 本発明による超電導コイルの安定性を実験的に検証するため、上記銅比1.0
の超電導線Aだけを用いて、上記超電導コイルPとできるだけ同一の仕様になる
ように巻回しエポキシ樹脂含浸した内径100mm,外径192mm,長さ68mm
,層数36,総ターン数1170,インダクタンス0.163 ヘンリーの密巻超
電導コイルQを別途製作した。この超電導コイルQにも、上記超電導コイルPと
同様にヒータが埋設されている。 【0026】 これら超電導コイルPおよび超電導コイルQを液体ヘリウム中に浸し、直流励
磁したところ、いずれも超電導線の磁界−臨界電流特性の100%まで励磁可能
であった。さらにコイル巻線表面での摩擦等による擾乱に対する超電導コイルの
安定性を比較するため、超電導コイルP、および超電導コイルQの上記ヒータに
約10msのヒータパルスを印加し安定性マージンを測定した。その結果、コイ
ル電流負荷率70%での安定性マージンは、超電導コイルPで22mJ/cmに
対し超電導コイルQの安定性マージンは3.0mJ/cmであり、本発明による
超電導コイルPは従来法による超電導コイルQに対し、約7倍高い安定性マージ
ンを有することがわかった。 【0027】 実施例2 実施例1に示した超電導線Aおよび超電導線Bを準備し、図2の構成において
巻線表面10がコイル表面から4層までを構成するように上記超電導線Bを、巻
回した。一方、上記超電導線Aを図2中の巻線表面10以外の部分11を構成す
るように半田付け接続しながら巻回し、実施例1の超電導コイルRと同様の処理
をしてほぼ同一の超電導コイルRを得た。この超電導コイルRにも実施例1で記
載したものと同一のヒータが巻線表面10内に埋設してある。実施例1と同様の 方法で安定性マージンの測定を行なったところ、実施例1記載の超電導コイルP
と同程度の安定性マージンを得た。 【0028】 実施例3 直径45μmのNbTiフィラメント652本をツイストピッチ36mmで高純
度銅中に埋め込み、外寸法1.92mm×2.8mmとし表面を約40μmのポリビニ
ールフォルマールで絶縁した、銅比3.9 の超電導線Cを別途製作した。上記実
施例1に詳述した超電導線Aを図2の巻線中央部11に、上記超電導線Cを巻線
表面10に使用し、実施例1に示すコイルと略同一仕様の超電導コイルR′を製
作した。この超電導コイルR′にも実施例1で記述したものと同一のヒータが埋
設してある。 【0029】 上記超電導コイルR′の電流負荷率70%での安定性マージンを実施例1と同
様に測定したところ、約7.8mJ/cmであり、実施例1で記載の銅比1.0の超
電導線Aを用いた超電導コイルQと比較し約2.4 倍高い安定性マージンを有す
ることがわかった。 【0030】 実施例4 あらかじめ実施例1の超電導コイルPと同様の仕様になるように実施例1に示
す超電導線Aの表面の所定箇所に実施例1と同様の手法によって、高純度アルミ
ニウムを0.3mm の厚さで被覆した長さ方向に無接続の超電導線Dを巻回した
後エポキシ樹脂を真空中で含浸し、実施例1記載の超電導コイルPと略同一仕様
の超電導コイルSを得た。実施例1と同一仕様のヒータによる安定性マージンの
測定を行なったところ、実施例1記載の超電導コイルPと同程度の安定性マージ
ンを得た。 【0031】 さらに、超電導コイルSと別途製作した永久電流スイッチに超電導−超電導接
続を施し閉ループを構成し通電電流500Aで約200時間永久電流モードで運
転したが、クエンチせずに安定に動作した。またこの時の電流減衰の時定数を評
価したところ約5×1011秒であった。 【0032】 実施例5 あらかじめ実施例1に示す超電導線Aを準備し、実施例2に示すコイル断面構
成において図2のコイル巻線表面10に位置する所定の位置に実施例1と同様な
手法において、純度99.999%の高純度アルミニウムを0.3mmの厚さで被覆
した長さ方向に無接続の超電導線Eを作製した。この超電導線Eを実施例2の図
2に示すコイル断面構成を有するように巻回した後エポキシ樹脂を真空中で含浸
し、実施例1記載の超電導コイルPとほぼ同一仕様のヒータによる安定性マージ
ンの測定を行ったところ、実施例4記載の超電導コイルSと同程度の安定性マー
ジンを得た。なお、上記超電導コイルUと別途製作した永久電流スイッチに超電
導−超電導接続を施し閉ループを構成し通電電流500Aで約200時間永久電
流モードで運転したが、クエンチせずに安定に動作した。またこの時の電流減衰
の時定数を評価したところ実施例と同等の結果を得た。 【0033】 実施例6 実施例1に示す超電導コイルPに使用したものと同一の超電導線Aおよび超電
導線Bを用いて実施例2の超電導コイルRと同一の巻線断面構造となるように超
電導線Aと超電導線Bを超電導−超電導接続を施しながら巻回した後含浸処理を
施し実施例2の超電導コイルとほぼ同一仕様の超電導コイルVを作製した。なお
、この超電導コイルVにも超電導コイルPと同一個所にヒータが埋設されている
。実施例1と同一の手法によって、超電導コイルVの安定性マージンを評価した
ところ超電導コイルPと同程度の値が得られた。実施例4に示す方法を用いて測 定した超電導コイルVの電流減衰の時定数は実施例4とほぼ同等の結果を得た。 【0034】 実施例7 実施例1に示す超電導コイルPに使用したものと同一の超電導線Aおよび超電
導線Bを用いて実施例2の超電導コイルRと同一の巻線断面構造となるように超
電導線Aと超電導線Bを超電導−超電導接続を施しながら巻回した後含浸処理を
施し実施例2の超電導コイルとほぼ同一仕様の超電導コイルWを作製した。なお
、この超電導コイルWにも超電導コイルRと同一個所にヒータが埋設されている
。実施例1と同一の手法によって、超電導コイルWの安定性マージンを評価した
ところ超電導コイルRと同程度の値が得られた。実施例4に示す方法を用いて超
電導コイルWの電流減衰の時定数は実施例4とほぼ同等の結果を得た。 【0035】 実施例8 あらかじめ、上記実施例1で詳述した超電導線Aと同一外径寸法および絶縁の
銅線を製作した。この銅線を用いて2層巻回しエポキシ樹脂含浸して構成した常
電導金属線巻線部13(図3中の13)を2個準備した。また、実施例1に示し
た超電導線Aを超電導コイルQとほぼ同一仕様になるように巻回して構成した超
電導部巻線部12(図3中の12)を準備し、上記銅線を用いた常電導金属線巻
線部13と合わせて図3を構成するように配置した後、さらにエポキシ樹脂を真
空中で含浸して超電導コイルXを製作した。なお上記銅線を用いた常電導線金属
巻線部13には、実施例1で詳述したヒータが同様に埋設されている。上記実施
例1と同様にコイル電流負荷率70%でヒータに30mJ/cmまでエネルギーを
投入したが、上記超電導コイルはクエンチすることなく安定に動作した。 【0036】 実施例9 実施例8の銅線と同一寸法を有する99.999%の高純度アルミニウム線を 製作しその表面に25μm厚さのポリイミドテープを1/2ずつオーバラップし
て絶縁を施したものを準備した。これを実施例8の銅線の替わりに使用して構成
した超電導コイルXを製作した。なお上記高純度アルミニウム線を用いた常電導
金属線巻線部13には、実施例8と同様のヒータが埋設されている。上記実施例
1と同様にコイル電流負荷率70%でヒータに40mJ/cmまでエネルギーを投
入したが、上記超電導コイルはクエンチすることなく安定に動作した。 【0037】 実施例10 上記実施例1で詳述した超電導線Aと同一外径寸法および絶縁の銅線を製作し
た。その後コイル巻枠に上記銅線を2層巻回し常電導金属線巻線部14(図4中
の14)を構成した後、上記実施例1で詳述した超電導線Aを上記超電導コイル
Qとほぼ同一仕様になるように巻回し超電導巻線部10(図4中の10)を構成
した。さらにこの外側に上記銅線を2層巻回し常電導金属線巻線部15(図4中
の15)を構成した。さらに上記銅線を用いて2層巻回しエポキシ樹脂含浸して
構成した常電導金属線巻線部13(図4中の13)を2個準備した。さらにこれ
らを図を構成するように配置した後、さらにエポキシ樹脂を真空中に含浸して超
電導コイルZを製作した。なお上記銅線を用いた常電導金属線巻線部13には、
実施例1で詳述したヒータが同様に埋設されている。上記実施例1と同様にコイ
ル電流負荷率70%でヒータに30mJ/cmまでエネルギーを投入したが、上記
超電導コイルはクエンチすることなく安定に動作した。 【0038】 実施例11 実施例8の銅線と同一寸法を有する99.999%の高純度アルミニウム線を
製作しその表面に25μm厚さのポリイミドテープを1/2ずつオーバラップし
て絶縁を施したものを準備した。これを実施例10の銅線の替わりに使用して構
成した超電導コイルZ′を製作した。なお高純度アルミニウム線を用いた常電導 金属線巻線部13(図4中の13)には、実施例8と同様のヒータが埋設されて
いる。上記実施例1と同様にコイル電流負荷率70%でヒータに40mJ/cmま
でエネルギーを投入したが、上記超電導コイルはクエンチすることなく安定に動
作した。 【0039】 なお、上記実施例8−実施例11では銅線およびアルミニウム線を用いた実施
例を示したが、上記常電導金属線の替わりに貫通部を有する銅およびアルミニウ
ム等の常電導金属板で構成してもよい。 【0040】 【発明の効果】 本発明によれば、高安定,高信頼性で高電流密度のコンパクトな超電導コイル
装置及びこれを用いた磁気浮上列車装置を得ることができるので、その経済性及
び社会的波及効果は大である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting coil device having improved stability and improved quench resistance of a closely wound superconducting coil. 2. Description of the Related Art Conventionally, as a method for preventing coil quenching due to disturbance on a winding surface of a closely wound superconducting coil, as described in Japanese Patent Application Laid-Open No. 1-1194308, a superconducting coil and a refrigerant are incorporated. There is known a method of inserting a spring member between coiled containers to suppress the movement of the coil due to vibration, thereby preventing quench of the superconducting coil due to frictional heat. Further, as described in JP-A-57-124406 and JP-A-57-178306, a low friction material is inserted between the superconducting coil and the insulating material on the inner surface of the coil container to reduce the generation of frictional heat. As described in JP-A-57-63809, a heat insulating member composed of an insulator having a small friction coefficient and a low thermal conductivity is provided at predetermined intervals on the surface of a superconducting coil, and the coil is supported on a coil container. A superconducting coil is fixed to an inner container via a metal pipe through which a cryogenic refrigerant flows, as described in JP-A-57-63808. Thus, there is known a method of preventing quenching due to intrusion of frictional heat from the surface of the superconducting coil. [0003] The above-mentioned prior arts are all methods for reducing disturbance which causes the quench of the superconducting coil and making it difficult to transmit heat generated by the disturbance to the superconducting coil. In reality, the quench resistance of the closely wound superconducting coil has hardly been improved. That is, it is understood that none of the conventional techniques is still sufficient to prevent the quench of the superconducting coil. [0004] An object of the present invention is to provide a superconducting coil device which eliminates the above-mentioned disadvantages of the prior art and has improved quench resistance. [0005] The superconducting magnetic levitation train has a superconducting coil on the upper side of the car and a normal-conducting short-circuit coil on the ground side, and electromagnetic induction is provided between the superconducting coil and the ground coil when the vehicle is running. Is caused by the repulsive force generated by On the other hand, the propulsion of the vehicle is a linear synchronous motor system, and the propulsion of the same coil is obtained by reversing the current of the propulsion coil by the interaction between the normal conduction propulsion coil separately provided on the ground side and the superconducting coil on the vehicle Things. A superconducting coil used in a superconducting maglev train generally has a race track shape as shown in FIG. 5, and is mounted on a vehicle, so that it is required to be as light and small as possible from the viewpoint of economy. . For this purpose, it is required to make the superconducting coil winding part as compact as possible and to increase the coil current density. Therefore, as shown in FIG. 6, the refrigerant such as liquid helium is placed in the space 3 formed by the refrigerant container 1 and the insulator 2, and the coil winding part 4 has a close-wound structure without the refrigerant directly in contact with the superconducting wire. In addition, a so-called low copper ratio superconducting wire in which the volume other than the portion where the current is applied, for example, the volume of the stabilizing material or the like is minimized is used. On the other hand, a superconducting coil for a magnetic levitation train requires a high degree of reliability and stability to transport passengers safely. For this purpose, it is essential that the stability margin of the superconducting coil is larger than the disturbance energy. This stability margin is the minimum energy required to quench the superconducting coil. However,
The tightly wound low copper ratio superconducting coil has a small stability margin and may cause quench with a small amount of disturbance energy. In particular, since the superconducting coil for a magnetically levitated train is used in a high-speed running state, it is subjected to severe disturbing energy due to movement of the superconducting coil due to mechanical vibration, impact load due to tunnel or train passing, wind pressure, vibration and the like. Used under appropriate conditions. However, a specific method for stably operating a tightly wound superconducting coil, as well as a stabilization theory for a tightly wound superconducting coil, which can easily specify from which part in the coil winding the quench occurs, has not yet been established. The present inventors have found that the above problem can be solved by locally increasing the stability margin of the coil winding portion which is easily quenched. That is, it has been clarified that the quenching resistance of the superconducting coil can be greatly improved by increasing the stability margin of only the winding surface portion so as not to quench from the winding surface. More specifically, the quench resistance of the superconducting coil can be improved by making the stability margins at both ends of the coil winding larger than the stability margins of other portions of the coil winding. [0013] Furthermore, even if the stability margin of the entire coil winding surface is increased so as not to quench from the coil winding surface, the quench resistance of the superconducting coil can be greatly improved. As a means for changing the stability margin between the coil winding surface and other portions, there is a method of changing a stabilizing base material of a superconducting wire to be used. That is, this is achieved by making the cross-sectional area of the superconducting wire on the winding surface larger than the cross-sectional area of the superconducting wire in the other part. It is also achieved by actively introducing high-purity aluminum. On the other hand, as means for improving the stability of the coil winding surface, it is not always necessary to use a superconducting wire having a high stability margin on the winding surface. The stability margin may be increased. Another point of interest of the present invention is based on this idea, in which a normal conductive metal such as copper or aluminum is wound on the surface of the coil winding of the superconducting wire, and a stability margin is formed between the surface of the coil winding and other parts. May be changed. The superconducting coil for a magnetically levitated train is subjected to various disturbances such as movement of the superconducting coil due to electromagnetic force and mechanical vibration during high-speed running, shock load due to a tunnel or train passing, wind pressure, vibration, and the like. A place where the superconducting coil is easily quenched is in the coil winding or on the surface of the coil winding. The winding of the superconducting coil has a tightly wound structure,
Since the superconducting wire is impregnated with the epoxy resin, the movement of the superconducting wire due to the electromagnetic force or the like can be largely suppressed, so that quenching is difficult. On the other hand, the coil winding surface is easily quenched by disturbance caused by heat generated by friction between the insulator and the coil winding. Therefore, if the stability margin of the entire coil winding surface is increased so as not to quench from the coil winding surface, the quench resistance of the superconducting coil can be greatly improved. As shown in FIG. 6, the winding cross section of the superconducting coil for a magnetic levitation train is generally rectangular, and the coil winding 4 has both ends 7 of the coil winding and other portions 5 of the coil winding.
Can be roughly divided into When a magnetic levitation train runs at high speed, the coil is analyzed for complex vibration modes such as rolling, pitching, and yawing, as described later, and quenching is suppressed by increasing the stability margin of the coil winding surface at the required points. it can. As a means of changing the stability margin between the surface of the coil winding and other parts, there is a method of changing the amount of the stabilizing base material of the superconducting wire to be used. This is achieved by making the cross-sectional area larger.
It is also achieved by actively introducing high-purity aluminum. That is, high-purity aluminum has an electrical resistivity of about 1 /
It is excellent as a stabilizing base material because it is difficult to form hot spots because it is as small as 10 and the thermal conductivity is about 6.4 times that of high-purity copper, and aluminum is lighter because aluminum has a lower specific gravity than copper. It has characteristics. Therefore, by coating the required amount of high-purity aluminum on the surface of the superconducting wire using copper as a stabilizing base material on the surface of the coil winding, it is possible to locally increase the stability margin. Further, considering a case where the superconducting coil is operated in the permanent current mode like a magnetic levitation train, it is more stable and current decay rate of the coil to have no connection portion of the superconducting wire in the coil winding. It is also preferable from the viewpoint of. This is achieved by coating the required amount of high-purity aluminum on the surface of the connection-free superconducting wire using copper as a stabilizing base material. In particular, in the case of a magnetically levitated train, when traveling at high speed, the superconductivity can be calculated by taking orthogonal coordinates with the origin of the coil of the superconducting coil mounted on the vehicle as the origin and the propulsion direction of the train as the x axis and the upward direction as the z axis. Propulsion force (Fx) and guide force (Fy) between the coil and the ground coil
, A vertical force (Fz) acts. On the other hand, rolling moments (Mx) and pitching moments (M
y), the force of the yawing moment (Mz) acts. The magnetic levitation train is now 500k
As a result of analyzing the force and moment applied to the superconducting coil by the current induced by the levitating coil when traveling at a constant speed of m / h and obtaining the ratio, the F
x: Fy: Fz = 1: 0.9: 2.4, Mx: My: Mz = 1: 2.1: 1.4,
All were found to have the same order value. Therefore, the combined force of these forces and each moment acts on the superconducting coil, causing relative displacement between the superconducting coil and its coil container, generating frictional heat.As described above, the same frictional heat is generated on all coil winding surfaces. I found out. Therefore, in order to make the magnetic levitation train run more stably, it is preferable to increase the stability margin of all coil winding surfaces. Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. FIG. 1 shows a cross-sectional configuration of a superconducting coil in an apparatus according to the present invention.
In FIG. 1, a coil winding part 4 is composed of a winding central part 9 and a winding surface part 8, is fixed to a refrigerant container 1 via an insulating material 2, and is cooled by a liquid helium 3 as a refrigerant. Example 1 First, a superconducting wire B was formed on both sides 8 of the winding in FIG. 1 and a superconducting wire A was formed on the other part 9 of the winding as shown below. That is, the superconducting wire A is obtained by embedding 1748 NbTi filaments having a diameter of 27 μm embedded in high-purity copper at a twist pitch of 21 mm by a known method and processing it to an outer dimension of 1.1 mm × 1.9 mm. 40
A superconducting wire insulated with μm polyvinyl formal and having a copper ratio (= stabilized copper amount / superconductor amount) of 1.0. On the other hand, the superconducting wire B is formed by coating the surface of the superconducting wire A with 99.999% high-purity aluminum by an extrusion method to a thickness of 0.3 mm to form an outer dimension of 1.7 mm × 2.5 mm, and then forming a 25 μm thick One polyimide tape
/ 2 overlapped each other for insulation. The superconducting wire A and the superconducting wire B are wound while being connected by soldering so that both ends 8 of the winding form four layers from the coil surface in the configuration of FIG. After a circular superconducting coil having a length of about 210 mm, a length of about 90 mm, 36 layers, a total number of turns of 1170, and an inductance of 0.165 Henry was closely wound, an epoxy resin was impregnated in a vacuum to obtain a superconducting coil P. The coil section of the obtained superconducting coil was configured such that its dimensions and cooling conditions were substantially the same as those of the superconducting coil for a magnetic levitation train. A heater formed by winding a silk-wrapped manganin wire non-inductively over a conductor longitudinal direction of 1 cm is embedded at both ends 8 of the coil. In order to experimentally verify the stability of the superconducting coil according to the present invention, the above copper ratio of 1.0 was used.
Using only the superconducting wire A, and wound and immersed in epoxy resin so as to have the same specifications as the superconducting coil P as much as possible. The inner diameter is 100 mm, the outer diameter is 192 mm, and the length is 68 mm.
The number of layers, the number of turns, the number of turns, 1170, and the inductance 0.163 Henry's close-wound superconducting coil Q was separately manufactured. In this superconducting coil Q, a heater is embedded similarly to the superconducting coil P. When the superconducting coil P and the superconducting coil Q were immersed in liquid helium and DC-excited, all could excite up to 100% of the magnetic field-critical current characteristics of the superconducting wire. Further, in order to compare the stability of the superconducting coil with respect to disturbance due to friction or the like on the coil winding surface, a heater pulse of about 10 ms was applied to the heater of the superconducting coil P and the superconducting coil Q, and the stability margin was measured. As a result, the stability margin at a coil current load factor of 70% was 22 mJ / cm for the superconducting coil P, whereas the stability margin for the superconducting coil Q was 3.0 mJ / cm. Has a stability margin about 7 times higher than that of the superconducting coil Q. Example 2 The superconducting wire A and the superconducting wire B shown in Example 1 were prepared, and the superconducting wire B was replaced with the superconducting wire B so that the winding surface 10 constituted four layers from the coil surface in the configuration of FIG. Wound. On the other hand, the superconducting wire A is wound while being connected by soldering so as to form a portion 11 other than the winding surface 10 in FIG. 2, and the same processing as that of the superconducting coil R of the first embodiment is performed. A coil R was obtained. In this superconducting coil R, the same heater as that described in the first embodiment is embedded in the winding surface 10. When the stability margin was measured in the same manner as in Example 1, the superconducting coil P described in Example 1 was measured.
A similar stability margin was obtained. Example 3 652 NbTi filaments having a diameter of 45 μm were buried in high-purity copper at a twist pitch of 36 mm, the outer dimensions were 1.92 mm × 2.8 mm, and the surface was insulated with polyvinyl formal of about 40 μm. A 3.9 superconducting wire C was separately manufactured. A superconducting coil R ′ having substantially the same specifications as the coil shown in the first embodiment, using the superconducting wire A described in the first embodiment in the center portion 11 of the winding and the superconducting wire C in the winding surface 10 in FIG. Was made. The same heater as that described in the first embodiment is embedded in this superconducting coil R '. When the stability margin of the superconducting coil R ′ at a current load factor of 70% was measured in the same manner as in Example 1, it was about 7.8 mJ / cm, and the copper ratio described in Example 1 was 1.0. Has a stability margin about 2.4 times higher than that of the superconducting coil Q using the superconducting wire A. Fourth Embodiment High-purity aluminum is reduced to 0 at a predetermined position on the surface of a superconducting wire A shown in the first embodiment by the same method as in the first embodiment so that the same specifications as the superconducting coil P of the first embodiment are obtained. A non-connected superconducting wire D wound in a length direction covered with a thickness of 0.3 mm is impregnated with an epoxy resin in a vacuum, and a superconducting coil S having substantially the same specifications as the superconducting coil P described in Example 1 is obtained. Was. When a stability margin was measured using a heater having the same specifications as in Example 1, a stability margin equivalent to that of the superconducting coil P described in Example 1 was obtained. Further, a superconducting-superconducting connection was made to the superconducting coil S and a separately manufactured permanent current switch to form a closed loop, and the apparatus was operated in a permanent current mode at a current of 500 A for about 200 hours, but was operated stably without quenching. When the time constant of the current decay at this time was evaluated, it was about 5 × 10 11 seconds. Fifth Embodiment A superconducting wire A shown in a first embodiment is prepared in advance, and a method similar to that of the first embodiment is provided at a predetermined position located on the coil winding surface 10 in FIG. , A non-connected superconducting wire E in the length direction was formed by coating high-purity aluminum having a purity of 99.999% with a thickness of 0.3 mm. This superconducting wire E is wound so as to have the coil cross-sectional configuration shown in FIG. 2 of the second embodiment, and then impregnated with an epoxy resin in a vacuum, and is stabilized by a heater having substantially the same specifications as the superconducting coil P described in the first embodiment. When the margin was measured, a stability margin equivalent to that of the superconducting coil S described in Example 4 was obtained. The superconducting coil U and the permanent current switch separately manufactured were connected to each other by superconducting-superconducting connection to form a closed loop, and were operated in a permanent current mode at a current of 500 A for about 200 hours, but operated stably without quench. When the time constant of current decay at this time was evaluated, a result equivalent to that of the example was obtained. Embodiment 6 The same superconducting wire A and superconducting wire B used for the superconducting coil P shown in Embodiment 1 are used to make the superconducting coil have the same winding cross-sectional structure as the superconducting coil R of Embodiment 2. The wire A and the superconducting wire B were wound while performing superconducting-superconducting connection, and then subjected to an impregnation treatment, thereby producing a superconducting coil V having substantially the same specifications as the superconducting coil of Example 2. The superconducting coil V also has a heater embedded in the same place as the superconducting coil P. When the stability margin of the superconducting coil V was evaluated by the same method as in Example 1, a value similar to that of the superconducting coil P was obtained. The time constant of the current decay of the superconducting coil V measured using the method shown in the fourth embodiment was almost the same as that of the fourth embodiment. Embodiment 7 The same superconducting wire A and superconducting wire B as those used for the superconducting coil P shown in Embodiment 1 are used so that the superconducting coil has the same winding cross-sectional structure as the superconducting coil R of Embodiment 2. The wire A and the superconducting wire B were wound while performing superconducting-superconducting connection, and then subjected to an impregnation treatment, thereby producing a superconducting coil W having substantially the same specifications as the superconducting coil of Example 2. The superconducting coil W also has a heater embedded in the same place as the superconducting coil R. When the stability margin of the superconducting coil W was evaluated by the same method as in Example 1, a value similar to that of the superconducting coil R was obtained. Using the method shown in the fourth embodiment, the time constant of the current decay of the superconducting coil W was almost the same as that of the fourth embodiment. Example 8 A copper wire having the same outer diameter and insulation as the superconducting wire A described in detail in Example 1 was manufactured in advance. Two normal-conducting metal wire winding portions 13 (13 in FIG. 3) formed by winding two layers using this copper wire and impregnating with an epoxy resin were prepared. Further, a superconducting winding section 12 (12 in FIG. 3) formed by winding the superconducting wire A shown in the first embodiment so as to have almost the same specifications as the superconducting coil Q is prepared, and the copper wire is used. After being arranged so as to constitute FIG. 3 together with the normal-conducting metal wire winding portion 13, the superconducting coil X was manufactured by further impregnating epoxy resin in a vacuum. The heater described in the first embodiment is similarly buried in the normal conducting wire metal winding 13 using the copper wire. As in Example 1, energy was applied to the heater up to 30 mJ / cm at a coil current load rate of 70%, but the superconducting coil operated stably without quenching. Example 9 A high-purity 99.999% aluminum wire having the same dimensions as the copper wire of Example 8 was manufactured, and a 25 μm-thick polyimide tape was overlapped on the surface thereof by 1/2 for insulation. I prepared something. This was used in place of the copper wire of Example 8 to produce a superconducting coil X. A heater similar to that of the eighth embodiment is embedded in the normal conducting metal wire winding portion 13 using the high-purity aluminum wire. As in Example 1, energy was applied to the heater up to 40 mJ / cm at a coil current load factor of 70%, but the superconducting coil operated stably without quenching. Example 10 A copper wire having the same outer diameter and insulation as the superconducting wire A described in detail in Example 1 was manufactured. After that, two layers of the copper wire are wound around a coil winding frame to form a normal conducting metal wire winding portion 14 (14 in FIG. 4), and then the superconducting wire A described in detail in the first embodiment is connected to the superconducting coil Q. The superconducting winding part 10 (10 in FIG. 4) was wound so as to have almost the same specifications. Further, the copper wire was wound around this outside in two layers to form a normal conducting metal wire winding portion 15 (15 in FIG. 4). Further, two normal-conducting metal wire winding portions 13 (13 in FIG. 4) formed by winding the copper wire in two layers and impregnating with epoxy resin were prepared. After arranging these components as shown in the figure, epoxy resin was further impregnated in a vacuum to produce a superconducting coil Z. The normal conductive metal wire winding portion 13 using the copper wire has
The heater described in detail in the first embodiment is similarly buried. As in Example 1, energy was applied to the heater up to 30 mJ / cm at a coil current load rate of 70%, but the superconducting coil operated stably without quenching. Example 11 A high-purity 99.999% aluminum wire having the same dimensions as the copper wire of Example 8 was manufactured, and a 25 μm-thick polyimide tape was overlapped on the surface by 1/2 for insulation. I prepared something. This was used in place of the copper wire of Example 10 to produce a superconducting coil Z '. A heater similar to that of the eighth embodiment is embedded in the normal-conducting metal wire winding portion 13 (13 in FIG. 4) using a high-purity aluminum wire. As in Example 1, energy was applied to the heater up to 40 mJ / cm at a coil current load factor of 70%, but the superconducting coil operated stably without quenching. In the above-mentioned embodiments 8 to 11, the embodiment using the copper wire and the aluminum wire has been described. However, instead of the above-described normal metal wire, a normal conductive metal plate such as copper and aluminum having a penetrating portion is used. May be configured. According to the present invention, a compact superconducting coil device having high stability, high reliability, and high current density and a magnetic levitation train device using the same can be obtained. The social ripple effect is great.

【図面の簡単な説明】 【図1】 本発明の一実施例を示す超電導コイルの断面構成図である。 【図2】 本発明の他の実施例を示す超電導コイルの断面構成図である。 【図3】 本発明の他の実施例を示す超電導コイルの断面構造図である。 【図4】 本発明の他の実施例を示す超電導コイルの断面構成図である。 【図5】 一般的なレーストラック形超電導コイルの概略を示す斜視図である。 【図6】 図5のA−A′断面構造図である。 【符号の説明】 1…冷媒容器、2…絶縁物、3…冷媒、4…超電導コイル巻線、5…コイル巻
線の内周部、6…コイル巻線の外周部、7,8…コイル巻線両端部、9…巻線部
、10…コイル巻線表面、11…コイル巻線表面の他の部分、12…超電導線巻
線部、13,14,15…常超電導金属線巻線部。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional configuration diagram of a superconducting coil showing one embodiment of the present invention. FIG. 2 is a cross-sectional configuration diagram of a superconducting coil showing another embodiment of the present invention. FIG. 3 is a sectional structural view of a superconducting coil showing another embodiment of the present invention. FIG. 4 is a sectional configuration diagram of a superconducting coil showing another embodiment of the present invention. FIG. 5 is a perspective view schematically showing a general race track type superconducting coil. 6 is a sectional view taken along the line AA 'of FIG. [Description of Symbols] 1 ... refrigerant container, 2 ... insulator, 3 ... refrigerant, 4 ... superconducting coil winding, 5 ... inner circumference of coil winding, 6 ... outer circumference of coil winding, 7, 8 ... coil Both ends of winding, 9: winding part, 10: coil winding surface, 11: other part of coil winding surface, 12: superconducting wire winding part, 13, 14, 15 ... normal superconducting metal wire winding part .

Claims (1)

【特許請求の範囲】 【請求項1】 超電導線と冷媒が介在物を介して接するコイル巻線と、該コイル巻線を囲む冷
却容器と、該コイル巻線と該冷却容器との間の絶縁物によって構成される密巻超
電導コイルにおいて、該コイル巻線の両端部の安定性マージンを他の部分よりも
大きくし、該コイル巻線表面の超電導線に安定化材として銅を用い、該超電導線
にアルミニウムを被覆したことを特徴とする超電導コイル装置。 【請求項2】 超電導線と冷媒が介在物を介して接するコイル巻線と、該コイル巻線を囲む冷
却容器と、該コイル巻線と該冷却容器との間の絶縁物によって構成される密巻超
電導コイルにおいて、コイル巻線の全表面の安定性マージンを該コイル巻線の他
の部分よりも大きくし、該コイル巻線表面の超電導線に安定化材として銅を用い
、該超電導線にアルミニウムを被覆したことを特徴とする超電導コイル装置。 【請求項3】 該コイル巻線表面の超電導線の横断面積を、他の部分よりも大きくしたことを
特徴とする請求項1あるいは請求項2に記載の超電導コイル装置。 【請求項4】 超電導線と冷媒が介在物を介して接するコイル巻線と、該コイル巻線を囲む冷
却容器と、該コイル巻線と該冷却容器との間の絶縁物によって構成される密巻超
電導コイルにおいて、該コイル巻線の両端部の安定性マージンを他の部分よりも
大きくし、該コイル巻線表面と、該コイル巻線の他の部分をそれぞれ安定性マー
ジンの異なる無接続の超電導線で巻回したことを特徴とする超電導コイル装置。 【請求項5】 超電導線と冷媒が介在物を介して接するコイル巻線と、該コイル巻線を囲む冷 却容器と、該コイル巻線と該冷却容器との間の絶縁物によって構成される密巻超
電導コイルにおいて、コイル巻線の全表面の安定性マージンを該コイル巻線の他
の部分よりも大きくし、該コイル巻線表面と、該コイル巻線の他の部分をそれぞ
れ安定性マージンの異なる無接続の超電導線で巻回したことを特徴とする超電導
コイル装置。 【請求項6】 超電導線と冷媒が介在物を介して接するコイル巻線と、該コイル巻線を囲む冷
却容器と、該コイル巻線と該冷却容器との間の絶縁物によって構成される密巻超
電導コイルにおいて、該コイル巻線の両端部の安定性マージンを他の部分よりも
大きくし、該コイル巻線表面の超電導線に安定化材として銅を用い、該超電導線
にアルミニウムを被覆し該コイル巻線表面と、該コイル巻線の他の部分をそれぞ
れ安定性マージンの異なる無接続の超電導線で巻回したことを特徴とする超電導
コイル装置。
Claims: 1. A coil winding in which a superconducting wire and a refrigerant are in contact with each other via an interposition, a cooling container surrounding the coil winding, and insulation between the coil winding and the cooling container. In a closely wound superconducting coil made of a material, the stability margins at both ends of the coil winding are made larger than those of other parts, and copper is used as a stabilizing material for the superconducting wire on the surface of the coil winding, and A superconducting coil device comprising a wire coated with aluminum. 2. A dense coil comprising: a coil winding in which a superconducting wire and a refrigerant are in contact with each other via an interposition; a cooling container surrounding the coil winding; and an insulator between the coil winding and the cooling container. In a wound superconducting coil, the stability margin of the entire surface of the coil winding is made larger than other portions of the coil winding, and copper is used as a stabilizing material for the superconducting wire on the surface of the coil winding. A superconducting coil device coated with aluminum. 3. The superconducting coil device according to claim 1, wherein a cross-sectional area of the superconducting wire on the surface of the coil winding is larger than other portions. 4. A dense coil comprising a coil winding in which a superconducting wire and a refrigerant are in contact with each other via an intervening member, a cooling container surrounding the coil winding, and an insulator between the coil winding and the cooling container. In the wound superconducting coil, the stability margins at both ends of the coil winding are made larger than other parts, and the surface of the coil winding and the other parts of the coil winding are connected to each other with different stability margins. A superconducting coil device characterized by being wound with a superconducting wire. 5. A dense coil comprising: a coil winding in which a superconducting wire and a refrigerant are in contact with each other via an interposition; a cooling container surrounding the coil winding; and an insulator between the coil winding and the cooling container. In the wound superconducting coil, the stability margin of the entire surface of the coil winding is made larger than that of the other part of the coil winding, and the surface of the coil winding and the other part of the coil winding are each provided with a stability margin. A superconducting coil device characterized by being wound by a different unconnected superconducting wire. 6. A dense coil comprising: a coil winding in which a superconducting wire and a refrigerant are in contact with each other via an interposition; a cooling vessel surrounding the coil winding; and an insulator between the coil winding and the cooling vessel. In the wound superconducting coil, the stability margins at both ends of the coil winding are made larger than other portions, copper is used as a stabilizer for the superconducting wire on the surface of the coil winding, and the superconducting wire is coated with aluminum. A superconducting coil device, wherein the surface of the coil winding and the other part of the coil winding are wound by unconnected superconducting wires having different stability margins.

Family

ID=

Similar Documents

Publication Publication Date Title
US5094173A (en) Superconducting magnetic levitated train, train system method of controlling the same, and superconducting coil for magnetic levitated train
JPS60213259A (en) Exciter of linear motor movable element
US3927735A (en) Magnet system for use in the contactless guidance of a moving vehicle
JP2560561B2 (en) Superconducting coil device
US5602430A (en) Superconducting electromagnet arrangement for a magnetic levitation system
JPH1041125A (en) Superconducting coil
JP2560561C (en)
JPH0341705A (en) Device for propagating quentch within superconductive magnet
Furuyama et al. Performance of Nb 3 Sn tape magnet cooled by indirect conduction method
JPH05121235A (en) Superconductive coil device
KR100777182B1 (en) High temperature superconducting power cable
JP2000102112A (en) Superconducting magnet for magnetically levitated train
Thompson High temperature superconducting magnetic suspension for maglev
JP3556444B2 (en) Method of manufacturing current lead for superconducting magnet
JP3200198B2 (en) Superconducting magnet
Yamaji et al. Superconducting magnet for magnetically levitated vehicle
JPH0715809A (en) Superconducting magnet apparatus
JP2971660B2 (en) Superconducting magnet device
KR100302909B1 (en) Coil-wound racetrack type superconducting magnets and racetrack bobbins
JPS603545Y2 (en) superconducting winding
JP2642612B2 (en) Superconducting coil device for magnetic levitation train
JP2931169B2 (en) Magnetically levitated superconducting magnet device for vehicles
JPS5817062B2 (en) insulated container
JP3863927B2 (en) Superconducting magnet device
JPH03283678A (en) Current lead of superconducting magnet apparatus