JP2559602B2 - Ultrasonic transducer for wire bonder - Google Patents

Ultrasonic transducer for wire bonder

Info

Publication number
JP2559602B2
JP2559602B2 JP62302595A JP30259587A JP2559602B2 JP 2559602 B2 JP2559602 B2 JP 2559602B2 JP 62302595 A JP62302595 A JP 62302595A JP 30259587 A JP30259587 A JP 30259587A JP 2559602 B2 JP2559602 B2 JP 2559602B2
Authority
JP
Japan
Prior art keywords
ultrasonic transducer
front body
wire bonder
wire
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62302595A
Other languages
Japanese (ja)
Other versions
JPH01143333A (en
Inventor
紘一 高尾
茂 西野
彰 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ultrasonic Engineering Co Ltd
Original Assignee
Ultrasonic Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ultrasonic Engineering Co Ltd filed Critical Ultrasonic Engineering Co Ltd
Priority to JP62302595A priority Critical patent/JP2559602B2/en
Publication of JPH01143333A publication Critical patent/JPH01143333A/en
Application granted granted Critical
Publication of JP2559602B2 publication Critical patent/JP2559602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78313Wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/203Ultrasonic frequency ranges, i.e. KHz
    • H01L2924/20305Ultrasonic frequency [f] 100 Khz=<f< 125 KHz

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Wire Bonding (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体集積回路製造用の超音波ワイヤボン
ダに用いられる超音波振動子に関する。
TECHNICAL FIELD The present invention relates to an ultrasonic transducer used in an ultrasonic wire bonder for manufacturing a semiconductor integrated circuit.

〔従来の技術〕 超音波ワイヤボンダは、ボンディングの線、速度、加
圧力、時間および動摩擦係数等によって最適接合条件が
与えられる。
[Prior Art] An ultrasonic wire bonder is provided with optimum bonding conditions depending on the bonding line, speed, pressure, time, dynamic friction coefficient, and the like.

一定条件下ではボンディングツールの速度をV、共振
周波数をf、先端振動振幅をξとし、ボンディング時間
をtとすると、実験的に tVα=C (1) V=ωξ=2πfξ (2) の関係が得られる。
Assuming that the speed of the bonding tool is V, the resonance frequency is f, the tip vibration amplitude is ξ, and the bonding time is t under a constant condition, the relationship of tV α = C (1) V = ωξ = 2πfξ (2) is experimentally obtained. Is obtained.

但しCは定数、1≦α≦6とする。 However, C is a constant, 1 ≦ α ≦ 6.

従ってボンディング時間tを短時間にするには、周波
数fを高周波にするが振動振幅ξを高振幅にすればよ
い。
Therefore, in order to shorten the bonding time t, the frequency f may be set to a high frequency but the vibration amplitude ξ may be set to a high amplitude.

ところが振動振幅を高振幅にすると、ボンディングワ
イヤの変形量が過大となることに加えて、被溶着チップ
に損傷を与える危険があるため一定振幅以下に抑制する
必要がある。
However, if the vibration amplitude is set to a high amplitude, the amount of deformation of the bonding wire becomes excessive and, in addition, there is a risk of damaging the welded chip, so it is necessary to suppress the vibration amplitude to a certain level or less.

従ってボンディング時間を短縮する最も有効な手段は
ボンディング周波数fを高周波にすればよいがfは60KH
zが多用されていて、周波数100KHz以上の高速(ボンデ
ィング時間が短時間)で信頼性の高い超音波ワイヤボン
ダは見当たらない。
Therefore, the most effective means to shorten the bonding time is to set the bonding frequency f to a high frequency, but f is 60KH.
I cannot find an ultrasonic wire bonder that uses a lot of z and has a frequency of 100 KHz or more and high speed (bonding time is short) and high reliability.

従来のワイヤボンダ用超音波振動子の一例を第4図に
示す。
An example of a conventional ultrasonic transducer for a wire bonder is shown in FIG.

同図に示されるように、ワイヤボンダ用超音波振動子
は、それぞれの共振周波数が60KHzのボルト締めランジ
ュバン型超音波振動子(以下BLTと略称する)1、コー
ン2およびホーン3が接続ねじ6,7,8によって締め付け
られて一体構造となっている。
As shown in the figure, the ultrasonic transducer for wire bonder is a bolted Langevin type ultrasonic transducer (hereinafter abbreviated as BLT) 1 having a resonance frequency of 60 KHz, a cone 2 and a horn 3. It is tightened by 7,8 to form an integral structure.

各構成要素の材質は、BLTの背面体1aおよび前面体1c
が高力アルミニウム合金、中空電歪素子1bがヂルコン酸
チタン酸鉛、コーン2がチタン、ホーン3がステンレス
鋼となっている。
The material of each component is the back body 1a and front body 1c of BLT.
Is a high strength aluminum alloy, the hollow electrostrictive element 1b is lead zirconate titanate, the cone 2 is titanium, and the horn 3 is stainless steel.

ホーン3にはワイヤ供給用の穴4を通してツール9の
先端にワイヤ10が設置されていて、振動子全体の振動モ
ード11は2波長共振型となっている。第4図に例示した
ように、従来の超音波振動子は、ホーン材質がステンレ
ス鋼に起因する超音波弾性振動による熱損失に加えて、
各構成要素間の音響的特性の不均一に起因する境界層お
よび各接続ねじの熱損失が発生する。この熱損失は、共
振周波数が60KHz程度までは実用上問題にならないが、1
00KHz以上のワイヤボンダ用超音波振動子には不適当で
ある。
A wire 10 is installed on the tip of a tool 9 through a hole 4 for supplying a wire in the horn 3, and a vibration mode 11 of the entire vibrator is a two-wavelength resonance type. As illustrated in FIG. 4, in the conventional ultrasonic transducer, in addition to heat loss due to ultrasonic elastic vibration caused by the horn material being stainless steel,
Heat loss in the boundary layer and in each connecting screw occurs due to the non-uniform acoustic properties between the components. This heat loss does not pose a practical problem up to a resonance frequency of about 60 KHz, but 1
It is not suitable for ultrasonic transducers for wire bonders of 00 KHz or higher.

またBLTの電歪素子の位置は同BLTの呈する動アドミッ
タンスが極大点近傍に設置されていないためBLTを構成
する偶数個の電歪素子のそれぞれの動アドミッタンスが
不揃いとなり、動アドミッタンスに比例したそれぞれの
電歪素子の振動速度もまた不均一である。
Also, since the position of the electrostrictive element of the BLT is not installed near the maximum point of the BLT, the dynamic admittances of even number of electrostrictive elements constituting the BLT become uneven, and each is proportional to the dynamic admittance. The vibration speed of the electrostrictive element is also non-uniform.

各電歪素子の持てる力が均等に結集されるとき最も効
果の高いBLTが実現されるのに反して、従来は最も動ア
ドミッタンスが大きい電歪素子が破損しない程度の駆動
力でBLTを振動させるため、実用上低効率での使用を余
儀なくされる欠点があった。
While the most effective BLT is realized when the force that each electrostrictive element can have is uniformly concentrated, the BLT is vibrated with a driving force that does not damage the electrostrictive element that has the largest dynamic admittance in the past. Therefore, there is a drawback that it is practically required to be used with low efficiency.

第4図に例示したように、従来のコーン2は振動の節
面のフランジ5による支持構造となっている。
As illustrated in FIG. 4, the conventional cone 2 has a support structure by the flange 5 on the node surface of vibration.

然しホーン3のワイヤ供給用の穴4がBLTの中心軸に
対して非対称となっているため、コーンの節面もまた軸
対称にはならない。
However, since the wire feeding hole 4 of the horn 3 is asymmetric with respect to the central axis of the BLT, the nodal surface of the cone is also not axisymmetric.

それにも拘らずフランジ5は事実上軸対称構造として
いるため、超音波振動は同フランジに漏洩し、フランジ
を支持体に締め付けると、その締めつけ具合によって漏
洩振動エネルギーが相異し、それと連動するツール9の
振動速度が変動する欠点があった。
Nevertheless, since the flange 5 has a virtually axisymmetric structure, ultrasonic vibration leaks to the same flange, and when the flange is tightened on the support, the leakage vibration energy differs depending on the tightening condition, and the tool that interlocks with it. 9 had a drawback that the vibration speed fluctuated.

更にワイヤ供給用の穴4の位置と中心軸とのなす角度
により、ツール9の設定長さl3は一意的に決定されるた
め、同一のホーンで異なるツール設定長さへの対応は不
可能だった。
Further, the set length l 3 of the tool 9 is uniquely determined by the angle formed by the position of the wire feeding hole 4 and the central axis. Therefore, it is impossible to cope with different tool set lengths with the same horn. was.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

前記従来技術は、100KHz以上の高周波数を利用する超
音波ボンダに適用した場合、中空電歪素子およびBLT、
コーン、ホーンのねじ結合境界面での発熱や、ホーンの
内部損失による発熱があり、実用上不可能となる。
The prior art, when applied to an ultrasonic bonder utilizing a high frequency of 100 KHz or more, a hollow electrostrictive element and BLT,
There is heat generation at the boundary between the cone and the horn screw connection, and heat generation due to internal loss of the horn, which is practically impossible.

更に100KHz以上の高周波数の場合、振動の節面の軸非
対称に起因するフランジ取付け具合によるツール振動の
変動が増大し、第4図5のフランジ構造は実用上不適当
となる。
Further, when the frequency is 100 KHz or higher, the fluctuation of the tool vibration due to the flange mounting condition due to the axial asymmetry of the vibration nodal surface increases, and the flange structure of FIG. 4 becomes unsuitable for practical use.

従来技術では、単一ホーンで異なるツール設定長さに
対応できる超音波ボンダは実現出来なかったが、高周波
ボンダになると、ツール設定長さの微細調整が必要とさ
れるため、従来以上にこの問題は看過できない。
In the prior art, it was not possible to realize an ultrasonic bonder that can handle different tool setting lengths with a single horn, but in the case of a high frequency bonder, fine adjustment of the tool setting length is required, so this problem is more than conventional. Cannot be overlooked.

本発明は上述の問題点を解決し、共振周波数100KHz以
上で使用できるワイヤボンダ用超音波振動子を提供する
ことを目的とする。
An object of the present invention is to solve the above problems and provide an ultrasonic vibrator for a wire bonder that can be used at a resonance frequency of 100 KHz or higher.

〔問題点を解決するための手段〕[Means for solving problems]

上述の問題点を解決するため、超音波振動子の背面体
を、BLTの動アドミッタンスが背面体無負荷端からみて6
mm以上の距離で最初に極大値となる長さにし、前面体を
コーン、ホーンを含む一体構造とし、両者の材質をチタ
ン合金とし、合成BLTの高調波共振周波数を100KHz以上
に設定し、前面体にワイヤ供給用のスリットを設置し、
前面体の隣り合った二節面をそれぞれ複数個のセットね
じで支持する構造とする。
In order to solve the above-mentioned problems, the back body of the ultrasonic transducer is viewed from the unloaded end of the back body by the dynamic admittance of the BLT.
The length that becomes the maximum value at the distance of mm or more first, the front body has an integrated structure including the cone and the horn, the material of both is titanium alloy, and the harmonic resonance frequency of the synthetic BLT is set to 100 KHz or more. A slit for wire supply is installed on the body,
Adjacent two nodal surfaces of the front body are supported by a plurality of set screws.

〔作 用〕[Work]

本構造においては、接続ねじ一本でBLT、コーン、ホ
ーンが一体構造となっているため、振動損失の原因とな
る境界層が僅少で、振動による内部摩擦が低損失なチタ
ン合金と相俟って高周波ボンダ用振動子が実現される。
In this structure, the BLT, cone, and horn are integrated with one connecting screw, so the boundary layer that causes vibration loss is very small, and the internal friction due to vibration is low. A high-frequency bonder oscillator is realized.

なお偶数個の電歪素子が等速駆動となるため、同電歪
素子の使用条件が高められ、従来のように単一の電歪素
子に駆動エネルギーが集中して、やがて破損する等の問
題が払拭される。
Since even number of electrostrictive elements are driven at constant speed, the usage conditions of the electrostrictive elements are increased, and drive energy is concentrated on a single electrostrictive element as in the past, and problems such as damage eventually occur. Is wiped out.

更に前面体にワイヤ供給用スリットを設置したことに
より、可変長のツール設定長さが可能となることに加え
て、前面体の振動の節面がほぼ軸直角となる。このた
め、相隣る振動節面をセットねじで保持することによっ
て、ツール振動振幅が、振動子の保持条件による影響を
受けない構造とすることができる。
Further, by providing a wire supply slit on the front body, a variable tool setting length is possible, and in addition, the vibration nodal surface of the front body is substantially perpendicular to the axis. Therefore, by holding the adjacent vibration node surfaces with the set screw, it is possible to provide a structure in which the tool vibration amplitude is not affected by the holding conditions of the vibrator.

〔実施例〕〔Example〕

以下図面により本発明の実施例を説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図に本発明のワイヤボンダ用超音波振動子の一実
施例を示す。
FIG. 1 shows an embodiment of an ultrasonic vibrator for a wire bonder of the present invention.

同図でツール9およびワイヤ10は第4図と同一であ
る。12は背面体、13は偶数個の中空電歪素子、14は前面
体、15は接続ねじ、16はワイヤ供給用スリット、19は振
動子ホルダ、20は前面体14の支持用セットねじ、21は超
音波振動子の振動モードである。第1図で背面体12およ
び前面体14はチタン合金製で、背面体12は第4図のBLT1
aに、前面体14は第4図1c、接続ねじ7、コーン2、接
続ねじ8およびホーン3の一体構造に対応する。
In this figure, the tool 9 and the wire 10 are the same as in FIG. 12 is a back body, 13 is an even number of hollow electrostrictive elements, 14 is a front body, 15 is a connection screw, 16 is a wire supply slit, 19 is a vibrator holder, 20 is a set screw for supporting the front body 14, 21 Is the vibration mode of the ultrasonic transducer. In FIG. 1, the rear body 12 and the front body 14 are made of titanium alloy, and the rear body 12 is the BLT1 shown in FIG.
In a, the front body 14 corresponds to the integrated structure of FIG. 1c, connecting screw 7, cone 2, connecting screw 8 and horn 3.

第1図で背面体12の長さをl1、電歪素子13の総合長さ
を2l2とすると、接続ねじ15の影響を無視して、BLTの中
空電極板17および18の呈する動アドミッタンスYmは となる。
In Fig. 1 , assuming that the length of the back body 12 is l 1 and the total length of the electrostrictive element 13 is 2 l 2 , the influence of the connecting screw 15 is ignored and the dynamic admittance exhibited by the hollow electrode plates 17 and 18 of the BLT. Ym Becomes

但し K=定数 n=1,2,3 βi=ω/Ci 素子iの波長定数 ω=2πf f=基本波周波数 Ci=素子iの音速 k=S2ρ2C2/S1ρ1C1 Si=素子iの断面積 ρi=素子iの密度 とする。However, K = constant n = 1,2,3 βi = ω / Ci wavelength constant of element i ω = 2πf f = fundamental wave frequency Ci = sound speed of element i k = S 2 ρ 2 C 2 / S 1 ρ 1 C 1 Let Si = cross-sectional area of element i ρi = density of element i.

第2図に(3)式の関係を第1図の超音波振動子に適
用した動アドミッタンス特性図を示す。
FIG. 2 shows a dynamic admittance characteristic diagram in which the relationship of equation (3) is applied to the ultrasonic transducer of FIG.

同図は本発明の効果の説明用で高調波周波数120KHz
(f=20KHzn=6)における中空電歪素子の設置位置
(背面体長さl1)とYm/K2の関係で、22,23,24は電歪素
子の総合長さ2l2がそれぞれ5mm,2.5mmおよび1mmの場合
である。
This figure is for explaining the effect of the present invention, and the harmonic frequency is 120 KHz.
The relationship between the installation position (back body length l 1 ) of the hollow electrostrictive element at (f = 20KHzn = 6) and Ym / K 2 is that 22,23,24 are 5 mm in total length 2l 2 of the electrostrictive element, respectively. For 2.5 mm and 1 mm.

同図から電歪素子の総合長さ2l2が5mmのときは、背面
体の長さl1は6.6mmのとき動アドミッタンスが極大値と
なる。
From the figure, when the total length 2l 2 of the electrostrictive element is 5 mm, the dynamic admittance has a maximum value when the length l 1 of the back body is 6.6 mm.

動アドミッタンスの極大値は(3)式から で与えられる。The maximum value of dynamic admittance is calculated from equation (3). Given in.

但し、mは0≦m<nで与えられる正の整数とする。 However, m is a positive integer given by 0 ≦ m <n.

(4)式において、m=0でl1a<6mmのときは背面体
12のねじ山が、接合ねじ15が螺合するに充分な長さにな
らない。この場合は(4)式でm=1としてl1aを求
め、それでもl1a<6のときはm=2のときのl1aを求め
以下同様にして、最初にl1a≧6となるmのときのl1aを
もって背面体の長さとする。
In formula (4), when m = 0 and l 1 a <6 mm, the back body
The 12 threads are not long enough for the mating threads 15 to mate. In this case in the same manner sought l 1 a (4) determine the l 1 a as m = 1 in formula, but when the time of l 1 a <6 of m = 2, the first l 1 a ≧ 6 Let l 1 a when m such that is the length of the back body.

中心軸を含む面内にワイヤ供給用スリット16を設置し
たことにより、前面体の振動節面はほぼ軸直角となるた
め、セットねじ20で相隣る振動節面を支持することによ
る相乗効果により、ツール先端幅は、ホルダ19の支持条
件に影響されない。
By installing the wire feeding slit 16 in the plane including the central axis, the vibrating nodal surface of the front body becomes almost orthogonal to the axis, so that by supporting the vibrating nodal surface adjacent to each other with the set screw 20, the synergistic effect is achieved. The tool tip width is not affected by the support condition of the holder 19.

更にワイヤ供給スリットは、第1図でツールの設定長
さl3が実線と鎖線のように変化してもワイヤの供給が可
能となる。
Further, the wire feed slit can feed the wire even if the set length l 3 of the tool in FIG. 1 changes like a solid line and a chain line.

第3図より本発明の効果を示す超音波振動子自由アド
ミッタンス線図と従来の超音波振動子自由アドミッタン
ス線図を示す。
FIG. 3 shows an ultrasonic oscillator free admittance diagram showing the effect of the present invention and a conventional ultrasonic oscillator free admittance diagram.

同図で25,26は第1図および第4図のそれぞれの超音
波振動子自由アドミッタンス線図である。
In the figure, reference numerals 25 and 26 are ultrasonic transducer free admittance diagrams of FIGS. 1 and 4, respectively.

第3図より本発明の超音波振動子のf0≒118.9KHz,Q≒
4663 従来の超音波振動子のf0≒60.4KHz,Q≒2237 となっている。
From FIG. 3, f 0 ≈ 118.9 KHz, Q ≈ of the ultrasonic transducer of the present invention
4663 The conventional ultrasonic transducer has f 0 ≈ 60.4 KHz and Q ≈ 2237.

Qは超音波振動子の機械的尖鋭度を表わし、同振動子
の機械的損失に反比例する数値である。
Q represents the mechanical sharpness of the ultrasonic oscillator and is a numerical value that is inversely proportional to the mechanical loss of the oscillator.

本発明の超音波振動子は、従来の振動子に比較して共
振周波数が2倍にもかかわらず、Qがほぼ2倍となって
いて低損失駆動が可能となり、実用上問題がない。若し
従来構造の振動子を120KHzに適用すると、Qは本発明の
振動子の10%程度に低下してしまい、機械的損失は10倍
となり、実用にならない。
The ultrasonic oscillator of the present invention has a resonance frequency twice as high as that of the conventional oscillator, but the Q is almost doubled to enable low-loss drive, and there is no practical problem. If the vibrator having the conventional structure is applied to 120 KHz, the Q is reduced to about 10% of that of the vibrator of the present invention, and the mechanical loss becomes 10 times, which is not practical.

〔発明の効果〕〔The invention's effect〕

本発明により、従来の超音波ボンダに比較して高い周
波数でボンディングが可能のため、ボンディング速度が
速く、ワイヤ変形量が少なく同時に被溶着チップへの損
傷が無く、信頼性の高い超音波ボンダを提供できる。ま
た、試料台上の試料が躍りにくいのでボンディング強度
のバラツキが少ない。
According to the present invention, since bonding can be performed at a higher frequency than the conventional ultrasonic bonder, the bonding speed is high, the amount of wire deformation is small, and at the same time there is no damage to the welded tip, and a highly reliable ultrasonic bonder is provided. Can be provided. In addition, since the sample on the sample table is hard to jump, there is little variation in bonding strength.

更にツール設定長さを変更しても同一振動子で対応で
きるため、作業効率の高いボンダを実現できる。
Furthermore, even if the tool setting length is changed, the same vibrator can be used, so a bonder with high work efficiency can be realized.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のワイヤボンダ用超音波振動子の一実施
例、 第2図は本発明の効果の説明用の超音波振動子の背面体
長さと動アドミッタンス特性図、 第3図は本発明の効果を示す超音波振動子自由アドミッ
タンス線図、 第4図は従来のワイヤボンダ用超音波振動子の一断面図
である。 9……ツール、10……ワイヤ、12……背面体、13……中
空電歪素子 14……前面体、15……接合ねじ、16……ワイヤ供給用ス
リット、 19……振動子ホルダ、20……セットねじ。
FIG. 1 is an embodiment of an ultrasonic vibrator for a wire bonder of the present invention, FIG. 2 is a rear body length and dynamic admittance characteristic diagram of the ultrasonic vibrator for explaining the effect of the present invention, and FIG. Ultrasonic transducer free admittance diagram showing the effect, and FIG. 4 is a sectional view of a conventional ultrasonic transducer for a wire bonder. 9 ... Tool, 10 ... Wire, 12 ... Rear body, 13 ... Hollow electrostrictive element 14 ... Front body, 15 ... Joining screw, 16 ... Wire supply slit, 19 ... Transducer holder, 20 …… Set screw.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】中空電歪素子(13)と、中空電極板(1
7),(18)を挟持する前面体(14)および背面体(1
2)と、前記中空電歪素子(13)と中空電極板(17),
(18)の中空部を貫通して前面体(1C)および背面体
(12)の中央ねじ穴にねじ結合する中心ボルト(15)か
らなるボルト締めランジュバン型超音波振動子におい
て、前面体(14)および背面体(12)の材質をチタン合
金とし、前面体(14)をワイヤボンダ用超音波振動子の
前面体(14)とコーン(2)とホーン(3)を含めて一
体構造とし、上記超音波振動子の高調波共振周波数が10
0KHz以上になるように構成したことを特長としたワイヤ
ボンダ用超音波振動子。
1. A hollow electrostrictive element (13) and a hollow electrode plate (1)
Front body (14) and back body (1) that sandwich (7), (18)
2), the hollow electrostrictive element (13) and the hollow electrode plate (17),
In the bolted Langevin type ultrasonic transducer, which comprises a central bolt (15) which penetrates the hollow portion of (18) and is screwed into the central screw hole of the front body (1C) and the rear body (12), the front body (14 ) And the back body (12) are made of titanium alloy, and the front body (14) is an integral structure including the front body (14), the cone (2) and the horn (3) of the ultrasonic transducer for wire bonder, The harmonic resonance frequency of the ultrasonic transducer is 10
Ultrasonic transducer for wire bonder characterized by being configured to be 0 KHz or higher.
【請求項2】中空電歪素子(13)の位置を超音波振動子
の呈する動アドミッタンスが、背面体(12)無負荷端か
らみて6mm以上の距離で最初に極大値となる位置近傍に
設置することを特長とした特許請求の範囲第1項に記載
のワイヤボンダ用超音波振動子。
2. The position of the hollow electrostrictive element (13) is installed near the position where the dynamic admittance exhibited by the ultrasonic transducer first reaches a maximum value at a distance of 6 mm or more when viewed from the unloaded end of the back body (12). The ultrasonic transducer for a wire bonder according to claim 1, characterized in that
【請求項3】前面体(14)の隣り合った振動の二節面
を、それぞれ複数個のセットねじ(20)で支持する構造
とした特許請求の範囲第1項に記載のワイヤボンダ用超
音波振動子。
3. The ultrasonic wave for wire bonder according to claim 1, wherein the two nodal surfaces of vibration of the front body (14) adjacent to each other are supported by a plurality of set screws (20). Oscillator.
【請求項4】前面体(14)負荷側にワイヤ供給用のスリ
ット(16)を設置した特許請求の範囲第1項に記載のワ
イヤボンダ用超音波振動子。
4. The ultrasonic vibrator for a wire bonder according to claim 1, wherein a slit (16) for supplying a wire is provided on the load side of the front body (14).
JP62302595A 1987-11-30 1987-11-30 Ultrasonic transducer for wire bonder Expired - Fee Related JP2559602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62302595A JP2559602B2 (en) 1987-11-30 1987-11-30 Ultrasonic transducer for wire bonder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62302595A JP2559602B2 (en) 1987-11-30 1987-11-30 Ultrasonic transducer for wire bonder

Publications (2)

Publication Number Publication Date
JPH01143333A JPH01143333A (en) 1989-06-05
JP2559602B2 true JP2559602B2 (en) 1996-12-04

Family

ID=17910870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62302595A Expired - Fee Related JP2559602B2 (en) 1987-11-30 1987-11-30 Ultrasonic transducer for wire bonder

Country Status (1)

Country Link
JP (1) JP2559602B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100335591B1 (en) * 1992-09-10 2002-08-24 텍사스 인스트루먼츠 인코포레이티드 Wire bonding methods and integrated circuit devices on the active circuit area of integrated circuit devices
EP1149655A3 (en) * 2000-03-02 2002-11-20 Hesse & Knipps GmbH Ultrasonic transducer

Also Published As

Publication number Publication date
JPH01143333A (en) 1989-06-05

Similar Documents

Publication Publication Date Title
US5486733A (en) Bonding apparatus
JP4545323B2 (en) Ultrasonic transducer with improved compression pressure transmission
US7757926B2 (en) Transducer assembly for a bonding apparatus
KR20040104424A (en) Ultrasonic transducer assembly
US5385288A (en) Bonding apparatus
US20070257083A1 (en) Transducer and method for mounting the same
JP6802290B2 (en) Ultrasonic oscillator and ultrasonic cleaning device using ultrasonic oscillator
US3904896A (en) Piezoelectric oscillator system
JP2559602B2 (en) Ultrasonic transducer for wire bonder
US6307299B1 (en) Method of correcting a resonance frequency of a small rotary actuator
JPH0574874A (en) Ultrasonic connection method of metallic fine wiring and device
CN2289614Y (en) Ultrasonic transducer
US20060043149A1 (en) Method of bonding and bonding apparatus for a semiconductor chip
US6653760B1 (en) Ultrasonic transducer using third harmonic frequency
KR970010769B1 (en) Bonding apparatus
JP3932286B2 (en) Bonding head and bonding apparatus having the same
JP2002067162A (en) Bonding head, and bonding device equipped with the same
JP3390497B2 (en) Ultrasonic generator and ultrasonic cleaner
JP2006198758A (en) Ultrasonic vibration table
JP2005278390A (en) Ultrasonic vibrator
JP2972790B2 (en) Broadband ultrasonic sound source for ultrasonic cleaning equipment
JP4213713B2 (en) Method of using horn, method of using horn unit, and bonding apparatus
JP2004167435A (en) Ultrasonic horn for bonding and bonding device provided with the same
JPH0888899A (en) Ultrasonic vibrator
JP7261432B1 (en) ultrasonic radiation unit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees