JP2559526C - - Google Patents
Info
- Publication number
- JP2559526C JP2559526C JP2559526C JP 2559526 C JP2559526 C JP 2559526C JP 2559526 C JP2559526 C JP 2559526C
- Authority
- JP
- Japan
- Prior art keywords
- monomer
- hydrophobic
- filler
- polymer particles
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920000642 polymer Polymers 0.000 claims description 67
- 239000002245 particle Substances 0.000 claims description 66
- 230000002209 hydrophobic Effects 0.000 claims description 52
- 239000000945 filler Substances 0.000 claims description 48
- 239000000178 monomer Substances 0.000 claims description 46
- 239000003505 polymerization initiator Substances 0.000 claims description 20
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 13
- 125000000524 functional group Chemical group 0.000 claims description 9
- 238000006460 hydrolysis reaction Methods 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 238000004811 liquid chromatography Methods 0.000 claims description 7
- 230000003301 hydrolyzing Effects 0.000 claims description 5
- 239000006185 dispersion Substances 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 238000004164 analytical calibration Methods 0.000 description 18
- 238000011088 calibration curve Methods 0.000 description 17
- 239000011247 coating layer Substances 0.000 description 17
- CSCPPACGZOOCGX-UHFFFAOYSA-N acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 14
- 230000002522 swelling Effects 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 102000004169 proteins and genes Human genes 0.000 description 13
- 108090000623 proteins and genes Proteins 0.000 description 13
- 239000000126 substance Substances 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 239000000499 gel Substances 0.000 description 10
- 238000006116 polymerization reaction Methods 0.000 description 10
- XTXRWKRVRITETP-UHFFFAOYSA-N vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 9
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 8
- 239000002202 Polyethylene glycol Substances 0.000 description 8
- OKKJLVBELUTLKV-UHFFFAOYSA-N methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 8
- 229920001223 polyethylene glycol Polymers 0.000 description 8
- 239000008213 purified water Substances 0.000 description 8
- PPBRXRYQALVLMV-UHFFFAOYSA-N styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 239000003125 aqueous solvent Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 238000004132 cross linking Methods 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 210000002356 Skeleton Anatomy 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- 239000003480 eluent Substances 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 238000010557 suspension polymerization reaction Methods 0.000 description 5
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000002612 dispersion media Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010828 elution Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000004342 Benzoyl peroxide Substances 0.000 description 3
- 229920002307 Dextran Polymers 0.000 description 3
- OMPJBNCRMGITSC-UHFFFAOYSA-N Incidol Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 3
- VUVGYHUDAICLFK-UHFFFAOYSA-N Perosmic oxide Chemical compound O=[Os](=O)(=O)=O VUVGYHUDAICLFK-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 235000019400 benzoyl peroxide Nutrition 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000005227 gel permeation chromatography Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000000379 polymerizing Effects 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- DIOQZVSQGTUSAI-UHFFFAOYSA-N Decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- VOZRXNHHFUQHIL-UHFFFAOYSA-N Glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- XJOBOFWTZOKMOH-UHFFFAOYSA-N decanoyl decaneperoxoate Chemical compound CCCCCCCCCC(=O)OOC(=O)CCCCCCCCC XJOBOFWTZOKMOH-UHFFFAOYSA-N 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920005615 natural polymer Polymers 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- ZJQIXGGEADDPQB-UHFFFAOYSA-N 1,2-bis(ethenyl)-3,4-dimethylbenzene Chemical group CC1=CC=C(C=C)C(C=C)=C1C ZJQIXGGEADDPQB-UHFFFAOYSA-N 0.000 description 1
- QLLUAUADIMPKIH-UHFFFAOYSA-N 1,2-bis(ethenyl)naphthalene Chemical compound C1=CC=CC2=C(C=C)C(C=C)=CC=C21 QLLUAUADIMPKIH-UHFFFAOYSA-N 0.000 description 1
- KVNYFPKFSJIPBJ-UHFFFAOYSA-N 1,2-diethylbenzene Chemical compound CCC1=CC=CC=C1CC KVNYFPKFSJIPBJ-UHFFFAOYSA-N 0.000 description 1
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N 1-Hexanol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 1
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2,2'-azo-bis-isobutyronitrile Substances N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N 2-hydroxyethyl 2-methylacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- OZAIFHULBGXAKX-VAWYXSNFSA-N Azobisisobutyronitrile Chemical compound N#CC(C)(C)\N=N\C(C)(C)C#N OZAIFHULBGXAKX-VAWYXSNFSA-N 0.000 description 1
- 102000000119 Beta-lactoglobulin Human genes 0.000 description 1
- 108050008461 Beta-lactoglobulin Proteins 0.000 description 1
- 229940098773 Bovine Serum Albumin Drugs 0.000 description 1
- 108091003117 Bovine Serum Albumin Proteins 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- ZQMIGQNCOMNODD-UHFFFAOYSA-N Diacetyl peroxide Chemical compound CC(=O)OOC(C)=O ZQMIGQNCOMNODD-UHFFFAOYSA-N 0.000 description 1
- KWKXNDCHNDYVRT-UHFFFAOYSA-N Dodecylbenzene Chemical compound CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N Ethylene glycol dimethacrylate Chemical compound CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229940116336 Glycol Dimethacrylate Drugs 0.000 description 1
- PHTQWCKDNZKARW-UHFFFAOYSA-N Isoamyl alcohol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 1
- 102000036913 Myoglobin Human genes 0.000 description 1
- 108010062374 Myoglobin Proteins 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N Octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 229940092253 Ovalbumin Drugs 0.000 description 1
- 108010058846 Ovalbumin Proteins 0.000 description 1
- 102000005891 Pancreatic ribonucleases Human genes 0.000 description 1
- 108020002230 Pancreatic ribonucleases Proteins 0.000 description 1
- 229940072417 Peroxidase Drugs 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 108090000437 Peroxidases Proteins 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 102000009843 Thyroglobulin Human genes 0.000 description 1
- 108010034949 Thyroglobulin Proteins 0.000 description 1
- 229960002175 Thyroglobulin Drugs 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H Tricalcium phosphate Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate Chemical class [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 102000022270 cytochrome c family Human genes 0.000 description 1
- 108091010617 cytochrome c family Proteins 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- MEGHWIAOTJPCHQ-UHFFFAOYSA-N ethenyl butanoate Chemical compound CCCC(=O)OC=C MEGHWIAOTJPCHQ-UHFFFAOYSA-N 0.000 description 1
- BLZSRIYYOIZLJL-UHFFFAOYSA-N ethenyl pentanoate Chemical compound CCCCC(=O)OC=C BLZSRIYYOIZLJL-UHFFFAOYSA-N 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 239000008079 hexane Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- IMNFDUFMRHMDMM-UHFFFAOYSA-N n-heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N o-xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- KBPLFHHGFOOTCA-UHFFFAOYSA-N octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- DBSDMAPJGHBWAL-UHFFFAOYSA-N penta-1,4-dien-3-ylbenzene Chemical compound C=CC(C=C)C1=CC=CC=C1 DBSDMAPJGHBWAL-UHFFFAOYSA-N 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000012128 staining reagent Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002345 surface coating layer Substances 0.000 description 1
- 238000010558 suspension polymerization method Methods 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N α-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、液体クロマトグラフィー用充填剤、特にゲル浸透クロマトグラフィ
ーに適した液体クロマトグラフィー用充填剤およびその製造法に関する。
(従来の技術)
各種物質の分離又は検出に液体クロマトグラフィーが使用され、生体試料から
のタンパク質の分離など、特に親水性物質の分離には、水系のゲル浸透クロマト
グラフィー(以下、GPC とする)が利用されている。GPC 法は、充填剤内部の細
孔に試料中の分子を拡散させると、小さい分子は細孔内部に入り込むため溶離時
間に遅れを生じ、大きな分子から順に溶出されるという原理に基づいて、分離を
行う方法である。
親水性物質を分離するための水系GPC に良く用いられる充填剤としては、従来
からデキストランゲル、アガロースゲル等の天然高分子ゲルがある。これらのゲ
ルはタンパク質等の非特異吸着が少なく優れた充填剤であるが、ゲルが軟質なた
め耐圧性に劣り、高速処理が不可能である。
これらの天然高分子に比べ比較的高速処理が可能な充填剤としては、架橋性重
合体ゲルからなる合成高分子系充填剤が挙げられる。架橋性重合体ゲルとしては
、ジビニルベンゼンとビニルアセテートとの共重合体およびポリエチレングリコ
ールジメタクリレートとヒドロキシエチルメタクリレートとの共重合体等がある
。上記素材でなり水系で用いられる合成高分子系充填剤は、通常、特公昭58-456
58号に開示された方法、つまり架橋性単量体および親水性単量体に重合開始剤を
加えて懸濁重合することによって調製される。或は、特開昭52-138077 号に開示
されている方法によれば、酢酸ビニル等の、加水分解反応によって水酸基を生成
し得る官能基(以下、加水分解性の基)を持つ単量体を重合し、得られた重合体
を加水分解して、更にエピクロルヒドリンで後架橋することによって充填剤が調
製される。これらの充填剤において、耐圧性を向上させるには架橋度を上げる必
要があるが、架橋部分が疎水性なので、架橋度を上げるとゲルの疎水性が増し、
タンパク質の非特異吸着が生じる。このため架橋剤量が制限され、十分な耐圧性
を得ることが難しい。更に上記方法で得られた充填剤は、重合体粒子内の全体に
親水性単量体が分散して存在するため、水性溶媒中では膨潤・収縮し易く、この
ような理由からも耐圧性が不十分である。
耐圧性に優れ、比較的高速処理が可能で分離能に優れた充填剤として、多孔性
シリカゲルの表面に化学処理がなされたシリカ系充填剤がある。しかしこの充填
剤は表面の残存シラノール基の影響によりタンパク質等の塩基性基を有する物質
を吸着する特性を有する。更にシリカゲルは酸およびアルカリで溶解するため、
溶離液のpHが3〜8に限定される。
更に、上記水系GPC 用ゲルに使用され得、比較的耐圧性に優れた充填剤として
、特開昭59-18705号、特開昭62-63856号および特開昭63-79064号に開示された、
いわゆるシード重合法によって得られる充填剤がある。この重合法は、架橋重合
体粒子に重合開始剤および単量体を含浸させて、これを懸濁重合に供し、二層構
造の粒子を得ようとする方法である。この方法において、架橋重合体粒子に含浸
させる単量体として水酸基を有する単量体を用いれば、水系GPC 用充填剤が得ら
れる。また、加水分解性の基を有する単量体を含浸させて重合し、その後加水分
解しても同様のGPC 用充填剤が得られる。しかし、得られる充填剤粒子の内部に
水酸基が存在するため、上記と同様の理由により、水系溶媒中で膨潤・収縮し易
く、従って耐圧性はなお不十分である。
(発明が解決しようとする課題)
本発明は上記従来の欠点を解決するものであり、その目的とするところは、タ
ンパク質等の親水性物質の分離に適したクロマトグラフィー用充填剤であって、
耐圧性が高く、膨潤・収縮が少なく、かつタンパク質等の非特異吸着が少ない充
填剤の製造法を提供することにある。本発明の他の目的は、上記の優れた性質を
有し、特にGPC に好適な充填剤の製造法を提供することにある。
(課題を解決するための手段)
本発明の液体クロマトグラフィー用充填剤の製造法は、予め単離された疎水性
架橋重合体粒子に重合開始剤を含浸させる工程;該疎水性架橋重合体粒子を分散
させた分散液に、加水分解反応により水酸基を生成し得る官能基を有する単量体
を添加して溶解させ、該疎水性架橋重合体粒子の表面部分で該単量体を重合させ
、該疎水性架橋重合体粒子の表面部分に、加水分解反応により水酸基を生成し得
る官能基を有する重合体の層を10〜300Åの厚さに形成する工程;および該
官能基を加水分解し、前記疎水性架橋重合体粒子表面を水酸基を有する重合体で
10〜300Åの厚さで被覆する工程を包含し、そのことにより上記目的が達成
される。
本発明の製造法で得られる充填剤は、疎水性架橋重合体粒子を骨格とし、加水
分解性の基を有する重合体で該疎水性架橋重合体粒子の表面部分が被覆された、
二層構造の重合体粒子の表面が加水分解されたものである。該疎水性架橋重合体
粒子の素材としては、疎水性架橋性単量体を(共)重合させて得られる(共)重
合体又は疎水性架橋性単量体と疎水性非架橋性単量体との共重合体が挙げられる
。これらの(共)重合体は、上記の様に本発明の充填剤の骨格部分であるから、
後述する加水分解反応において、化学反応(例えば、加水分解)しない重合体で
ある必要がある。従って素材となる上記単量体は、加水分解反応条件において、
化学反応し得る官能基を持たない単量体である。また上記の疎水性架橋重合体は
、疎水性架橋性単量体の単独重合体、或は二種以上の架橋性単量体よりなる共重
合体である。また必要に応じて、一種以上の非架橋性の単量体を添加する事も出
来る。
上記疎水性架橋性単量体としては、例えばジビニルベンゼン、ジビニルトルエ
ン、ジビニルキシレン、ジビニルナフタレン等の2個以上のビニル基を有する芳
香族系化合物が挙げられる。また上記の非架橋性の疎水性単量体としては、例え
はスチレン、メチルスチレン等のスチレン系単量体が挙げられる。上記架橋性お
よび非架橋性単量体を混合して用いる場合には、架橋性単量体が全単量体100 重
量部に対して10重量部以上、好ましくは20重量部以上となるよう使用される。
本発明において、疎水性架橋重合体粒子を被覆する重合体の素材としては、加
水分解性の基を有する単量体を重合して得られるものである。このような単量体
としては、例えば酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、吉草酸ビニル
等のカルボン酸ビニルエステル類;グリシジルメタクリレート等のグリシジル化
合物などが挙げられる。
上記加水分解性の基を有する単量体は、必要に応じて二種以上が混合して用い
られ得る。該単量体の使用量は単量体の種類によって異なるが疎水性架橋重合体
100 重量部に対して5 〜50重量部の割合である。
上記の加水分解性の基を有する単量体は、疎水性架橋重合体の表面で重合され
て該重合体を被覆するが、その被覆層の厚み10〜300Åである。該被覆層は
加水分解されて水酸基を生成するので、親水性を有するようになる。そのため被
覆層の平均的な厚みが300 Å以上になると、該被覆層部の膨潤・収縮効果が無視
できないほど大きくなり、その影響が分離能の低下、圧力の上昇と言った形で現
れるため好ましくない。また、溶離液との平衡化に時間が掛かるため分離能の低
下、分析時間の延長と言った欠点が認められるので好ましくない。更に該被覆層
は疎水性架橋重合体の表面を完全に被覆している必要がある。疎水性架橋重合体
が露出している部分があると、該部分が水系クロマトグラフィーにおける被分離
物質(タンパク質など)と接触した場合非特異的な吸着が起こる可能性があるか
らである。被覆層の観察および被覆層の平均的な厚みの測定は以下のようにして
行われる。試料とする充填剤粒子からミクロトームで1000Å以下の切片を作成す
る。該切片を、水酸基に特異的なラベル化剤又は染色試薬で処理し、透過型電子
顕微鏡で観察および写真撮影する。例えば、切片をオスミウム酸で処理すれば、
透過型電子顕微鏡観察により水酸基の分布状態、被覆層の状態および被覆層の平
均的な厚みを測定することが出来る。
次に本発明の充填剤を調製するための代表的な製造例を説明する。但し本発明
の充填剤は、下記の方法によって得られた物に限定されるものではない。
本発明のGPC 用充填剤を調製するには、まず疎水性架橋重合体粒子が調製され
る。この疎水性架橋重合体粒子は、既知の任意の水性懸濁重合法により調製され
得る。まず上記疎水性単量体(疎水性架橋性単量体および必要に応じて疎水性非
架橋性単量体)と重合開始剤とを希釈剤に溶解させる。該重合開始剤および得ら
れた疎水性架橋重合体粒子に含浸させる(後述)重合開始剤は、ラジカルを発生
する触媒であり、疎水性であれば特に限定されない。例えばベンゾイルパーオキ
サイド、アセチルパーオキサイド、クメンパーオキサイド等の有機過酸化物;ア
ゾビスイソブチロニトリル、アゾビスイソブチロアミド等のアゾ化合物などの既
知のラジカル発生触媒のいずれもが使用され得る。また上記希釈剤は多孔形成剤
として添加するもので、上記単量体を溶解させ、かつその重合体を溶解させない
有機溶媒のいずれもが使用可能である。例えば、トルエン、キシレン、ジエチル
ベンゼン、ドデシルベンゼン等の芳香族炭化水素類;ヘキサン、ヘプタン、オク
タン、デカン等の飽和炭化水素類;イソアミルアルコール、ヘキシルアルコール
、オクチルアルコール等のアルコール類が挙げられる。その使用量は何等限定さ
れないが、上記単量体混合物100 重量部に対して15〜200 重量部の割合であるこ
とが好ましい。
上記単量体混合物をポリビニルアルコール、リン酸カルシウム等の懸濁安定剤
を溶解した水相に添加し、窒素置換後攪拌しながら40〜100 ℃に加熱することに
より懸濁重合を行う。得られた重合体粒子中には希釈剤である有機溶媒が分散し
て存在するため、重合終了後に有機溶媒を除去することにより、多孔性の球状粒
子が得られる。希釈剤として上記単量体混合物と相溶性の異なる種々の有機溶媒
を使用することにより、多孔性重合体の細孔の大きさを任意に変化させることが
可能である。
次に、得られた疎水性架橋重合体粒子を単離し、単離された疎水性架橋重合体
粒子に重合開始剤を含浸させる。重合開始剤を含浸させるには、該重合開始剤を
、低沸点でかつ疎水性架橋重合体と親和性の良い溶媒に溶解させ、これに上記疎
水性架橋重合体粒子を浸漬する。このことにより重合開始剤が粒子中に浸透する
。これを必要に応じて重合開始剤の分解点以下の温度で加熱して溶媒を留去すれ
ば、その内部に重合開始剤を含有する疎水性架橋重合体粒子が得られる。この重
合開始剤含有粒子を上記加水分解性の基を有する単量体が溶解する分散媒中に分
散させ、あるいは該粒子が分散する分散媒中に加水分解性の基を有する単量体を
添加し、溶解して、窒素置換後攪拌下に加熱して重合を行う。この重合により、
加水分解性の基を有する単量体が疎水性架橋重合体粒子の表面に重合し、該粒子
を被覆する。上記の分散媒としては加水分解性の基を有する単量体を溶解する水
又は有機溶媒、或は両者の混合物が使用され得る。分散媒には疎水性架橋重合体
の分散性を安定させるため、カルボキシメチルセルロース、ポリビニルアルコー
ルなどの分散安定剤を添加することもできる。重合の温度及び時間は、反応させ
る加水分解性の基を有する単量体の種類と重合開始剤の種類によっても異なるが
、40〜100 ℃で0.5 〜20時間程度である。以上の方法により、上記の二層構造の
重合体粒子が調製される。
上記方法で得られた重合体粒子を熱水、有機溶媒等で十分洗浄し、粒子に含有
されている、或は付着している懸濁安定剤、溶媒、残存単量体等を除去する。得
られた重合体粒子を酸触媒又はアルカリ触媒により加水分解を行う事により、粒
子表面の被覆層に存在する加水分解性の官能基が加水分解されて水酸基となる。
例えば加水分解性の基を有する単量体として酢酸ビニルを用いた場合、重合体粒
子を水酸化ナトリウムの15〜25重量%メタノール溶液中で60〜80℃の温度で4 〜
10時間反応させることによって粒子表面の-O-COCH3基は水酸基となる。
加水分解反応後、重合体粒子を濾取し、数回洗浄して乾燥し、更に必要に応じ
て粒子を分級することにより、GPC 用の充填剤が得られる。
本発明の充填剤は疎水性架橋重合体を骨格とし、水酸基を有する重合体で該疎
水性架橋重合体の表面部分が被覆された二層構造の重合体粒子である。骨格部分
として架橋度の高い重合体を用いることによって、機械的強度が極めて大きく耐
圧性に優れた液体クロマトグラフィー用充填剤を得ることができる。この充填剤
の骨格部分には親水性基が存在しないため、膨潤および収縮の度合が極めて小さ
い。表面は水酸基を有する親水性の重合体で被覆されているためタンパク質等の
非特異吸着がなく、GPC 用充填剤として好適である。この充填剤は広いpH範囲に
おいて使用することが可能である。更に上記のように耐圧性が大きく、膨潤・収
縮の度合が極めて低いため、粒径の微小化が図れ、その結果高精度での分離が可
能となる。高圧条件下での使用が可能なため、迅速分析がなされ得る。
(実施例)
以下に本発明を実施例につき説明する。
以下の実施例および比較例において得られた充填剤の物性測定および性能評価の
方法は次の通りである。
「被覆層の平均厚さの測定方法」
充填剤に用いる被覆重合体粒子をエポキシ樹脂に包埋した後、Reichert-Jung
社製ミクロトームULTRACUTE を用いて厚さ約900 Åの切片を作成する。得られた
切片を、オスミウム酸溶液(電子顕微鏡用、和光純薬工業(株)製)で染色し、日
本電子(株)製透過型電子顕微鏡JEM100S にて観察・写真撮影して、水酸基の分布
状態および被覆層の平均厚さの測定をした。
「充填剤の評価方法」
充填剤を内径7.5mm および長さ500mm のステンレス製カラムに充填し、耐圧性
および水に対する膨潤性を調べた。耐圧性はカラムに精製水を流し、流速を変え
て流速と圧力損失との関係より測定した。膨潤性は、乾燥状態と精製水に浸漬し
た状態の粒径の違いを、遠心沈降式粒度分布測定装置SA-CP3((株)島津製作所製
)で測定することにより評価した。
更に、分子量既知の標準サンプルを用いて較正曲線を作成し排除限界分子量(
以下、MLimと表わす)を求めた。GPC における較正曲線とは被分離物質の分子量
とクロマトグラムにおける溶出容量との関係を表わす曲線であり、第1図に示す
ように縦軸に被分離物質(ポリマーまたはオリゴマー)の分子量(M)の対数を、
横軸に溶出容量(Ve)を目盛ったグラフ上にプロットして得られる曲線である。第
1図で傾斜した直線の延長と横軸に平行な線の延長が交わる点の縦軸の値が、排
除限界分子量MLimである。較正曲線作成時の分析条件を以下に示す。
カラム ステンレス製内径 7.5mm
長さ 500mm
液体クロマトグラフ
積水化学工業(株)製
液体クロマトグラフシステム SSLC-20
サンプル Sigma 社製 デキストラン 0.5% 水溶液
和光純薬工業(株)製
ポリエチレングリコール 0.5%水溶液
流速 1.0 ml/ 分
溶離液 精製水
検出器 昭和電工(株)製
示差屈折計SE-51
各実施例のGPC 用充填剤についてMLimを求めた。
更に、50mMリン酸緩衝液を溶離液として各種タンパク質のGPC 分析を行い、較正
曲線を描いた。
実施例1
疎水性架橋重合体粒子として積水化学工業(株)製ポリスチレン系ゲルHSG-50 2
00g を用い、これをデカノイルパーオキサイド(重合開始剤)0.5gが溶解してい
るアセトン1lに浸漬して該重合開始剤を含浸させた。次に、アセトンを20℃に
おいて減圧下で留去した。50%メタノール水溶液2lに上記の含浸処理した疎水
性架橋重合体を分散させ、攪拌しながら酢酸ビニル(加水分解性の基を有する単
量体)50gを添加し、窒素置換後65℃で10時間重合反応を行った。生成物を熱水お
よびアセトンで順次洗浄し、乾燥した。得られた微小のポリマ一粒子150gを、水
酸化ナトリウムの20重量%メタノール溶液500 ml中に添加し、75℃にて5 時間加
熱してポリ酢酸ビニルのエステル部分を加水分解した。反応混合物を室温に冷却
した後、重合体粒子を濾取して、数回洗浄し乾燥した。
得られたポリマー粒子を、日清エンジニアリング(株)製空気分級機ターボクラ
シファイアTC-15Nにより分級して粒径が8 〜10μmの粒子を集め、充填剤を得た
。これを内径7.5mm および長さ500mm のステンレス製カラムに充填した。充填は
精製水120 mlに充填剤15g を取り5 分間攪拌した後、2.0 ml/ 分で定流量充填す
る
ことにより行った。
上記の方法により耐圧性及び膨潤性の評価を行った。耐圧性評価においては、
150kg/cm2まで圧力損失が流速と比例した。膨潤性試験を行ったところ、乾燥状
態と精製水に浸漬した状態での粒径の違いはなく、水系溶媒中で膨潤しないこと
がわかった。またオスミウム酸染色した後、透過型電子顕微鏡観察・写真撮影し
て、被覆層の平均厚さの測定をしたところ約50Åであることがわかった。
更に上記の評価方法に従って、較正曲線を作成した。得られた較正曲線を第2
図に示す。MLimは5.0 ×105であった。ここで第2図および後述の第4図、第6
図、第7図の較正曲線におけるプロット1〜6はデキストランサンプルを用いて
得られた結果であり、各デキストランの分子量は、1が2,000,000 、2が500,00
0、3が100,000 、4が70,000、5が40,000、6が10,000である。プロット7〜1
0はポリエチレングリコールサンプルを用いて得られた結果であり、各分子量は
、7が10,000、8が6,000、9が2,000、10が600 である。
種々のタンパク質(Sigma社製)の分析を行った結果、得られた較正曲線を第3
図に示す。ここで第3図および後述の第5図におけるプロット11〜20はそれぞれ
、11はチログロブリン(分子量660,000、以下括弧内は分子量を示す)、12はγ-
グロブリン(156,000)、13は牛血清アルブミン(67,000)、14はオブアルブミン(4
3,000)、15はペルオキシダーゼ(40,200)、16はβ- ラクトグロブリン(35,000)、
17はミオグロビン(16,900)、18はリボヌクレアーゼA(13,700)、19はチトクロー
ムC(12,400)、20はグリシン4量体(246)を用いて得られた結果である。
実施例2
スチレン(疎水性非架橋性単量体)100g、ジビニルベンゼン(疎水性架橋性単
量体)200gおよびベンゾイルパーオキサイド(重合開始剤)1g をトルエン(希
釈剤)200gに溶解させた。これを4%ポリビニルアルコール水溶液2.5lに添加し
て、攪拌しながら調粒した後、窒素置換下で80℃に加熱し懸濁重合を行った。80
℃で8時間重合した後、生成物を熱水およびアセトンで順次洗浄し、乾燥して微
小の疎水性架橋重合体粒子を得た。
この疎水性架橋重合体粒子200gをベンゾイルパーオキサイド(重合開始剤)0.
5gが溶解しているアセトン1lに浸漬して該重合開始剤を含浸させた。次に、ア
セトンを20℃において減圧下で留去した。50%メタノール水溶液2lに上記の含
浸処理した疎水性架橋重合体を懸濁させ、攪拌しながらグリシジルメタクリレー
ト(加水分解性の基を有する単量体)50g を添加し、窒素置換後80℃で10時間重
合反応を行った。生成物を熱水およびアセトンで順次洗浄し、乾燥した。このポ
リマー粒子を実施例1と同様に加水分解、分級および充填して評価した。
その結果、耐圧性については150kg/cm2まで圧力損失が流速と比例した。膨潤
性試験を行ったところ、乾燥状態と精製水に浸漬した状態での粒径の違いはなく
、水系溶媒中で膨潤しないことがわかった。
顕微鏡観察・写真撮影して、被覆層の平均厚さの測定をしたところ約100 Åで
あることがわかった。またMLimは1.0 ×105であった。得られた較正曲線を第4
図に、そしてタンパク質の分析結果を第5図に示す。
比較例1
スチレン100g、ジビニルベンゼン200g、酢酸ビニル(加水分解性の基を有する
単量体)70g、デカノイルパーオキサイド1gをトルエン200gに溶解し、4%ポリビニ
ルアルコール水溶液2.5lに添加して、攪拌しながら調粒した後65℃に加熱し、
懸濁重合した。65℃で10時間重合した後、生成物を実施例1と同様の操作により
加水分解、分級、充填し評価した。
実施例1と同様の評価を行った結果、耐圧性については80kg/cm2まで圧力損失
は流速と比例した。膨潤性試験を行ったところ、平均粒径が9.2μmから12.5μ
mに変化し充填剤の膨潤の度合が高いことがわかった。また染色後の顕微鏡観察
・写真撮影により、被覆層の平均厚さの測定をしたところ、水酸基は粒子内部に
も一様に分布していた。較正曲線を描いてMLimを求めようとしたところ、ポリエ
チレングリコールについては分子量の大きいものが後に溶出される結果となった
。これは充填剤表面が疎水性の為に起こった、ポリエチレングリコールと充填剤
との疎水性相互作用によるものと思われる。ポリエチレングリコールは分子量が
大きいほど疎水性が高く、従って充填剤との疎水性相互作用も強くなるためと考
えられる。得られた較正曲線を第6図に示す。
比較例2
疎水性架橋重合体粒子として積水化学工業(株)製ポリスチレン系ゲルHSG-50 2
00
g を用い、加水分解性の基を有する単量体として酢酸ビニル300gを用いた以外は
実施例1と同様に操作して充填剤を得、その評価を行った。
その結果、耐圧性については350kg/cm2まで圧力損失と流速が比例した。膨潤
性試験を行ったところ乾燥状態と精製水に浸漬した状態での粒径の違いはなく、
水系溶媒中で膨潤しないことがわかった。
また染色後の顕微鏡観察・写真撮影により、被覆層の平均厚さの測定をしたと
ころ約400 Åであった。また較正曲線を描いてMLimを求めようとしたところ、各
分子量の試料を分離する事が出来なかった。これは表面被覆層が厚くなり過ぎ、
充填剤の細孔をほとんど塞いでしまったためと思われる。得られた較正曲線を第
7図に示す。
比較例3
疎水性架橋重合体粒子として積水化学工業(株)製ポリスチレン系ゲルHSG-50 2
00g を用い、加水分解性の基を有する単量体としてて酢酸ビニル10g を用いた以
外は実施例1と同様に操作して充填剤を得、その評価を行った。
その結果、耐圧性については350kg/cm2まで圧力損失と流速が比例した。膨潤
性試験を行ったところ乾燥状態と精製水に浸漬した状態での粒径の違いはなく、
水系溶媒中で膨潤しない事がわかった。また染色後の顕微鏡観察・写真撮影によ
り、被覆層の平均厚さの測定をしたところ、約8 Åであり、一部被覆していない
箇所が見られた。また較正曲線を描いてMLimを求めようとしたところ、ポリエチ
レングリコールについて分子量の大きいものが後に溶出される結果となった。こ
れは充填剤表面が疎水性のために起こった、ポリエチレングリコールと充填剤と
の疎水性相互作用によるものと思われる。得られた較正曲線は第6図と同様であ
った。
(発明の効果)
本発明によれば、このように耐圧性に優れ、かつ膨潤・収縮が少なく、タンパ
ク質の非特異的吸着がない水系の液体クロマトグラフィー用充填剤が得られる。
このような充填剤は、GPC 用の充填剤として各種親水性物質の単離もしくは分析
に広範囲に利用され得る。Description: TECHNICAL FIELD The present invention relates to a packing material for liquid chromatography, particularly a packing material for liquid chromatography suitable for gel permeation chromatography, and a method for producing the packing material. (Prior art) Liquid chromatography is used for separation or detection of various substances, and aqueous gel permeation chromatography (hereinafter referred to as GPC) for separation of hydrophilic substances such as separation of proteins from biological samples. Is used. The GPC method is based on the principle that when molecules in a sample are diffused into the pores inside the packing material, small molecules enter the pores, causing a delay in the elution time, and eluting the larger molecules in order. How to do. As a filler often used for aqueous GPC for separating a hydrophilic substance, a natural polymer gel such as dextran gel and agarose gel has been conventionally used. These gels are excellent fillers with little non-specific adsorption of proteins and the like, but are inferior in pressure resistance due to the softness of the gels, making high-speed processing impossible. Examples of fillers that can be processed at a relatively high speed as compared with these natural polymers include synthetic polymer fillers composed of a crosslinkable polymer gel. Examples of the crosslinkable polymer gel include a copolymer of divinylbenzene and vinyl acetate and a copolymer of polyethylene glycol dimethacrylate and hydroxyethyl methacrylate. Synthetic polymer-based fillers made of the above materials and used in aqueous systems are usually
It is prepared by the method disclosed in No. 58, that is, suspension polymerization by adding a polymerization initiator to a crosslinkable monomer and a hydrophilic monomer. Alternatively, according to the method disclosed in JP-A-52-138077, a monomer having a functional group capable of forming a hydroxyl group by a hydrolysis reaction (hereinafter referred to as a hydrolyzable group) such as vinyl acetate Is polymerized, the obtained polymer is hydrolyzed, and further post-crosslinked with epichlorohydrin to prepare a filler. In these fillers, it is necessary to increase the degree of cross-linking to improve pressure resistance, but since the cross-linking portion is hydrophobic, increasing the degree of cross-linking increases the hydrophobicity of the gel,
Non-specific adsorption of proteins occurs. For this reason, the amount of the crosslinking agent is limited, and it is difficult to obtain sufficient pressure resistance. Furthermore, the filler obtained by the above method is easily swelled and shrunk in an aqueous solvent because the hydrophilic monomer is dispersed throughout the polymer particles, and for this reason the pressure resistance is also high. Not enough. As a filler excellent in pressure resistance, capable of relatively high-speed processing, and excellent in separation ability, there is a silica-based filler obtained by chemically treating the surface of porous silica gel. However, this filler has a property of adsorbing a substance having a basic group such as a protein due to the effect of residual silanol groups on the surface. Furthermore, silica gel dissolves in acids and alkalis,
The pH of the eluent is limited to 3-8. Further, as a filler which can be used in the above-mentioned gel for aqueous GPC and has relatively excellent pressure resistance, disclosed in JP-A-59-18705, JP-A-62-63856 and JP-A-63-79064. ,
There are fillers obtained by a so-called seed polymerization method. This polymerization method is a method in which a crosslinked polymer particle is impregnated with a polymerization initiator and a monomer, and is subjected to suspension polymerization to obtain particles having a two-layer structure. In this method, when a monomer having a hydroxyl group is used as a monomer to be impregnated in the crosslinked polymer particles, an aqueous GPC filler is obtained. Further, the same filler for GPC can be obtained by impregnating with a monomer having a hydrolyzable group, polymerizing, and then hydrolyzing. However, since a hydroxyl group is present inside the obtained filler particles, the filler particles are easily swelled and shrunk in an aqueous solvent for the same reason as described above, and thus the pressure resistance is still insufficient. (Problems to be Solved by the Invention) The present invention solves the above-mentioned conventional disadvantages, and an object of the present invention is to provide a packing material for chromatography suitable for separating hydrophilic substances such as proteins.
An object of the present invention is to provide a method for producing a filler having high pressure resistance, little swelling / shrinkage, and little nonspecific adsorption of proteins and the like. Another object of the present invention is to provide a method for producing a filler having the above excellent properties, and particularly suitable for GPC. (Means for Solving the Problems) The method for producing a packing material for liquid chromatography of the present invention comprises a step of impregnating a previously isolated hydrophobic crosslinked polymer particle with a polymerization initiator; In the dispersion in which is dispersed, a monomer having a functional group capable of generating a hydroxyl group by a hydrolysis reaction is added and dissolved, and the monomer is polymerized on the surface portion of the hydrophobic cross-linked polymer particles, Forming a layer of a polymer having a functional group capable of generating a hydroxyl group by a hydrolysis reaction on the surface portion of the hydrophobic crosslinked polymer particles to a thickness of 10 to 300 °; and hydrolyzing the functional group; A step of coating the surface of the hydrophobic crosslinked polymer particles with a polymer having a hydroxyl group in a thickness of 10 to 300 °, thereby achieving the above object. The filler obtained by the production method of the present invention has a hydrophobic crosslinked polymer particle as a skeleton, and a surface portion of the hydrophobic crosslinked polymer particle is coated with a polymer having a hydrolyzable group.
The surface of the polymer particles having a two-layer structure is hydrolyzed. As a material of the hydrophobic crosslinked polymer particles, a (co) polymer obtained by (co) polymerizing a hydrophobic crosslinkable monomer or a hydrophobic crosslinkable monomer and a hydrophobic non-crosslinkable monomer And copolymers thereof. Since these (co) polymers are the skeleton portion of the filler of the present invention as described above,
It is necessary that the polymer does not undergo a chemical reaction (for example, hydrolysis) in a hydrolysis reaction described later. Therefore, the monomer as a material, under the hydrolysis reaction conditions,
It is a monomer without a functional group that can react chemically. The above-mentioned hydrophobic crosslinked polymer is a homopolymer of a hydrophobic crosslinkable monomer or a copolymer composed of two or more kinds of crosslinkable monomers. If necessary, one or more non-crosslinkable monomers can be added. Examples of the hydrophobic crosslinkable monomer include aromatic compounds having two or more vinyl groups such as divinylbenzene, divinyltoluene, divinylxylene, and divinylnaphthalene. Examples of the non-crosslinkable hydrophobic monomer include styrene monomers such as styrene and methylstyrene. When the crosslinkable and non-crosslinkable monomers are used as a mixture, the crosslinkable monomer is used in an amount of 10 parts by weight or more, preferably 20 parts by weight or more based on 100 parts by weight of the total monomers. Is done. In the present invention, the polymer material covering the hydrophobic crosslinked polymer particles is obtained by polymerizing a monomer having a hydrolyzable group. Examples of such monomers include vinyl carboxylate esters such as vinyl acetate, vinyl propionate, vinyl butyrate, and vinyl valerate; and glycidyl compounds such as glycidyl methacrylate. The monomers having a hydrolyzable group may be used as a mixture of two or more as necessary. The amount of the monomer used depends on the type of the monomer, but the hydrophobic cross-linked polymer
The ratio is 5 to 50 parts by weight based on 100 parts by weight. The monomer having a hydrolyzable group is polymerized on the surface of the hydrophobic cross-linked polymer to coat the polymer, and the thickness of the coating layer is 10 to 300 mm. Since the coating layer is hydrolyzed to generate a hydroxyl group, it becomes hydrophilic. Therefore, when the average thickness of the coating layer is 300 mm or more, the swelling / shrinking effect of the coating layer portion becomes so large that it cannot be ignored, and the effect appears in the form of a decrease in separation ability and an increase in pressure. Absent. In addition, it takes a long time to equilibrate with the eluent, and disadvantages such as a decrease in resolution and an increase in analysis time are not preferable. Further, the coating layer needs to completely cover the surface of the hydrophobic cross-linked polymer. This is because if there is a portion where the hydrophobic cross-linked polymer is exposed, non-specific adsorption may occur when the portion comes into contact with a substance to be separated (such as a protein) in aqueous chromatography. The observation of the coating layer and the measurement of the average thickness of the coating layer are performed as follows. From the filler particles used as a sample, make a section of 1000 mm or less with a microtome. The section is treated with a hydroxyl group-specific labeling agent or staining reagent, and observed and photographed with a transmission electron microscope. For example, if a section is treated with osmic acid, the distribution of hydroxyl groups, the state of the coating layer, and the average thickness of the coating layer can be measured by transmission electron microscopy. Next, a typical production example for preparing the filler of the present invention will be described. However, the filler of the present invention is not limited to the one obtained by the following method. In preparing the filler for GPC of the present invention, first, hydrophobic crosslinked polymer particles are prepared. The hydrophobic crosslinked polymer particles can be prepared by any known aqueous suspension polymerization method. First, the above-mentioned hydrophobic monomer (hydrophobic crosslinking monomer and, if necessary, hydrophobic non-crosslinking monomer) and a polymerization initiator are dissolved in a diluent. The polymerization initiator and the polymerization initiator to be impregnated into the obtained hydrophobic crosslinked polymer particles (described later) are catalysts that generate radicals, and are not particularly limited as long as they are hydrophobic. Any of known radical generating catalysts such as organic peroxides such as benzoyl peroxide, acetyl peroxide and cumene peroxide; azo compounds such as azobisisobutyronitrile and azobisisobutyramide can be used. . The diluent is added as a pore-forming agent, and any organic solvent that dissolves the monomer and does not dissolve the polymer can be used. For example, aromatic hydrocarbons such as toluene, xylene, diethylbenzene and dodecylbenzene; saturated hydrocarbons such as hexane, heptane, octane and decane; and alcohols such as isoamyl alcohol, hexyl alcohol and octyl alcohol. The amount used is not particularly limited, but is preferably 15 to 200 parts by weight based on 100 parts by weight of the monomer mixture. The above monomer mixture is added to an aqueous phase in which a suspension stabilizer such as polyvinyl alcohol, calcium phosphate or the like is dissolved. After the replacement with nitrogen, the mixture is heated to 40 to 100 ° C. with stirring to carry out suspension polymerization. Since an organic solvent as a diluent is dispersed in the obtained polymer particles, porous spherical particles are obtained by removing the organic solvent after the polymerization. By using various organic solvents having different compatibility with the monomer mixture as a diluent, it is possible to arbitrarily change the pore size of the porous polymer. Next, the obtained hydrophobic crosslinked polymer particles are isolated, and the isolated hydrophobic crosslinked polymer particles are impregnated with a polymerization initiator. In order to impregnate the polymerization initiator, the polymerization initiator is dissolved in a solvent having a low boiling point and a good affinity for the hydrophobic crosslinked polymer, and the hydrophobic crosslinked polymer particles are immersed in the solution. This allows the polymerization initiator to penetrate into the particles. If necessary, this is heated at a temperature below the decomposition point of the polymerization initiator to distill off the solvent, whereby hydrophobic crosslinked polymer particles containing the polymerization initiator therein can be obtained. The polymerization initiator-containing particles are dispersed in a dispersion medium in which the monomer having a hydrolyzable group is dissolved, or a monomer having a hydrolyzable group is added to a dispersion medium in which the particles are dispersed. Then, the mixture is dissolved, replaced with nitrogen, and heated under stirring to carry out polymerization. By this polymerization,
A monomer having a hydrolyzable group is polymerized on the surface of the hydrophobic cross-linked polymer particle, and coats the particle. As the dispersion medium, water or an organic solvent that dissolves a monomer having a hydrolyzable group, or a mixture of both can be used. In order to stabilize the dispersibility of the hydrophobic crosslinked polymer, a dispersion stabilizer such as carboxymethylcellulose and polyvinyl alcohol can be added to the dispersion medium. The polymerization temperature and time vary depending on the type of the monomer having a hydrolyzable group to be reacted and the type of the polymerization initiator, but it is about 0.5 to 20 hours at 40 to 100 ° C. By the above method, the polymer particles having the above two-layer structure are prepared. The polymer particles obtained by the above method are sufficiently washed with hot water, an organic solvent, or the like to remove the suspension stabilizer, solvent, residual monomer, and the like contained in or attached to the particles. By hydrolyzing the obtained polymer particles with an acid catalyst or an alkali catalyst, the hydrolyzable functional groups present in the coating layer on the particle surface are hydrolyzed to hydroxyl groups.
For example, when vinyl acetate is used as the monomer having a hydrolyzable group, the polymer particles are prepared in a 15 to 25% by weight methanol solution of sodium hydroxide at a temperature of 60 to 80 ° C. for 4 to 4 hours.
By reacting for 10 hours, the —O—COCH 3 group on the particle surface becomes a hydroxyl group. After the hydrolysis reaction, the polymer particles are collected by filtration, washed several times, dried and, if necessary, classified to obtain a filler for GPC. The filler of the present invention is a two-layer polymer particle having a hydrophobic cross-linked polymer as a skeleton and a surface group of the hydrophobic cross-linked polymer coated with a polymer having a hydroxyl group. By using a polymer having a high degree of cross-linking as the skeleton portion, a packing material for liquid chromatography having extremely high mechanical strength and excellent pressure resistance can be obtained. Since there is no hydrophilic group in the skeleton portion of this filler, the degree of swelling and shrinking is extremely small. Since the surface is coated with a hydrophilic polymer having a hydroxyl group, it has no non-specific adsorption of proteins and the like, and is suitable as a filler for GPC. This filler can be used in a wide pH range. Further, as described above, since the pressure resistance is large and the degree of swelling / shrinking is extremely low, the particle size can be reduced, and as a result, separation with high accuracy is possible. Because it can be used under high pressure conditions, rapid analysis can be performed. (Example) Hereinafter, the present invention will be described with reference to examples. The methods for measuring the physical properties and evaluating the performance of the fillers obtained in the following Examples and Comparative Examples are as follows. "Measurement method of average thickness of coating layer" After embedding coated polymer particles used for filler in epoxy resin, Reichert-Jung
Using a microtome ULTRACUTE made by the company, make a section about 900 mm thick. The obtained section was stained with an osmic acid solution (for electron microscope, manufactured by Wako Pure Chemical Industries, Ltd.), observed and photographed with a transmission electron microscope JEM100S manufactured by JEOL Ltd., and the distribution of hydroxyl groups was determined. The condition and the average thickness of the coating layer were measured. "Evaluation Method of Filler" The filler was packed in a stainless steel column having an inner diameter of 7.5 mm and a length of 500 mm, and pressure resistance and swelling property with water were examined. The pressure resistance was measured by flowing purified water through the column, changing the flow rate, and measuring the relationship between the flow rate and the pressure loss. The swelling property was evaluated by measuring the difference in particle size between a dry state and a state immersed in purified water using a centrifugal sedimentation type particle size distribution analyzer SA-CP3 (manufactured by Shimadzu Corporation). Furthermore, a calibration curve was prepared using a standard sample having a known molecular weight, and the exclusion limit molecular weight (
Hereinafter, it is referred to as MLim). The calibration curve in GPC is a curve showing the relationship between the molecular weight of the substance to be separated and the elution volume in the chromatogram. As shown in FIG. 1, the vertical axis indicates the molecular weight (M) of the substance to be separated (polymer or oligomer). Logarithm,
It is a curve obtained by plotting the elution volume (Ve) on a horizontal axis on a graph. In FIG. 1, the value on the vertical axis at the point where the extension of the inclined straight line and the extension of the line parallel to the horizontal axis intersect is the exclusion limit molecular weight MLim. The analysis conditions for preparing the calibration curve are shown below. Column Stainless steel inner diameter 7.5 mm Length 500 mm Liquid chromatograph Liquid chromatograph system manufactured by Sekisui Chemical Co., Ltd. SSLC-20 sample Dextran 0.5% aqueous solution manufactured by Sigma 0.5% aqueous solution of polyethylene glycol manufactured by Wako Pure Chemical Industries, Ltd. Flow rate 1.0 ml / Min Eluent Purified water Detector MLim was determined for the GPC packing material of each example by differential refractometer SE-51 manufactured by Showa Denko KK Further, GPC analysis of various proteins was performed using 50 mM phosphate buffer as an eluent, and a calibration curve was drawn. Example 1 Polystyrene-based gel HSG-50 2 manufactured by Sekisui Chemical Co., Ltd. was used as hydrophobic cross-linked polymer particles.
This was immersed in 1 liter of acetone in which 0.5 g of decanoyl peroxide (polymerization initiator) was dissolved to impregnate the polymerization initiator. Then the acetone was distilled off at 20 ° C. under reduced pressure. Disperse the impregnated hydrophobic cross-linked polymer in 2 liters of a 50% aqueous methanol solution, add 50 g of vinyl acetate (monomer having a hydrolyzable group) with stirring, and replace with nitrogen for 10 hours at 65 ° C. A polymerization reaction was performed. The product was washed successively with hot water and acetone and dried. 150 g of the obtained fine polymer particles were added to 500 ml of a 20 wt% methanol solution of sodium hydroxide, and heated at 75 ° C. for 5 hours to hydrolyze the ester portion of polyvinyl acetate. After cooling the reaction mixture to room temperature, the polymer particles were collected by filtration, washed several times and dried. The obtained polymer particles were classified using an air classifier Turbo Classifier TC-15N manufactured by Nisshin Engineering Co., Ltd. to collect particles having a particle size of 8 to 10 μm to obtain a filler. This was packed in a stainless steel column having an inner diameter of 7.5 mm and a length of 500 mm. Filling was performed by taking 15 g of the filler in 120 ml of purified water, stirring the mixture for 5 minutes, and filling the mixture at a constant flow rate of 2.0 ml / min. The pressure resistance and the swelling property were evaluated by the above methods. In the evaluation of pressure resistance,
The pressure loss was proportional to the flow rate up to 150 kg / cm 2 . When a swelling test was performed, it was found that there was no difference in particle size between the dried state and the state immersed in purified water, and it was found that the particles did not swell in an aqueous solvent. After staining with osmic acid, the film was observed and photographed with a transmission electron microscope, and the average thickness of the coating layer was measured to be about 50 °. Further, a calibration curve was prepared according to the above evaluation method. The obtained calibration curve is
Shown in the figure. MLim was 5.0 × 10 5 . Here, FIG. 2 and FIGS.
The plots 1 to 6 in the calibration curve of FIG. 7 are the results obtained using the dextran sample, and the molecular weight of each dextran is 2,000,000 for 1 and 500,00 for 2
0, 3 is 100,000, 4 is 70,000, 5 is 40,000, and 6 is 10,000. Plot 7-1
0 is the result obtained using the polyethylene glycol sample, and the molecular weights are 7,000 for 7, 7 for 6,000, 9 for 2,000, and 10 for 600. As a result of analyzing various proteins (manufactured by Sigma), the obtained calibration curve
Shown in the figure. Here, plots 11 to 20 in FIG. 3 and FIG. 5 to be described later are respectively thyroglobulin (molecular weight: 660,000; hereinafter, the molecular weight is shown in parentheses), and 12 is γ-.
Globulin (156,000), 13 is bovine serum albumin (67,000), 14 is ovalbumin (4
3,000), 15 is peroxidase (40,200), 16 is β-lactoglobulin (35,000),
17 is the result obtained using myoglobin (16,900), 18 is the result obtained using ribonuclease A (13,700), 19 is the result obtained using cytochrome C (12,400), and 20 is the result obtained using glycine tetramer (246). Example 2 100 g of styrene (hydrophobic non-crosslinkable monomer), 200 g of divinylbenzene (hydrophobic crosslinkable monomer) and 1 g of benzoyl peroxide (polymerization initiator) were dissolved in 200 g of toluene (diluent). This was added to 2.5 liters of a 4% aqueous solution of polyvinyl alcohol, and the resulting mixture was sized with stirring, and then heated to 80 ° C. under nitrogen substitution to carry out suspension polymerization. 80
After polymerization at 8 ° C. for 8 hours, the product was sequentially washed with hot water and acetone, and dried to obtain fine hydrophobic crosslinked polymer particles. 200 g of the hydrophobic cross-linked polymer particles were treated with benzoyl peroxide (polymerization initiator) 0.
The polymerization initiator was impregnated by immersion in 1 liter of acetone in which 5 g was dissolved. Then the acetone was distilled off at 20 ° C. under reduced pressure. The impregnated hydrophobic crosslinked polymer was suspended in 2 liters of a 50% aqueous methanol solution, and 50 g of glycidyl methacrylate (monomer having a hydrolyzable group) was added thereto with stirring. The polymerization reaction was performed for an hour. The product was washed successively with hot water and acetone and dried. The polymer particles were hydrolyzed, classified and filled in the same manner as in Example 1 and evaluated. As a result, as for the pressure resistance, the pressure loss was proportional to the flow velocity up to 150 kg / cm 2 . When a swelling test was performed, it was found that there was no difference in particle size between the dried state and the state immersed in purified water, and it was found that the particles did not swell in an aqueous solvent. Microscopic observation and photography and measurement of the average thickness of the coating layer revealed that the average thickness was about 100 mm. MLim was 1.0 × 10 5 . The obtained calibration curve is
The figure and the results of the protein analysis are shown in FIG. Comparative Example 1 100 g of styrene, 200 g of divinylbenzene, 70 g of vinyl acetate (a monomer having a hydrolyzable group) and 1 g of decanoyl peroxide were dissolved in 200 g of toluene, and added to 2.5 l of a 4% aqueous solution of polyvinyl alcohol. After granulating with stirring, heat to 65 ° C,
Suspension polymerization was performed. After polymerization at 65 ° C. for 10 hours, the product was hydrolyzed, classified, filled and evaluated in the same manner as in Example 1. As a result of performing the same evaluation as in Example 1, the pressure loss was proportional to the flow velocity up to 80 kg / cm 2 for the pressure resistance. When the swelling test was performed, the average particle size was 9.2 μm to 12.5 μm.
m and the degree of swelling of the filler was found to be high. When the average thickness of the coating layer was measured by microscopic observation and photographing after staining, the hydroxyl groups were uniformly distributed inside the particles. An attempt to obtain MLim by drawing a calibration curve showed that polyethylene glycol having a higher molecular weight was eluted later. This is thought to be due to the hydrophobic interaction between the polyethylene glycol and the filler caused by the hydrophobicity of the filler surface. It is considered that the higher the molecular weight of polyethylene glycol, the higher the hydrophobicity, and therefore the stronger the hydrophobic interaction with the filler. The resulting calibration curve is shown in FIG. Comparative Example 2 Polystyrene gel HSG-50 2 manufactured by Sekisui Chemical Co., Ltd. as hydrophobic crosslinked polymer particles
A filler was obtained and evaluated in the same manner as in Example 1 except that 100 g of vinyl acetate was used as a monomer having a hydrolyzable group. As a result, as for the pressure resistance, the pressure loss and the flow velocity were proportional to 350 kg / cm 2 . When the swelling test was performed, there was no difference in particle size between the dried state and the state immersed in purified water.
It was found that it did not swell in aqueous solvents. Further, the average thickness of the coating layer was measured by microscopic observation and photographing after dyeing and found to be about 400 mm. In addition, when trying to obtain MLim by drawing a calibration curve, it was not possible to separate samples of each molecular weight. This is because the surface coating layer is too thick,
This is probably because the pores of the filler were almost completely blocked. The calibration curve obtained is shown in FIG. Comparative Example 3 Polystyrene gel HSG-50 2 manufactured by Sekisui Chemical Co., Ltd. as hydrophobic crosslinked polymer particles
A filler was obtained in the same manner as in Example 1 except that 100 g of vinyl acetate was used as the monomer having a hydrolyzable group, and 10 g of vinyl acetate was used. As a result, as for the pressure resistance, the pressure loss and the flow velocity were proportional to 350 kg / cm 2 . When the swelling test was performed, there was no difference in particle size between the dried state and the state immersed in purified water.
It was found that it did not swell in the aqueous solvent. When the average thickness of the coating layer was measured by microscopic observation and photographing after staining, it was about 8 mm, and some uncoated portions were observed. When a calibration curve was drawn to obtain MLim, it was found that polyethylene glycol having a higher molecular weight was eluted later. This may be due to the hydrophobic interaction between the polyethylene glycol and the filler, which occurred due to the hydrophobicity of the filler surface. The resulting calibration curve was similar to FIG. (Effects of the Invention) According to the present invention, an aqueous liquid chromatography packing material having excellent pressure resistance, little swelling / shrinking, and no nonspecific adsorption of proteins can be obtained.
Such a filler can be widely used as a filler for GPC in the isolation or analysis of various hydrophilic substances.
【図面の簡単な説明】
第1図はゲル浸透クロマトグラフィーにおいて、被分離物質の分子量と溶離液
の溶出容量との関係を表す較正曲線である。
第2図、第4図、第6図および第7図はそれぞれ実施例1、実施例2、比較例
1および比較例2で得られた充填剤をカラムに充填し、標準サンプルのGPC 分析
を行ったときの較正曲線を示す。第3図および第5図はそれぞれ実施例1および
実施例2で得られた充填剤をカラムに充填し、タンパク質の分離を行ったときの
較正曲線を示す。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a calibration curve showing the relationship between the molecular weight of a substance to be separated and the elution volume of an eluent in gel permeation chromatography. FIGS. 2, 4, 6, and 7 show the packings obtained in Example 1, Example 2, Comparative Example 1, and Comparative Example 2, respectively, packed in a column, and GPC analysis of a standard sample. The calibration curve when performed is shown. FIG. 3 and FIG. 5 show calibration curves when the packings obtained in Examples 1 and 2 were packed in columns and proteins were separated.
Claims (1)
生成し得る官能基を有する単量体を添加して溶解させ、該疎水性架橋重合体粒子
の表面部分で該単量体を重合させ、該疎水性架橋重合体粒子の表面部分に、加水
分解反応により水酸基を生成し得る官能基を有する重合体の層を10〜300Å
の厚さに形成する工程;および 該官能基を加水分解し、前記疎水性架橋重合体粒子表面を水酸基を有する重合
体で10〜300Åの厚さで被覆する工程; を包含する液体クロマトグラフィー用充填剤の製造法。[Claims] 1. A method for producing a packing material for liquid chromatography, comprising: impregnating a polymerization initiator into hydrophobic cross-linked polymer particles isolated in advance; hydrolyzing a dispersion in which the hydrophobic cross-linked polymer particles are dispersed; A monomer having a functional group capable of forming a hydroxyl group by a reaction is added and dissolved, and the monomer is polymerized on the surface portion of the hydrophobic cross-linked polymer particle. A polymer layer having a functional group capable of generating a hydroxyl group by a hydrolysis reaction,
A step of hydrolyzing the functional group and coating the surface of the hydrophobic crosslinked polymer particles with a polymer having a hydroxyl group in a thickness of 10 to 300 °. Manufacturing method of filler.
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hosoya et al. | Influence of the seed polymer on the chromatographic properties of size monodisperse polymeric separation media prepared by a multi‐step swelling and polymerization method | |
JP4001633B2 (en) | Preformed polymer coating method and product | |
US5114577A (en) | Composite separating agent | |
US4863972A (en) | Porous cross-linked polyvinyl alcohol particles, process for producing the same, and separating agent composed of the same | |
EP0980288A1 (en) | Matrices for separation and separation exploiting said matrices | |
US20050222279A1 (en) | Surface-modified base matrices | |
US4368275A (en) | Isocyanurate-vinyl alcohol-vinyl ester chromatographic packing | |
JPH087197B2 (en) | Packing material for liquid chromatography and its manufacturing method | |
US4339500A (en) | Hydrophilic packing material for chromatography | |
Gong et al. | Preparation of weak cation exchange packings based on monodisperse poly (glycidyl methacrylate-co-ethylene dimethacrylate) beads and their chromatographic properties | |
JP2559526B2 (en) | Method for producing packing material for liquid chromatography | |
JP2559526C (en) | ||
GB2113226A (en) | Porous substrate for analyzing hydrophilic substances having low molecular weight | |
Tennikova et al. | Hydrolyzed macroporous glycidyl methacrylate-ethylene dimethacrylate copolymer with narrow pore size distribution: A novel packing for size-exclusion high-performance liquid chromatography | |
JPH02280833A (en) | Compounding and separating agent and its preparation | |
JP2559525B2 (en) | Method for producing packing material for liquid chromatography | |
US4571390A (en) | Substrate capable of adsorbing protein | |
JP3050951B2 (en) | Packing material for affinity chromatography | |
JPH03118466A (en) | Assay of saccharified hemoglobin | |
JP2559525C (en) | ||
WO2020036151A1 (en) | Separating material, method of manufacturing separating material, and column | |
JP3176423B2 (en) | Chromatography carrier and method for producing the same | |
JPH087198B2 (en) | Quantitative method for glycated hemoglobin | |
US4572905A (en) | Substrate for analyzing hydrophilic substances of low molecular weight | |
JPH0219902B2 (en) |