JP2557712B2 - Exhaust gas purification method - Google Patents

Exhaust gas purification method

Info

Publication number
JP2557712B2
JP2557712B2 JP1237759A JP23775989A JP2557712B2 JP 2557712 B2 JP2557712 B2 JP 2557712B2 JP 1237759 A JP1237759 A JP 1237759A JP 23775989 A JP23775989 A JP 23775989A JP 2557712 B2 JP2557712 B2 JP 2557712B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
purification method
crystalline silicoaluminophosphate
silicoaluminophosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1237759A
Other languages
Japanese (ja)
Other versions
JPH02251246A (en
Inventor
佳英 渡邊
希夫 木村
伸一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26533362&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2557712(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP1237759A priority Critical patent/JP2557712B2/en
Priority to DE19893941541 priority patent/DE3941541A1/en
Publication of JPH02251246A publication Critical patent/JPH02251246A/en
Application granted granted Critical
Publication of JP2557712B2 publication Critical patent/JP2557712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は空燃比がリーン側(A/F>14.7)にある酸素
雰囲気であって、耐熱性が要求される使用条件において
NOxを効率よく浄化することが可能な排気ガス浄化方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention is used in an oxygen atmosphere where the air-fuel ratio is on the lean side (A / F> 14.7) and is used under the use condition where heat resistance is required.
The present invention relates to an exhaust gas purification method capable of efficiently purifying NO x .

(従来技術) 自動車等の内燃機関においては、省エネルギーの見地
から低燃費化が要請されている。低燃費化の一つの手段
として走行時に酸素過剰の混合気を燃焼させることが従
来より行われている。しかし、このような空燃比がリー
ン側の酸素過剰雰囲気では、排気ガス中の有害成分のう
ちHCおよびCOは酸化除去できても、NOxは触媒床に吸着
したO2によって触媒金属との接触が大幅に妨げられるた
め還元除去が難しく、たとえ触媒金属と接触することが
でき、還元できても、窒素は触媒床に吸着した酸素と直
ちに結合してしまうため浄化効率が著しく低くなるとい
う問題があった。かかる問題を解決するために、U.S.P.
4297328はゼオライトの表面に多数存在する細孔内にCu
を担持した触媒を開発し、酸化雰囲気下に置いてNOx
還元除去を図っている。しかし、このゼオライトを用い
た触媒は耐熱性および耐久性が劣っており、実用上問題
があった。
(Prior Art) In an internal combustion engine such as an automobile, low fuel consumption is required from the viewpoint of energy saving. As one of the means for reducing fuel consumption, it has been conventionally practiced to burn an oxygen-rich mixture during traveling. However, in such an oxygen-rich atmosphere where the air-fuel ratio is lean, even though HC and CO of harmful components in the exhaust gas can be removed by oxidation, NO x contacts with the catalyst metal by O 2 adsorbed on the catalyst bed. However, even if the catalyst metal can be contacted and reduced, even if it can be reduced, nitrogen immediately binds to oxygen adsorbed on the catalyst bed, so that the purification efficiency becomes extremely low. there were. In order to solve such problems, USP
4297328 is Cu in the many pores on the surface of zeolite.
We have developed a catalyst that supports and put it in an oxidizing atmosphere to reduce and remove NO x . However, the catalyst using this zeolite is inferior in heat resistance and durability and has a problem in practical use.

そこで、本発明者等は上記問題点を解決すべく鋭意研
究し、各種の系統的実験を重ねた結果、結晶性シリコア
ルミノホスフェート多孔質体に活性元素を担持した触媒
を用いると従来使用されてきたゼオライトを用いる浄化
方法よりも耐熱性が要求される使用条件においてNOx
効率よく浄化できることを見出し本発明をなすに至った
ものである。
Therefore, the inventors of the present invention have diligently studied to solve the above problems, and as a result of repeating various systematic experiments, it has been conventionally used when a crystalline silicoaluminophosphate porous material is used as a catalyst having an active element supported thereon. The present invention has been completed by finding that NO x can be efficiently purified under use conditions requiring higher heat resistance than the purification method using zeolite.

(発明の目的) 本発明は空燃比がリーン状態の酸素過剰雰囲気におい
て耐熱性が要求される使用条件においてNOxを効率よく
浄化することができる排気ガス浄化方法を提供すること
を目的とする。
(Object of the Invention) It is an object of the present invention to provide an exhaust gas purification method capable of efficiently purifying NO x under use conditions requiring heat resistance in an oxygen-rich atmosphere with a lean air-fuel ratio.

(第1発明の説明) 本第1発明(請求項(1)に記載の発明)は、排気ガ
ス中のNOxを酸化雰囲気中で除去するための排気ガス浄
化方法であって、Cu,Feおよびアルカリ土類金属のうち
少なくとも一つの活性元素を結晶質シリコアルミノホス
フェート多孔質担体に担持した触媒を用意し、該触媒
を、窒素酸化物、炭化水素と酸素を含む排気ガスと接触
させ、前記活性元素に吸着された窒素酸化物と前記排気
ガス中に存在する炭化水素との間で行われる酸化雰囲気
中での選択的反応によって、排気ガスから窒素酸化物と
炭化水素を触媒的に浄化する排気ガス浄化方法。
(Explanation of the First Invention) The first invention (the invention according to claim (1)) is an exhaust gas purification method for removing NO x in exhaust gas in an oxidizing atmosphere. And a catalyst in which at least one active element of alkaline earth metal is supported on a crystalline silicoaluminophosphate porous carrier, the catalyst is contacted with an exhaust gas containing nitrogen oxide, hydrocarbon and oxygen, Catalytic purification of nitrogen oxides and hydrocarbons from exhaust gas by selective reaction in an oxidizing atmosphere between nitrogen oxides adsorbed on active elements and hydrocarbons present in the exhaust gas. Exhaust gas purification method.

本第1発明において担体として用いる結晶質シリコア
ルミノホスフェートはその表面に多数の細孔を有してお
り、その直径は5〜10Åであって、NOx分子の大きさよ
りもわずかに大きい。NOxを還元する活性元素である遷
移金属等は該シリコアルミノホスフェートの表面ならび
に前記細孔内表面に担持されている。担持量は細孔内部
において著しく多いため、NOxの還元反応は主として、
上記細孔中のCu等の活性サイトにNOxが選択的に吸着し
てなされる。また、本第1発明で用いる触媒は結晶質シ
リコアルミノホスフェートの固体酸性によりHC−NOx
応を選択的に促進させるものである。
The crystalline silicoaluminophosphate used as a carrier in the first aspect of the present invention has a large number of pores on its surface, its diameter is 5 to 10Å, which is slightly larger than the size of NO x molecule. A transition metal or the like, which is an active element that reduces NO x , is supported on the surface of the silicoaluminophosphate and the surface inside the pores. Since the supported amount is extremely large inside the pores, the reduction reaction of NO x is mainly
NO x is selectively adsorbed on active sites such as Cu in the pores. Also, the catalyst used in the present first invention is to selectively promote HC-NO x reaction by solid acidic crystalline silicoaluminophosphate phosphate.

本第1発明の排気ガス浄化方法はこのような作用を利
用するため、空燃比がリーン側となる酸素過剰雰囲気に
おいてもNOxを効率よく浄化できる。すなわち、細孔中
のCu等にNOxが選択的に吸着するため、O2によってCu等
の活性サイトとの接触を妨げられることがなく、酸化雰
囲気においてもNOxを還元除去できるのである。
Since the exhaust gas purification method of the first aspect of the invention utilizes such an action, NO x can be efficiently purified even in an oxygen excess atmosphere where the air-fuel ratio is on the lean side. That is, since NO x is selectively adsorbed on Cu or the like in the pores, contact with the active site such as Cu is not obstructed by O 2 , and NO x can be reduced and removed even in an oxidizing atmosphere.

また、本第1発明に係る排気ガス浄化方法で用いる触
媒は、それを構成する担体であるシリコアルミノホスフ
ェートの骨格構造が900〜1000℃においても崩れること
がないため、その表面に存在する細孔の消滅や縮小がな
く、耐熱性および耐久性に著しく優れており、耐熱性が
要求される使用条件において使用することができる。
Further, the catalyst used in the exhaust gas purifying method according to the first aspect of the present invention does not collapse the skeletal structure of silicoaluminophosphate, which is the carrier constituting the catalyst, even at 900 to 1000 ° C., and therefore the pores present on the surface thereof It does not disappear or shrinks, and it has excellent heat resistance and durability, and can be used under operating conditions that require heat resistance.

(第2発明の説明) 以下、本第1発明を具体化した発明(第2発明とす
る)を説明する。
(Explanation of Second Invention) Hereinafter, an invention (hereinafter referred to as a second invention) which embodies the first invention will be described.

結晶質シリコアルミノホスフェートに担持して用いる
活性元素とは、NOxを還元する能力を有するCu,Feならび
にアルカリ土類金属であるCa,Mg,Baをいう。このうちCu
が最も望ましい。
The active element used by being supported on crystalline silicoaluminophosphate means Cu, Fe and alkaline earth metals Ca, Mg, Ba which have the ability to reduce NO x . Of these, Cu
Is most desirable.

また、担体である結晶質シリコアルミノホスフェート
としては、細孔が均一であり、約3Åより大きな公称直
径を持ち、無水型であって、化学組成が、一般式 (SixAlyPz)O2 (x+y+z=1,0.01≦x<0.8,z≧0.01) であるものを用いる。
The crystalline silicoaluminophosphate that is a carrier has uniform pores, a nominal diameter larger than about 3Å, is anhydrous, and has a chemical composition of the general formula (Si x Al y P z ) O 2 (x + y + z = 1,0.01 ≦ x <0.8, z ≧ 0.01) is used.

細孔径としては、NOx分子径よりもわずかに大きい約
5〜10Åのものが望ましい。シリコアルミノホスフェー
ト中のSiの割合は0.01≦x<0.8の範囲、望ましくは0.0
5〜0.25が良い。0.05以下では固体酸性が弱くなり、活
性元素の担持能、特にイオン交換能が低下し、触媒活性
が充分でなくなる。0.25以上になると耐熱性が低下する
ため好ましくない。前記活性元素の担持量は結晶質シリ
コアルミノホスフェートに対し0.5〜6wt%が望ましい。
0.5wt%より少ないとNOxを還元する能力が低く、また6w
t%より多くなっても還元能力の増大はない。
The pore diameter is preferably about 5 to 10 Å, which is slightly larger than the NO x molecular diameter. The proportion of Si in the silicoaluminophosphate is in the range of 0.01 ≦ x <0.8, preferably 0.0
5 to 0.25 is good. When it is less than 0.05, the solid acidity is weakened, the ability to carry active elements, especially the ion exchange ability is lowered, and the catalytic activity becomes insufficient. When it is 0.25 or more, the heat resistance decreases, which is not preferable. The amount of the active element supported is preferably 0.5 to 6 wt% with respect to the crystalline silicoaluminophosphate.
If it is less than 0.5 wt%, the ability to reduce NO x is low, and 6w
There is no increase in the reduction capacity even if it exceeds t%.

本第2発明で用いる触媒は以下のように製造する。シ
リコアルミノホスフェートの合成は通常用いられる方法
でよく、例えばリン酸塩、水和アルミナならびにシリカ
ゾル等を出発原料として、これらを均一に混合して、該
混合物に細孔構造を規定するために有機物を混入し、均
一になるように撹拌後、水熱合成により結晶質シリコア
ルミノホスフェート粉末を得る。
The catalyst used in the second invention is produced as follows. The silicoaluminophosphate may be synthesized by a commonly used method, for example, phosphate, hydrated alumina and silica sol are used as starting materials, these are uniformly mixed, and an organic substance is added to the mixture to define the pore structure. After mixing and stirring so as to be uniform, a crystalline silicoaluminophosphate powder is obtained by hydrothermal synthesis.

該有機物としては第4級アンモニウム、第4級アミ
ン、テトラプロピルアンモニウムイオン、テトラエチル
アンモニウムイオン、トリプロピルアミン、トリエチル
アミン、トリエタノールアミン、ピペリジン、シクロヘ
キシルアミン、2−メチルピリジン、N,N−ジメチルベ
ンジルアミン、N,N−ジエチルエタノールアミン、ジシ
クロヘキシルアミン、N,N−ジメチルエタノールアミ
ン、コリン、N,N−ジメチルピペラジン、1,4−ジアゾビ
シクロ−(2,2,2)オクタン、N−メチルジエタノール
アミン、N−メチルエタノールアミン、N−メチルピペ
リジン、3−メチルピペリジン、N−メチルシクロヘキ
シルアミン、3−メチルピリジン、4−メチルピリジ
ン、キヌクリジン、N,N−ジメチル−1,4−ジアザビシク
ロ−(2,2,2)オクタンイオン、テトラメチルアンモニ
ウムイオン、テトラブチルアンモニウムイオン、テトラ
ペンチルアンモニウムイオン、ジ−n−ブチルアミン、
ネオペンチルアミン、ジ−n−ペンチルアミン、イソプ
ロピルアミン、i−ブチルアミン、エチレンジアミン及
び2−イミダゾリドン、ジ−n−プロピルアミン並びに
高分子第4級アンモニウム塩〔(C14H23N22+〔式
中、xは少なくとも2値を有する〕を用いる。
Examples of the organic substance include quaternary ammonium, quaternary amine, tetrapropylammonium ion, tetraethylammonium ion, tripropylamine, triethylamine, triethanolamine, piperidine, cyclohexylamine, 2-methylpyridine, N, N-dimethylbenzylamine. , N, N-diethylethanolamine, dicyclohexylamine, N, N-dimethylethanolamine, choline, N, N-dimethylpiperazine, 1,4-diazobicyclo- (2,2,2) octane, N-methyldiethanolamine, N-methylethanolamine, N-methylpiperidine, 3-methylpiperidine, N-methylcyclohexylamine, 3-methylpyridine, 4-methylpyridine, quinuclidine, N, N-dimethyl-1,4-diazabicyclo- (2,2 , 2) Octane ion, Tetramethy Ruammonium ion, tetrabutylammonium ion, tetrapentylammonium ion, di-n-butylamine,
Neopentylamine, di-n-pentylamine, isopropylamine, i-butylamine, ethylenediamine and 2-imidazolidone, di-n-propylamine and polymeric quaternary ammonium salt [(C 14 H 23 N 2 ) 2+ ] x [where x has at least two values] is used.

次に、該粉末に活性元素を担持する。活性元素の担持
は活性元素の塩の水溶液中に前記シリコアルミノホスフ
ェート粉末を1〜2時間浸漬後、大気中で乾燥するか、
あるいは前記塩の水溶液中にシリコアルミノホスフェー
ト粉末を一昼夜浸漬した後水洗する処理を1ないし数回
繰り返し行った後、500〜700℃の温度に数時間保持して
焼成する操作からなるイオン交換法によって行う。イオ
ン交換法により担持した方が活性元素の付着力が強い。
このようにして得られる粉末状の触媒は、そのまま用い
るか、或いは該触媒粉末にアルミナゾルやシリカゾル等
のバインダーを添加して、所定の形状に成形したり、水
を加えてスラリー状として、ハニカム等の形状のAl2O3
等の耐火性基体上に塗布して用いる。
Next, the powder is loaded with an active element. The active element is supported by immersing the silicoaluminophosphate powder in an aqueous solution of the salt of the active element for 1 to 2 hours and then drying it in the air.
Alternatively, by an ion exchange method comprising a step of immersing the silicoaluminophosphate powder in an aqueous solution of the salt for one day and then washing with water for 1 to several times, and then holding it at a temperature of 500 to 700 ° C. for several hours and baking it. To do. The supporting force by the ion exchange method is stronger than that of the active element.
The powdery catalyst thus obtained may be used as it is, or a binder such as alumina sol or silica sol may be added to the catalyst powder to form a desired shape, or water may be added to form a slurry, such as a honeycomb. In the form of Al 2 O 3
It is used by coating it on a refractory substrate such as.

(実施例) 以下、本発明の実施例を説明する。(Example) Hereinafter, the Example of this invention is described.

すなわち、結晶質シリコアルミノホスフェート多孔質
担体に活性金属を担持した触媒を用いて酸化雰囲気下、
前記触媒をNOxと炭化水素を含有する排気ガスと接触さ
せて本発明に係る排気ガス浄化方法の有効性を確認し
た。
That is, in an oxidizing atmosphere using a catalyst in which an active metal is supported on a crystalline silicoaluminophosphate porous carrier,
The effectiveness of the exhaust gas purification method according to the present invention was confirmed by bringing the catalyst into contact with exhaust gas containing NO x and hydrocarbons.

実施例1 本実施例の排気ガス浄化方法で用いる触媒を調整し、
該触媒について酸素過剰のリーン状態のモデルガス雰囲
気中で加熱処理した後、NOx浄化率を測定し、浄化活性
評価を行った。また、比較触媒についても同様の活性評
価を行った。
Example 1 A catalyst used in the exhaust gas purification method of this example was adjusted,
The catalyst was heat-treated in a lean model gas atmosphere with excess oxygen, and then the NO x purification rate was measured to evaluate the purification activity. Further, the same activity evaluation was performed for the comparative catalyst.

本実施例触媒(No.1〜No.7)の調整; まず、結晶質シリコアルミノホスフェートの合成を行
った。
Preparation of catalysts of this example (No. 1 to No. 7); First, crystalline silicoaluminophosphate was synthesized.

10.4gの85wt%のオルト燐酸(H3PO4)と26.0gの水を
混合し、これに擬ベーマイト相の水和酸化アルミニウム
6.0gを添加し、均質になるまで撹拌した。該混合物にコ
ロイダルシリカ(SiO220wt%)3.0gを加え、均質になる
まで混合し、さらに該混合物に有機物としてトリエチル
アミン8.4mlを加えて均質になるまで撹拌した。次に該
混合物をポリテトラフルオロエチレンでライニングした
ステンレス鋼製の圧力容器中に封入し、180℃、72時間
加熱した後、反応混合物を圧力容器中より取り出し、固
体反応生成物のみをろ過回収し、水洗・乾燥した。さら
に、該生成物を600℃に1時間仮焼して、有機物を分解
除去し、組成比が(Si0.05Al0.500.45)O2、細孔径が
約8Åである結晶質シリコアルミノホスフェートを得
た。
Mixing 85 wt% of ortho phosphoric acid (H 3 PO 4) and 26.0g of water 10.4 g, this hydrated oxide of aluminum pseudoboehmite phase
6.0 g was added and stirred until homogeneous. To the mixture, 3.0 g of colloidal silica (SiO 2 20 wt%) was added and mixed until homogeneous, and further 8.4 ml of triethylamine as an organic substance was added to the mixture and stirred until homogeneous. Next, the mixture was sealed in a pressure vessel made of stainless steel lined with polytetrafluoroethylene, heated at 180 ° C. for 72 hours, then the reaction mixture was taken out from the pressure vessel, and only the solid reaction product was collected by filtration. Washed with water and dried. Further, the product is calcined at 600 ° C. for 1 hour to decompose and remove organic matter to obtain a crystalline silicoaluminophosphate having a composition ratio of (Si 0.05 Al 0.50 P 0.45 ) O 2 and a pore size of about 8Å. It was

続いて、該結晶質シリコアルミノホスフェートを0.1M
酢酸銅水溶液に24時間浸漬し、該溶液をろ過・洗浄した
後、600℃で2時間焼成して、イオン交換法によって活
性元素としてCuを担持した結晶質シリコアルミノホスフ
ェート触媒No.1を得た。Cuの担持量はCuO換算で約2.5wt
%であった。
Subsequently, the crystalline silicoaluminophosphate was added to 0.1M.
It was immersed in an aqueous solution of copper acetate for 24 hours, filtered and washed, and then calcined at 600 ° C. for 2 hours to obtain a crystalline silicoaluminophosphate catalyst No. 1 carrying Cu as an active element by an ion exchange method. . The amount of Cu supported is about 2.5 wt in terms of CuO.
%Met.

また、上記n−トリエチルアミンの代わりに、水酸化
テトラプロピルアンモニウム水溶液を用いた以外は、前
記触媒No.1と同条件により細孔径約7Åの結晶質シリコ
アルミノホスフェートを得、さらに触媒No.1と同条件に
よりCuO換算でCuを約2.5wt%担持した結晶質シリコアル
ミノホスフェート触媒No.2を得た。
Further, a crystalline silicoaluminophosphate having a pore size of about 7Å was obtained under the same conditions as the catalyst No. 1 except that an aqueous solution of tetrapropylammonium hydroxide was used instead of the n-triethylamine, and the catalyst No. 1 was used. Under the same conditions, a crystalline silicoaluminophosphate catalyst No. 2 supporting about 2.5 wt% of Cu in terms of CuO was obtained.

また、n−トリエチルアミンの代わりに、ジ−n−プ
ロピルアミンを用いた以外は前記触媒No.1と同条件によ
り、CuO換算でCuを約2.5wt%担持した細孔径が約6Åの
結晶質シリコアルミノホスフェート触媒No.3を得た。
Also, under the same conditions as the above catalyst No. 1 except that di-n-propylamine was used instead of n-triethylamine, crystalline silicon having a pore size of about 6Å carrying about 2.5 wt% of Cu in terms of CuO. Aluminophosphate catalyst No. 3 was obtained.

また、コロイダルシリカの量を3.0gから6.0gにオルト
燐酸の量を10.4gから9.2gに代えた以外は前記触媒No.1
と同条件によってCuを担持した組成比(Si0.1Al0.5
0.4)O2の結晶質シリコアルミノホスフェート触媒No.4
を得た。また同様にコロイダルシリカの量を15gにオル
ト燐酸の量を5.8gに代えてCuO換算でCuを約2.5wt%を担
持した組成比(Si0.25Al0.50.25)O2の結晶質シリコ
アルミノホスフェート触媒No.5を得た。
The catalyst No. 1 except that the amount of colloidal silica was changed from 3.0 g to 6.0 g and the amount of orthophosphoric acid was changed from 10.4 g to 9.2 g.
Under the same conditions as above, the composition ratio supporting Cu (Si 0.1 Al 0.5 P
0.4 ) O 2 crystalline silicoaluminophosphate catalyst No. 4
I got The composition ratio carrying about 2.5 wt% of Cu in terms of CuO in place the amount of orthophosphoric acid in 5.8g in 15g amounts of colloidal silica as well (Si 0.25 Al 0.5 P 0.25) crystalline O 2 silico aluminophosphates Catalyst No. 5 was obtained.

また、活性元素としてCaを担持するために酢酸銅の代
わりに酢酸カルシウムを用いた以外は、前記触媒No.1の
条件によりCa担持結晶質シリコアルミノホスフェート触
媒No.6を得た。Caの担持量は1.6wt%であった。
In addition, a Ca-supporting crystalline silicoaluminophosphate catalyst No. 6 was obtained under the conditions of the above-mentioned catalyst No. 1 except that calcium acetate was used instead of copper acetate to support Ca as an active element. The loading amount of Ca was 1.6 wt%.

また、前記触媒No.1により製造した結晶質シリコアル
ミノホスフェート1M酢酸銅水溶液中に2時間浸漬し、大
気中で乾燥するCu担持法により、CuO換算で4.5wt%のCu
が担持された結晶質シリコアルミノホスフェート触媒N
o.7を得た。
In addition, 4.5 wt% Cu in terms of CuO was obtained by a Cu loading method in which it was immersed in a crystalline silicoaluminophosphate 1M copper acetate aqueous solution produced with the above catalyst No. 1 for 2 hours and dried in the air.
-Supported crystalline silicoaluminophosphate catalyst N
I got o.7.

次に、11.6gの85wt%のH3PO4と20.4gのアルミニウム
イソプロポキシドと40gの水とを混合し、均質になるま
で混合し、さらに、該混合物に水酸化テトラエチルアン
モニウム水溶液を加えて均質になるまで撹拌した後は圧
力容器中での加熱温度を約200℃とする以外は触媒No.1
と同条件にて、CuO換算でCuを約2.5wt%担持した組成比
が(Si0.12Al0.40.48)O2細孔径が約4.3Åである結晶
質シリコアルミノホスフェート触媒No.8を得た。
Then mixed with water 85 wt% of H 3 PO 4 and 20.4g of aluminum isopropoxide and 40g of 11.6 g, were mixed to homogeneity, further added tetraethylammonium hydroxide aqueous solution to the mixture After stirring until homogeneous, catalyst No. 1 was used except that the heating temperature in the pressure vessel was set to about 200 ° C.
Under the same conditions as above, a crystalline silicoaluminophosphate catalyst No. 8 having a composition ratio of (Si 0.12 Al 0.4 P 0.48 ) O 2 with a Cu content of about 2.5 wt% and a pore size of about 4.3 Å was obtained. .

また、水酸化テトラエチルアンモニム水溶液の代わり
にジ−n−プロピルアミンを用いた以外は触媒No.8と同
条件にてCuO換算でCu量約2.5wt%を担持した組成比が
(Si0.15Al0.390.46)O2、細孔径が約6Åである結晶
質シリコアルミノホスフェート触媒No.9を得た。
Further, the composition ratio supporting about 2.5 wt% Cu content in terms of CuO (Si 0.15 Al) under the same conditions as catalyst No. 8 except that di-n-propylamine was used instead of the tetraethylammonium hydroxide aqueous solution. A crystalline silicoaluminophosphate catalyst No. 9 having 0.39 P 0.46 ) O 2 and a pore size of about 6Å was obtained.

比較触媒(No.C1)の調整; Si/Al比40のゼオライトを0.1M酢酸銅水溶液中に24時
間浸漬し、その後該混合液をろ過洗浄し、さらに600℃
で2時間焼成するイオン交換法により、Cuを担持したゼ
オライト触媒No.C1を得た。Cuの担持量はCuO換算で3wt
%であった。
Preparation of comparative catalyst (No.C1): Zeolite with Si / Al ratio of 40 was immersed in 0.1M copper acetate aqueous solution for 24 hours, and then the mixture was filtered and washed, and further 600 ° C
The zeolite catalyst No. C1 supporting Cu was obtained by the ion exchange method of calcination for 2 hours. The amount of Cu supported is 3 wt in terms of CuO
%Met.

耐熱・耐久試験 前記本実施例触媒No.1〜9、比較触媒No.C1の粉末を
酸化過剰のリーン状態(空燃比(A/F)約22)のモデル
ガス雰囲気中で、500、600、700および800℃各5時間の
加熱処理を行った。このモデルガスの組成は0.47%CO、
8.4%O2、0.16%H2、9.0%CO2、0.1%C3H6(THC3000pp
m)、1000ppmNOからなる。
Heat resistance / durability test The powders of the catalyst Nos. 1 to 9 of the present example and the catalyst No. C1 of the comparative example were subjected to 500, 600, 500, 600 Heat treatment was carried out at 700 and 800 ° C. for 5 hours each. The composition of this model gas is 0.47% CO,
8.4% O 2 , 0.16% H 2 , 9.0% CO 2 , 0.1% C 3 H 6 (THC3000pp
m) and 1000 ppm NO.

浄化活性評価 上記試験を行った触媒を用いて、室温〜600℃におけ
るNO浄化率を測定した。
Purification activity evaluation The NO purification rate at room temperature to 600 ° C was measured using the catalysts tested as described above.

測定に際し、粉末状の触媒を加圧成形し、約2mmφの
ペレット状とし実験用触媒コンバーターに充填し、酸化
雰囲気の排気モデルガスを導入した。該ガスの組成は0.
10%CO、4.0%O2、0.03%H2、0.04%C3H6(THC0.12
%)、10.0%CO2、670ppmNOであり、測定時の空間速度G
HSVは約3万/時であった。第1表に各 触媒の各温度における最高浄化率を示す。本実施例の触
媒は比較触媒に比して、優れた耐熱・耐久性を有してお
り、本実施例に係る排気ガス浄化方法は耐熱性が要求さ
れる使用条件で使用することができる。
At the time of measurement, a powdery catalyst was pressure-molded into pellets of about 2 mmφ, which were filled in an experimental catalytic converter, and an exhaust model gas in an oxidizing atmosphere was introduced. The composition of the gas is 0.
10% CO, 4.0% O 2 , 0.03% H 2 , 0.04% C 3 H 6 (THC0.12
%), 10.0% CO 2 , 670 ppm NO, and space velocity G at measurement
HSV was about 30,000 / hour. Each in Table 1 The maximum purification rate of the catalyst at each temperature is shown. The catalyst of the present example has excellent heat resistance and durability as compared with the comparative catalyst, and the exhaust gas purification method according to this example can be used under the use condition where heat resistance is required.

実施例2 市街地走行を考慮した本実施例に係る触媒の耐熱・耐
久性を評価した結果を以下に説明する。
Example 2 The results of evaluating the heat resistance and durability of the catalyst according to this example in consideration of driving in urban areas will be described below.

本実施例触媒No.10の調整: 実施例1の触媒No.1をボールミルで平均粒径5μmの
粉末に成形した。該粉末100重量部とシリカゾル20重量
部(固形分10%)および水50部を混合撹拌し、粘度200
〜300cpsのスラリーを調整した。次に、市販のハニカム
基材(容積1.7、セル数400、コージエライト質)を用
意し、その表面に前記スラリーを塗布し、余分を空気流
で吹き払い、乾燥し、焼成した。このようにして得た触
媒No.10は担体1あたり140gのCu担持結晶質シリコア
ルミノホスフェートを含むものである。
Preparation of catalyst No. 10 of this example: The catalyst No. 1 of Example 1 was molded into a powder having an average particle size of 5 μm with a ball mill. 100 parts by weight of the powder, 20 parts by weight of silica sol (solid content 10%) and 50 parts of water were mixed and stirred to give a viscosity of 200
A ~ 300 cps slurry was prepared. Next, a commercially available honeycomb base material (volume 1.7, cell number 400, cordierite quality) was prepared, the surface thereof was coated with the slurry, the excess was blown off with an air stream, dried and fired. Catalyst No. 10 thus obtained contains 140 g of Cu-supported crystalline silicoaluminophosphate per 1 carrier.

比較触媒No.C2の調整: 前記触媒No.10を調整した場合と同条件で、前記比較
触媒No.C1から比較触媒No.C2を得た。
Preparation of comparative catalyst No. C2: Comparative catalyst No. C2 was obtained from comparative catalyst No. C1 under the same conditions as in the case of preparing catalyst No. 10.

浄化活性評価 本触媒No.10と比較触媒No.C2をコンバーターに取り付
け、該コンバーターを排気量1.6のリーンバーンエン
ジン排気系に装着し、市街地走行を模擬したパターンで
耐久試験を行い、200時間毎のNOx浄化率を測定した。エ
ンジンの平均空燃比は酸素過剰のリーン状態の22であ
り、最高温度は750℃で、試験時間は600時間である。得
られた結果を第2表に示す。
Purification activity evaluation This catalyst No. 10 and comparative catalyst No. C2 were attached to a converter, the converter was attached to a lean burn engine exhaust system with a displacement of 1.6, and a durability test was conducted in a pattern simulating urban driving, and every 200 hours. The NO x purification rate was measured. The average air-fuel ratio of the engine is 22 with lean oxygen, the maximum temperature is 750 ° C, and the test time is 600 hours. The results obtained are shown in Table 2.

本実施例触媒No.10は市街地走行に近い条件下におい
ても比較触媒に比較し、特に200時間以上試験後におい
て著しい耐久性を示し、600時間においても実用的なNOx
浄化能を維持しており、実施例触媒No.10を用いた本実
施例の排気ガス浄化方法は耐熱性が要求される使用条件
で使用することができる。
The catalyst No. 10 of the present example shows remarkable durability especially after 200 hours or more as compared with the comparative catalyst even under conditions close to urban driving, and practical NO x even after 600 hours.
The purification performance is maintained, and the exhaust gas purification method of this embodiment using the catalyst No. 10 of the embodiment can be used under the use condition where heat resistance is required.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Cu、Feおよびアルカリ土類金属のうち少な
くとも一つの活性元素を結晶質シリコアルミノホスフェ
ート多孔質担体に担持した触媒を用意し、該触媒を、窒
素酸化物、炭化水素と酸素を含む排気ガスと接触させ、
前記活性元素に吸着された窒素酸化物と前記排気ガス中
に存在する炭化水素との間で行われる酸化雰囲気中での
選択的反応によって、排気ガスから窒素酸化物と炭化水
素を触媒的に浄化する排気ガス浄化方法。
1. A catalyst in which at least one active element of Cu, Fe and an alkaline earth metal is supported on a crystalline silicoaluminophosphate porous carrier is prepared, and the catalyst is mixed with nitrogen oxide, hydrocarbon and oxygen. Contact with exhaust gas containing
Catalytic purification of nitrogen oxides and hydrocarbons from exhaust gas by a selective reaction in an oxidizing atmosphere between nitrogen oxides adsorbed on the active element and hydrocarbons present in the exhaust gas. Exhaust gas purification method.
JP1237759A 1988-12-27 1989-09-13 Exhaust gas purification method Expired - Fee Related JP2557712B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1237759A JP2557712B2 (en) 1988-12-27 1989-09-13 Exhaust gas purification method
DE19893941541 DE3941541A1 (en) 1988-12-27 1989-12-15 Nitrogen oxide(s) removal-catalyst - having porous support of silico-alumino-phosphateotics and/or endogenous noxene(s)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-330812 1988-12-27
JP33081288 1988-12-27
JP1237759A JP2557712B2 (en) 1988-12-27 1989-09-13 Exhaust gas purification method

Publications (2)

Publication Number Publication Date
JPH02251246A JPH02251246A (en) 1990-10-09
JP2557712B2 true JP2557712B2 (en) 1996-11-27

Family

ID=26533362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1237759A Expired - Fee Related JP2557712B2 (en) 1988-12-27 1989-09-13 Exhaust gas purification method

Country Status (2)

Country Link
JP (1) JP2557712B2 (en)
DE (1) DE3941541A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2645614B2 (en) * 1991-01-08 1997-08-25 財団法人石油産業活性化センター Purification method of exhaust gas containing nitrogen oxides
DE69316287T2 (en) * 1992-08-25 1998-07-23 Idemitsu Kosan Co Catalytic converter for cleaning exhaust gases
AU668614B2 (en) * 1992-12-24 1996-05-09 Tosoh Corporation Process for removing nitrogen oxides from oxygen rich exhaust gas
MX2009009095A (en) 2007-02-27 2009-09-14 Basf Catalysts Llc Copper cha zeolite catalysts.
US7998423B2 (en) 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
MX2009009097A (en) 2007-02-27 2009-09-18 Basf Catalysts Llc Bifunctional catalysts for selective ammonia oxidation.
US20090196812A1 (en) 2008-01-31 2009-08-06 Basf Catalysts Llc Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure
JP5295654B2 (en) * 2008-06-19 2013-09-18 本田技研工業株式会社 Exhaust purification catalyst and exhaust purification apparatus using the same
US10583424B2 (en) 2008-11-06 2020-03-10 Basf Corporation Chabazite zeolite catalysts having low silica to alumina ratios
JP5730584B2 (en) * 2009-01-22 2015-06-10 三菱樹脂株式会社 Nitrogen oxide purification catalyst and method for producing the same
JP5563952B2 (en) * 2009-11-19 2014-07-30 イビデン株式会社 Honeycomb structure and exhaust gas purification device
CN103282120B (en) 2010-12-27 2016-09-07 三菱树脂株式会社 Catalyst for cleaning up nitrogen oxides

Also Published As

Publication number Publication date
DE3941541A1 (en) 1990-06-28
JPH02251246A (en) 1990-10-09

Similar Documents

Publication Publication Date Title
US5112790A (en) Catalyst for purification of exhaust gases
EP0434063B1 (en) Method of purifying oxygen-excess exhaust gas
EP0555889B1 (en) Process for reducing nitrogen oxides from exhaust gas
JP3086015B2 (en) Exhaust gas purification catalyst
JP2557712B2 (en) Exhaust gas purification method
US6146602A (en) Mesoporous oxide molecular sieves for absorbing nitrogen oxides in oxidizing engine exhaust gas
JPH06171915A (en) Phosphate-alumina material with adjusted pore diameter
JP3307406B2 (en) Method for producing layered silica-metal oxide porous material
US6423293B1 (en) Oxygen storage material for automotive catalysts and process of using
JPH07155614A (en) Production of exhaust gas purifying catalyst
JPH05220403A (en) Exhaust gas purifying catalyst
US20110207598A1 (en) Metal-supported crystalline silica aluminophosphate catalyst and process for producing the same
JPH04219141A (en) Exhaust gas purification catalyst
JPH07100386A (en) Catalyst for purification of exhaust gas
WO1991006508A1 (en) Catalyst for nitrogen oxide decomposition and method of cleaning nitrogen oxide-containing exhaust gas
JP3510908B2 (en) Exhaust gas purification catalyst
CN107803218A (en) Scr catalyst
JPH0640964B2 (en) Exhaust gas purification catalyst manufacturing method
JP2659840B2 (en) Purification method of exhaust gas containing nitrogen oxides
JPS59162948A (en) Catalyst for purifying exhaust gas
JP3044622B2 (en) Exhaust gas purification method
JP2562702B2 (en) Exhaust gas purification catalyst
CN114433115B (en) Coating slurry and preparation method and application thereof
JP3219815B2 (en) Exhaust gas purification catalyst
JP2921130B2 (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees