JP2557216Y2 - Liquid helium liquefaction refrigeration system Ejector for refrigerant circulation - Google Patents

Liquid helium liquefaction refrigeration system Ejector for refrigerant circulation

Info

Publication number
JP2557216Y2
JP2557216Y2 JP14448189U JP14448189U JP2557216Y2 JP 2557216 Y2 JP2557216 Y2 JP 2557216Y2 JP 14448189 U JP14448189 U JP 14448189U JP 14448189 U JP14448189 U JP 14448189U JP 2557216 Y2 JP2557216 Y2 JP 2557216Y2
Authority
JP
Japan
Prior art keywords
inner diameter
nozzle
mixer
ejector
refrigeration system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14448189U
Other languages
Japanese (ja)
Other versions
JPH0382900U (en
Inventor
哲也 大谷
雅信 種田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14448189U priority Critical patent/JP2557216Y2/en
Publication of JPH0382900U publication Critical patent/JPH0382900U/ja
Application granted granted Critical
Publication of JP2557216Y2 publication Critical patent/JP2557216Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Jet Pumps And Other Pumps (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、極低温域の冷媒を循環させるためのヘリウ
ム液化冷凍装置冷媒循環用エジェクターに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to a helium liquefaction refrigeration system refrigerant circulating ejector for circulating a refrigerant in a cryogenic region.

(従来の技術) 従来、ヘリウム液化冷凍装置において、特に極低温域
で冷媒を循環させるための流体機械として第1図に示す
エジェクターが公知である。
(Prior Art) Conventionally, in a helium liquefaction refrigeration apparatus, an ejector shown in FIG. 1 is known as a fluid machine for circulating a refrigerant particularly in an extremely low temperature region.

このエジェクターは駆動流体である高圧の1次流体を
噴出させるノズル1と、被駆動流体である2次流体の入
口2と1次,2次流体を混合させる混合器部3と、この混
合流体をエジェクター外に出すディフェーザ4とを備え
ている。
The ejector includes a nozzle 1 for ejecting a high-pressure primary fluid as a driving fluid, an inlet 2 for a secondary fluid as a driven fluid, and a mixer section 3 for mixing the primary and secondary fluids. And a dephaser 4 to be taken out of the ejector.

そして、高圧の1次流体をノズル1から噴出させて膨
張させることにより、この流体の有する熱エネルギの速
度エネルギへの変換が行われる。このため、ノズル1を
出た1次流体の圧力は低下し、この低圧部に2次流体が
導かれ、混合器部3にて高速の1次流体との混合が行わ
れる。さらに、2次流体は1次流体との間の運動量の変
換により加速され、1次流体と2次流体との高速の混合
流体はディフェーザ4にて減速され、速度エネルギの圧
力への変換が行われ、ここから送り出される。
Then, a high-pressure primary fluid is ejected from the nozzle 1 and expanded, thereby converting thermal energy of the fluid into velocity energy. For this reason, the pressure of the primary fluid that has exited from the nozzle 1 decreases, and the secondary fluid is guided to the low-pressure portion, where the mixing with the high-speed primary fluid is performed in the mixer section 3. Further, the secondary fluid is accelerated by the conversion of momentum between the primary fluid and the primary fluid, and the high-speed mixed fluid of the primary fluid and the secondary fluid is decelerated by the dephaser 4 to convert velocity energy into pressure. We are sent from here.

このように、エジェクターは高速で1次流体をノズル
1より噴出し、その噴流によって2次流体を吸引し、混
合器部3内で両者を混合してからディフェーザ4で昇圧
して、外部へ出すもので、2次流体の圧縮或は輸送に用
いられ、機械式循環ポンプや排気ポンプに比べて稼動部
がないので、長期運転において信頼性が高いことが特長
である。
As described above, the ejector ejects the primary fluid from the nozzle 1 at a high speed, sucks the secondary fluid by the jet, mixes the two in the mixer unit 3, raises the pressure by the dephaser 4, and outputs the mixture to the outside. It is used for compressing or transporting a secondary fluid and has no moving parts compared to a mechanical circulating pump or an exhaust pump, and thus has a feature of high reliability in long-term operation.

(考案が解決しようとする課題) 一般的に、上記エジェクターの性能は1次流体の流量
1と2次流体の流量G2との比、即ち循環比G2/G1の大
小により判断され、この循環比G2/G1が大きい程良いと
されている。
In (devised Problems to be Solved) generally, the performance of the ejector is determined by the primary fluid ratio of the flow rate G 1 and flow G 2 of the secondary fluid, i.e. the magnitude of the circulation ratio G 2 / G 1 , there is a good larger the circulation ratio G 2 / G 1.

例えば、CRYOGENICS,8月号(1978)第494頁に、最適
なエジェクター寸法として、混合器部の漏斗形状の入口
部角度θ1:60°〜90°,ディフェーザ出口部角度θ2:8
°〜10°,混合器部の上記入口部に続く一定内径部の長
さL1:(6〜10)×d2(d2:混合器部内径),ディ
フェーザ長さL2:(6〜7)(d3−d2)(d3:ディ
フェーザ出口部内径)が示されている。また、ノズル1
の漏斗形状の先端部の外側端面と混合器部3の上記一定
内径部の入側端部との間の距離lが流れの閉塞や、循環
比G2/G1に関係し、エジェクターの効率を決定する要素
であるということは知られているが、具体的にこの距離
lをいくらにすれば良いかは未だ分かっていない。
For example, in CRYOGENICS, August (1978), p. 494, as the optimum ejector dimensions, the inlet angle θ 1 : 60 ° to 90 ° of the funnel shape of the mixer section and the outlet angle θ 2 : 8 of the dephaser are used.
° to 10 °, the length L 1 of a constant inner diameter portion following the inlet portion of the mixer section: (6 to 10) × d 2 (d 2 : inner diameter of the mixer section), the length L 2 of the dephaser: (6 to 7) (d 3 −d 2 ) (d 3 : inside diameter of the outlet of the dephaser) is shown. Also, nozzle 1
Efficiency of the occlusion and the distance l is flow between the entry end of the constant diameter portion of the outer end face mixer section 3 of the tip of the funnel-shaped, associated to the circulation ratio G 2 / G 1, the ejector Is known to be a factor for determining the distance, but it is not yet known how much the distance l should be set.

本考案は、この距離lの最適値を求めることを課題と
してなされたもので、最大の循環比を得ることを可能と
した液体ヘリウム液化冷凍装置冷媒循環用エジェクター
を提供しようとするものである。
The present invention has been made to provide an optimum value of the distance l, and an object of the present invention is to provide an ejector for circulating a liquid helium liquefaction refrigeration system which can obtain a maximum circulation ratio.

(課題を解決するための手段) 上記課題を解決するために、本考案は、漏斗形状の先
端部を有するノズルの上記先端部に至る一定内径部での
ノズル内径dNを1.0〜3.0mm,ノズル内径dNと漏斗形状の
入口部を有する混合器部の上記入口部の先に続く一定内
径部での混合器内径dMとの比の平方(dN/dM)2=0.02〜
0.04,上記ノズルの上記先端部の外側端面とこれに対向
する上記混合器の上記一定内径部の入側端部との間の距
離lを2〜8mmとして形成した。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a nozzle having a funnel-shaped tip with a nozzle inner diameter dN of 1.0 to 3.0 mm at a constant inner diameter reaching the tip. Square (dN / dM) 2 = 0.02 from the ratio of the inner diameter dN to the mixer inner diameter dM at a constant inner diameter portion following the inlet portion of the mixer portion having the funnel-shaped inlet portion.
0.04, and the distance l between the outer end face of the tip of the nozzle and the entry end of the constant inner diameter part of the mixer opposed thereto was set to 2 to 8 mm.

(実施例) 次に、本考案の一実施例を図面にしたがって説明す
る。
Next, an embodiment of the present invention will be described with reference to the drawings.

本考案に係る液体ヘリウム液化冷凍装置冷媒循環用エ
ジェクターは、形態に関する限り、第1図に示すエジェ
クターと実質的に変わることろはなく、上記同様にノズ
ル1,2次流体の入口2,混合器部3,ディフェーザ4とを備
えている。
The ejector for circulating the liquid helium liquefaction refrigeration system according to the present invention is substantially the same as the ejector shown in FIG. 1 as far as the form is concerned. A section 3 and a diffuser 4 are provided.

寸法に関しては、ノズル1の一定内径部のノズル内径
dNは1.0〜3.0mm,ノズル内径dNと混合器部3の一定内径
部の混合器内径dMとの比の平方(dN/dM)2は約0.025,ノ
ズル1の漏斗形状の先端部の外側端面と混合器部3の一
定内径部の入側端部との間の距離lは2〜8mmである。
Regarding the dimensions, the nozzle inner diameter of the fixed inner diameter part of the nozzle 1
dN is 1.0 to 3.0 mm, the square of the ratio of the nozzle inner diameter dN to the mixer inner diameter dM of the constant inner diameter part of the mixer part 3 (dN / dM) 2 is about 0.025, and the outer end face of the funnel-shaped tip part of the nozzle 1 The distance 1 between the inner end of the mixer section 3 and the fixed inner diameter section is 2 to 8 mm.

ここで、ノズル内径は1次流体の流量を定める因子で
あり、この流量の実用的範囲よりノズル径の寸法が定ま
っている。また、(dN/dM)2はノズル1の断面積と混合
器部3の断面積の比を示しており、この値が小さい程、
循環比(G2/G1)は大きくなり、好ましいが、製造上の
制約から無制限には小さくできず、上記の値となってい
る。
Here, the nozzle inner diameter is a factor that determines the flow rate of the primary fluid, and the size of the nozzle diameter is determined from the practical range of this flow rate. (DN / dM) 2 indicates the ratio of the sectional area of the nozzle 1 to the sectional area of the mixer section 3.
Although the circulation ratio (G 2 / G 1 ) is large and preferable, it cannot be reduced without limitation due to manufacturing restrictions, and has the above value.

さらに、距離lについては、第2図(横軸:ノズル/
混合器部間距離,縦軸:循環比G2/G1,混合器部内径d
M:9.00mm)に示すグラフに基き定めてあり、同図中各曲
線は第3図〜第8図に示す各種形状のノズル1a,・・・1
gに対応するデータを示している。
Further, regarding the distance l, FIG. 2 (horizontal axis: nozzle /
Mixer section distance, vertical axis: circulation ratio G 2 / G 1 , mixer section inner diameter d
M: 9.00 mm), and each curve in the figure is a nozzle 1a,... 1 of various shapes shown in FIGS.
The data corresponding to g is shown.

図から明らかなように、どの曲線もlが約5のときに
最大になっている。
As is clear from the figure, all the curves are maximum when l is about 5.

現実には、必ずしも正確にl=5mmに製造できるとは
限らず、通常は数mmの誤差が生じる。
In reality, it is not always possible to accurately manufacture the device at l = 5 mm, and an error of several mm usually occurs.

そこで、本考案ではl=2〜8mmとしてある。 Therefore, in the present invention, l = 2 to 8 mm.

(考案の効果) 以上の説明より明らかなように、本考案によれば、漏
斗形状の先端部を有するノズルの上記先端部に至る一定
内径部でのノズル内径dNを1.0〜3.0mm,ノズル内径dNと
漏斗形状の入口部を有する混合器部の上記入口部の先に
続く一定内径部での混合器内径dMとの比の平方(dN/d
M)2=0.02〜0.04,上記ノズルの上記先端部の外側端面
とこれに対向する上記混合器の上記一定内径部の入側端
部との間の距離lを2〜8mmとして形成してある。
(Effects of the Invention) As is apparent from the above description, according to the present invention, the nozzle inner diameter dN at a constant inner diameter part reaching the above-mentioned tip part of the nozzle having the funnel-shaped tip part is 1.0 to 3.0 mm, and the nozzle inner diameter is The square (dN / d) of the ratio of dN to the inner diameter dM of the mixer at a constant inner diameter following the inlet of the mixer having a funnel-shaped inlet.
M) 2 = 0.02 to 0.04, formed so that the distance 1 between the outer end face of the tip of the nozzle and the entry end of the constant inner diameter part of the mixer opposed thereto is 2 to 8 mm. .

このため、上述のデータによって示されるように、最
大の循環比、即ち循環効率が得られるという効果を奏す
る。
For this reason, as shown by the above-mentioned data, there is an effect that the maximum circulation ratio, that is, the circulation efficiency is obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図はエジェクターの断面図、第2図は距離lと循環
比との関係を示すグラフ、第3図〜第9図は各種形状の
ノズルを示す部分拡大断面図である。 1,1a,1b,1c,1d,1e,1f,1g……ノズル、dN……ノズル内径
dM……混合器部内径、l……ノズルと混合器部間の距離
1 is a sectional view of the ejector, FIG. 2 is a graph showing the relationship between the distance 1 and the circulation ratio, and FIGS. 3 to 9 are partially enlarged sectional views showing nozzles of various shapes. 1,1a, 1b, 1c, 1d, 1e, 1f, 1g ... Nozzle, dN ... Nozzle inner diameter
dM: Inside diameter of mixer part, l: Distance between nozzle and mixer part

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】漏斗形状の先端部を有するノズルの上記先
端部に至る一定内径部でのノズル内径dNを1.0〜3.0mm,
ノズル内径dNと漏斗形状の入口部を有する混合器部の上
記入口部の先に続く一定内径部での混合器内径dMとの比
の平方(dN/dM)2=0.02〜0.04,上記ノズルの上記先端
部の外側端面とこれに対向する上記混合器の上記一定内
径部の入側端部との間の距離lを2〜8mmとしたことを
特徴とする液体ヘリウム液化冷凍装置冷媒循環用エジェ
クター。
A nozzle having a funnel-shaped tip has a nozzle inner diameter dN of 1.0 to 3.0 mm at a constant inner diameter reaching the tip.
The square (dN / dM) 2 = 0.02-0.04 of the ratio of the inner diameter dN of the nozzle to the inner diameter dM of the mixer at a constant inner diameter following the inlet of the mixer having a funnel-shaped inlet (dN / dM) 2 = 0.02-0.04, An ejector for circulating a liquid helium liquefaction refrigeration system, wherein a distance 1 between an outer end surface of the tip portion and an inlet end portion of the constant inner diameter portion of the mixer opposed thereto is 2 to 8 mm. .
JP14448189U 1989-12-12 1989-12-12 Liquid helium liquefaction refrigeration system Ejector for refrigerant circulation Expired - Lifetime JP2557216Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14448189U JP2557216Y2 (en) 1989-12-12 1989-12-12 Liquid helium liquefaction refrigeration system Ejector for refrigerant circulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14448189U JP2557216Y2 (en) 1989-12-12 1989-12-12 Liquid helium liquefaction refrigeration system Ejector for refrigerant circulation

Publications (2)

Publication Number Publication Date
JPH0382900U JPH0382900U (en) 1991-08-23
JP2557216Y2 true JP2557216Y2 (en) 1997-12-10

Family

ID=31691176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14448189U Expired - Lifetime JP2557216Y2 (en) 1989-12-12 1989-12-12 Liquid helium liquefaction refrigeration system Ejector for refrigerant circulation

Country Status (1)

Country Link
JP (1) JP2557216Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007275816A (en) * 2006-04-10 2007-10-25 Nippon Tokushu Rozai Kk Thermal spraying apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200201414Y1 (en) * 2000-04-17 2000-11-01 주식회사태백종합환경기술단 Assembling injector for motive with liquid
US8142169B2 (en) * 2009-01-06 2012-03-27 General Electric Company Variable geometry ejector
JP6083330B2 (en) * 2012-11-16 2017-02-22 株式会社デンソー Ejector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007275816A (en) * 2006-04-10 2007-10-25 Nippon Tokushu Rozai Kk Thermal spraying apparatus

Also Published As

Publication number Publication date
JPH0382900U (en) 1991-08-23

Similar Documents

Publication Publication Date Title
KR100393170B1 (en) Ejector cycle system
CN1207524C (en) Injector pressure reducing device with throttling adjustable nozzle
CN1267686C (en) Injector with throttle variable nozzle and injector circulation using such injector
CN102706047B (en) Refrigerant distributor and refrigeration cycle device
US9726405B2 (en) Ejector and heat pump apparatus including the same
CN102207107B (en) Ejector
CN104081064A (en) Ejector
EP2678622B1 (en) Ejector and method for operating a system with a such ejector
CN2583578Y (en) Injector for injector cyclic system
CN106568220A (en) Ejector using swirl flow
JP2557216Y2 (en) Liquid helium liquefaction refrigeration system Ejector for refrigerant circulation
CN104772241B (en) Ejector with convergent-divergent nozzle type receiving chamber
CN101608642A (en) Sparger
US9903623B2 (en) Ejector having an atomization mechanism and heat pump apparatus
CN206648497U (en) A kind of evacuation system for steam condenser integrating device
CN107013233A (en) Concrete spray head and concrete sprayer
CN100494831C (en) Ejector decompression device
JP2557217Y2 (en) Liquid helium liquefaction refrigeration system Ejector for refrigerant circulation
CN211449229U (en) Novel jet vacuum pump
JP2003004319A (en) Ejector cycle
US6918266B2 (en) Ejector for vapor-compression refrigerant cycle
CN206668635U (en) Save injector
US9982924B2 (en) Ejector and heat pump apparatus
JPH1137577A (en) Nozzle device
JP2004116807A (en) Ejector system pressure reducing device