JP2556883B2 - Rhodium recovery method - Google Patents

Rhodium recovery method

Info

Publication number
JP2556883B2
JP2556883B2 JP63145025A JP14502588A JP2556883B2 JP 2556883 B2 JP2556883 B2 JP 2556883B2 JP 63145025 A JP63145025 A JP 63145025A JP 14502588 A JP14502588 A JP 14502588A JP 2556883 B2 JP2556883 B2 JP 2556883B2
Authority
JP
Japan
Prior art keywords
rhodium
hydroxide
precipitate
chloride
separating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63145025A
Other languages
Japanese (ja)
Other versions
JPH01312041A (en
Inventor
輝夫 阪下
雄三 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP63145025A priority Critical patent/JP2556883B2/en
Publication of JPH01312041A publication Critical patent/JPH01312041A/en
Application granted granted Critical
Publication of JP2556883B2 publication Critical patent/JP2556883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) ロジウムを含む酸性溶液より、ロジウムを沈澱生成さ
せ分離する、ロジウムの回収方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Use) The present invention relates to a method for recovering rhodium, in which rhodium is precipitated and separated from an acidic solution containing rhodium.

(従来技術とその問題点) 従来、ロジウムを含む酸性溶液より、ロジウムを沈澱
分離する方法として、水酸化ロジウムとして沈澱させ、
濾過分離する方法が一般的に行われている。
(Conventional technology and its problems) Conventionally, as a method for separating and separating rhodium from an acidic solution containing rhodium, the rhodium hydroxide was precipitated as rhodium hydroxide,
A method of separating by filtration is generally used.

しかし、水酸化ロジウムは粒子が小さいため、凝集操
作を必要とし、加熱、熟成等を行っていたが、液量が多
い場合には設備が大きく複雑となり、また、熟成時間が
かかり、濾過分離にも長時間を要し回収費が高くなる欠
点があった。
However, since rhodium hydroxide has small particles, a coagulation operation is required, and heating and aging have been performed.However, when the amount of liquid is large, the equipment becomes large and complicated, and aging takes time, resulting in filtration and separation. However, there is a drawback that it takes a long time and the collection cost becomes high.

さらに、該ロジウムを含む酸性溶液中にアンモニウム
等の塩が多く含まれていると、上記、方法では充分にロ
ジウムの沈澱を生成し、凝集させることが困難となり、
ロジウムの回収率が低くなる問題があった。
Furthermore, when the acidic solution containing rhodium contains a large amount of a salt such as ammonium, it becomes difficult to form a precipitate of rhodium and agglomerate sufficiently by the above method,
There was a problem that the recovery rate of rhodium was low.

(発明の目的) 本発明は、上記、従来法の欠点を解決するために成さ
れたもので、簡単な操作でしかも、短時間でロジウムを
高回収率で沈澱分離する方法を提供することを目的とす
るものである。
(Object of the Invention) The present invention has been made to solve the above-mentioned drawbacks of the conventional method, and provides a method for precipitating and separating rhodium with a high recovery rate in a short time with a simple operation. It is intended.

(問題点を解決するための手段) 本発明は、ロジウムを含む酸性溶液より、ロジウムを
沈澱、分離する方法において、水酸化アルカリを加えて
アルカリ性とした後に、塩化亜鉛及び/または塩化アル
ミニウムを加えて中和して沈澱を生成して分離すること
を特徴とするロジウムの回収方法である。
(Means for Solving the Problems) The present invention relates to a method of precipitating and separating rhodium from an acidic solution containing rhodium, which is made alkaline by adding an alkali hydroxide and then adding zinc chloride and / or aluminum chloride. It is a method for recovering rhodium, which comprises neutralizing and precipitating to form a precipitate, which is then separated.

ロジウムを含む酸性溶液(以下「ロジウム回収液」と
よぶ。)に、撹拌しながら水酸化アルカリを加えてアル
カリ性にする。
An alkaline solution is added to an acidic solution containing rhodium (hereinafter referred to as “rhodium recovery solution”) with stirring to make it alkaline.

ここで用いる水酸化アルカリは、水酸化ナトリウム、
水酸化カリウム、水酸化カルシウム、水酸化バリウム等
であるが、安価で入手し易い水酸化ナトリウムでよく、
反応を迅速かつ均一に行わせるために水溶液として用い
るとさらによい。
Alkali hydroxide used here is sodium hydroxide,
Potassium hydroxide, calcium hydroxide, barium hydroxide, etc., but inexpensive and easily available sodium hydroxide,
More preferably, it is used as an aqueous solution in order to carry out the reaction rapidly and uniformly.

水酸化アルカリを加えてアルカリ性にする際のPHは10
〜12に調整する、より好ましくは、PH10.5〜11.5であ
る。
PH when adding alkali hydroxide to make it alkaline is 10
The pH is adjusted to -12, more preferably PH 10.5 to 11.5.

次いで、塩化亜鉛及び/または塩化アルミニウムを加
えてPH6〜8に中和して沈澱を生成させる。
Then, zinc chloride and / or aluminum chloride is added to neutralize to PH6-8 to form a precipitate.

ここで用いる塩化亜鉛及び/または塩化アルミニウム
は、水溶液として加えることがより好ましい、その理由
は、結晶で加えた場合に結晶の表面で水酸化物が生成
し、反応が遅れるからである。
The zinc chloride and / or aluminum chloride used here is more preferably added as an aqueous solution, because when added in the form of a crystal, a hydroxide is formed on the surface of the crystal and the reaction is delayed.

また、PHを6〜8にするのは、沈澱として生成した水
酸化ロジウムが最も安定しており、PHが8より高いと錯
塩になって沈澱が充分生成しにくく、PH6より低いと沈
澱が溶解しやすくなるためである。
The pH of 6-8 is the most stable rhodium hydroxide formed as a precipitate. If the pH is higher than 8, it becomes a complex salt and the precipitate is hard to form. If it is lower than PH6, the precipitate dissolves. This is because it is easier to do.

上記塩化亜鉛及び/または塩化アルミニウムを加える
理由は、該金属の塩化物が水酸化物になって、微細な水
酸化ロジウムを凝集して共沈する作用があり、また、水
酸化物となるPHの範囲が広く安定しており、さらに、沈
澱として分離した後のロジウムの精製において分離し易
い金属であるからである。
The reason for adding the above zinc chloride and / or aluminum chloride is that the chloride of the metal becomes a hydroxide, which has the function of coagulating and coprecipitating fine rhodium hydroxide. This is because the range is stable over a wide range and is a metal that is easily separated in the purification of rhodium after separation as a precipitate.

なお、他の金属塩化物として塩化マグネシウム、塩化
鉄、塩化インジウム等を用いることもできる。
Note that magnesium chloride, iron chloride, indium chloride, or the like can be used as the other metal chloride.

また、本発明における操作で、ロジウムの沈澱をより
高い回収率で回収するためには、ロジウムイオンを酸化
しながら行うとよく、その方法は一般的な酸化性ガスや
酸化剤による方法でよい。
Further, in the operation of the present invention, in order to recover the rhodium precipitate at a higher recovery rate, it may be carried out while oxidizing the rhodium ion, and the method may be a method using a general oxidizing gas or an oxidizing agent.

さらに、ロジウム回収液中に含まれる塩の種類によ
り、ロジウムの沈澱生成が不充分な場合には、本発明の
方法を繰り返し行うことで目的を達成することができ
る。
Further, when the precipitation of rhodium is insufficient due to the type of salt contained in the rhodium recovery solution, the object can be achieved by repeating the method of the present invention.

実施例・1 ロジウムを2g/含む2N−塩酸溶液2を5ビーカ
に入れ60℃に加熱し、水酸化ナトリウム400g/を滴下
しPH11.5とした。
Example 1 A 2N-hydrochloric acid solution 2 containing 2 g / rhodium was placed in a 5 beaker and heated to 60 ° C., and 400 g / sodium hydroxide was added dropwise to obtain PH11.5.

次いで、塩化亜鉛50g/溶液を加えてPH7.0にし、30
分間撹拌を続けたのち、濾過して沈澱を分離した。
Then, add zinc chloride 50g / solution to pH 7.0,
After continuing stirring for 1 minute, the precipitate was separated by filtration.

濾過液中のロジウムを分析したところ、0.2mg/で濾
過液は4であったのでロジウムとして0.8mgが液中に
残っており、回収率は99.9%以上であった。
When rhodium in the filtrate was analyzed, it was 0.2 mg / filtrate and the filtrate was 4. Therefore, 0.8 mg of rhodium remained in the solution, and the recovery rate was 99.9% or more.

実施例・2〜8 ロジウムを2g/含む酸性溶液で溶液の種類を下表左
項のようにし、水酸化アルカリの種類とアルカリ性にし
たときのPHを中項のようにし、中和するために加えた塩
化物の種類とPHを右項のような条件とし、実施例5と6
は次亜鉛素酸で酸化し、実施例7と8は塩素ガスで酸化
しながら沈澱を生成し、濾過分離したのち濾過液中のロ
ジウムを分析したところ、下記のような結果であった。
Examples 2 to 8 In order to neutralize the kind of the solution with the acidic solution containing 2 g / rhodium as shown in the left table below, the kind of alkali hydroxide and the PH when alkalinized as shown in the middle section The types of chloride added and PH were set to the conditions as shown in the right section, and the results of Examples 5 and 6 were obtained.
Was oxidized with hypozinc acid, and in Examples 7 and 8 a precipitate was formed while being oxidized with chlorine gas. After separation by filtration, rhodium in the filtrate was analyzed. The results were as follows.

従来例・1 ロジウムを2g/含む2N−塩酸溶液2を5ビーカ
に入れ、水酸化ナトリウム400g/溶液を滴下し、PHを
8に調整し、60℃で4時間熟成し、室温まで冷却後、濾
過分離して、濾過液中のロジウムを分析したところ、ロ
ジウムが120mg/で濾過液が3でありロジウムとして
360mgが残っていたことになり、ロジウムの回収率は、9
1.0%であった。
Conventional example-1 Put 2N-hydrochloric acid solution 2 containing 2g / rhodium in 5 beakers, add sodium hydroxide 400g / solution dropwise, adjust pH to 8, aging at 60 ° C for 4 hours, cooling to room temperature, When separated by filtration and analyzed for rhodium in the filtrate, rhodium was 120 mg / and the filtrate was 3
With 360 mg remaining, the recovery rate of rhodium is 9
It was 1.0%.

従来例・2 ロジウムを2g/と塩化アンモニウム200g/を含む2N
−塩酸溶液2を5ビーカに入れ、水酸化ナトリウム
400g/溶液を滴下し、PHを7.5に調整し、60℃で4時間
熟成し、室温まで冷却後、濾過分離して、濾過液中のロ
ジウムを分析したところ、ロジウムが180mg/で濾過液
が3でありロジウムとして540mgが残っていたことに
なり、ロジウムの回収率は、86.5%であった。
Conventional example 2 2N containing 2g / of rhodium and 200g / of ammonium chloride
-Put hydrochloric acid solution 2 in 5 beakers and add sodium hydroxide
400g / solution was added dropwise, pH was adjusted to 7.5, aged at 60 ° C for 4 hours, cooled to room temperature, filtered and separated, and rhodium in the filtrate was analyzed. Rhodium was 180mg / This means that 540 mg of rhodium remained, and the recovery rate of rhodium was 86.5%.

(発明の効果) 本発明は、ロジウムを含む酸性溶液より、ロジウムを
沈澱、分離する方法において、水酸化アルカリを加えて
アルカリ性とした後に、塩化亜鉛及び/または塩化アル
ミニウムを加えて中和して沈澱を生成して分離するとい
う、簡便な方法により従来法の欠点であった、ロジウム
の沈澱を凝集するための熟成時間が長時間かかり、しか
も、濾過時間も長いという点と、共存する塩の影響で回
収率が低くなる欠点をともに解決することができ、生産
効率を高め価値あるものである。
(Effect of the invention) The present invention is a method of precipitating and separating rhodium from an acidic solution containing rhodium, which is made alkaline by adding alkali hydroxide, and then neutralizing by adding zinc chloride and / or aluminum chloride. The disadvantage of the conventional method is that it is a simple method of forming and separating a precipitate, which requires a long aging time to agglomerate the precipitate of rhodium and a long filtration time. It is possible to solve both of the drawbacks that the recovery rate is low due to the influence, which enhances production efficiency and is valuable.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ロジウムを含む酸性溶液より、ロジウムを
沈澱、分離する方法において、水酸化アルカリを加えて
アルカリ性とした後に、塩化亜鉛及び/または塩化アル
ミニウムを加えて中和して沈澱を生成して分離すること
を特徴とするロジウムの回収方法。
1. A method of precipitating and separating rhodium from an acidic solution containing rhodium, which is made alkaline by adding alkali hydroxide and then neutralizing by adding zinc chloride and / or aluminum chloride to form a precipitate. A method for recovering rhodium, characterized in that
JP63145025A 1988-06-13 1988-06-13 Rhodium recovery method Expired - Fee Related JP2556883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63145025A JP2556883B2 (en) 1988-06-13 1988-06-13 Rhodium recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63145025A JP2556883B2 (en) 1988-06-13 1988-06-13 Rhodium recovery method

Publications (2)

Publication Number Publication Date
JPH01312041A JPH01312041A (en) 1989-12-15
JP2556883B2 true JP2556883B2 (en) 1996-11-27

Family

ID=15375685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63145025A Expired - Fee Related JP2556883B2 (en) 1988-06-13 1988-06-13 Rhodium recovery method

Country Status (1)

Country Link
JP (1) JP2556883B2 (en)

Also Published As

Publication number Publication date
JPH01312041A (en) 1989-12-15

Similar Documents

Publication Publication Date Title
US20050249652A1 (en) Process to recover vanadium contained in acid solutions
JPH0517832A (en) Method for recovering lithium from waste lithium battery
JP2556883B2 (en) Rhodium recovery method
JP4293520B2 (en) Fluorine ion removal method and remover
JPS634028A (en) Treatment for scrap containing rare earth element and iron
JPH0742118B2 (en) Method for purifying ferrous ion-containing acid solution
JP2890830B2 (en) Purification method of scandium oxide
JP3307204B2 (en) Concentration separation and recovery method of rare earth metal
US3927172A (en) Method of concentrating gallium
US2507175A (en) Silver recovery
JPS62164838A (en) Recovery of metal valuables in metal mixed solution by phosphate selective precipitation
JPS63496A (en) Method for purifying gallium electrolytic solution
JP2548096B2 (en) Method of treating wastewater containing cadmium
JPS5839894B2 (en) Method for removing phosphorus and silicon from water-soluble smelting slag
US4690710A (en) Process for producing cobalt metal powder
US2695227A (en) Indium purification using proteinaceous materials
JP2885692B2 (en) Separation method of nickel in iron chloride solution
US2695228A (en) Process of purifying indium using a galvanic precipitant
JPS6219495B2 (en)
JPH0742527B2 (en) Recovery method of cobalt and chromium
JPS61197423A (en) Collection of tungsten from ammoniacal solution
JPH03150321A (en) Method for recovering thallium
JP3282452B2 (en) How to remove selenium from wastewater
JPH059615A (en) Method for recovering sponge cd
JPS5839768B2 (en) Rinsan Enshiyori Ritsuji no Saisei Shiorihouhou

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees