JP2556273B2 - Modulation-doped multiple quantum well semiconductor laser device - Google Patents

Modulation-doped multiple quantum well semiconductor laser device

Info

Publication number
JP2556273B2
JP2556273B2 JP5271724A JP27172493A JP2556273B2 JP 2556273 B2 JP2556273 B2 JP 2556273B2 JP 5271724 A JP5271724 A JP 5271724A JP 27172493 A JP27172493 A JP 27172493A JP 2556273 B2 JP2556273 B2 JP 2556273B2
Authority
JP
Japan
Prior art keywords
quantum well
layer
modulation
semiconductor laser
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5271724A
Other languages
Japanese (ja)
Other versions
JPH07131105A (en
Inventor
善浩 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5271724A priority Critical patent/JP2556273B2/en
Publication of JPH07131105A publication Critical patent/JPH07131105A/en
Application granted granted Critical
Publication of JP2556273B2 publication Critical patent/JP2556273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3086Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure doping of the active layer
    • H01S5/309Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure doping of the active layer doping of barrier layers that confine charge carriers in the laser structure, e.g. the barriers in a quantum well structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3407Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers characterised by special barrier layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信システムの光源
及び光計測器の光源として用いられる半導体レーザに関
し、特に、p型変調ドープ多重量子井戸型半導体レーザ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser used as a light source for an optical communication system and a light source for an optical measuring instrument, and more particularly to a p-type modulation-doped multiple quantum well semiconductor laser.

【0002】[0002]

【従来の技術】図3は、従来のp型変調ドープ多重量子
井戸型半導体レーザの構造を示す図であり、(a)は活
性層におけるバンド構造を示す図。(b)はその拡大図
である。
2. Description of the Related Art FIG. 3 is a diagram showing a structure of a conventional p-type modulation-doped multiple quantum well semiconductor laser, and FIG. 3 (a) is a diagram showing a band structure in an active layer. (B) is the enlarged view.

【0003】図3(a)中、301はn-InPからなるバ
ッファ層、302は1.13μm組成のInGaAsPからな
る光導波路層、303は1.13μm組成のInGaAsPか
らなる障壁層、304は1.4μm組成のInGaAsPから
なる量子井戸層、305はp-InPからなるクラッド層で
ある。また、311は電子の第一量子準位、312はホ
ールの第一量子準位をそれぞれ示している。
In FIG. 3A, 301 is a buffer layer made of n-InP, 302 is an optical waveguide layer made of 1.13 μm composition InGaAsP, 303 is a barrier layer made of 1.13 μm composition InGaAsP, and 304 is 1 A quantum well layer made of InGaAsP having a composition of 4 μm and a cladding layer 305 made of p-InP. Further, 311 indicates the first quantum level of electrons, and 312 indicates the first quantum level of holes.

【0004】図3(b)中、313はイオン化したZn
を示している。障壁層のみに選択的にドープされたZn
は、ホールを吐き出してイオン化する(一部拡散によっ
て量子井戸層に入り込む)。吐き出されたホールはより
エネルギー的に安定な量子井戸層の価電子帯のトップへ
と移行する。その結果、価電子帯のフェルミ準位が量子
井戸の価電子帯内部に位置するようになり、半導体レー
ザにした場合、正味の誘導放射遷移が増大するため、緩
和振動周波数が増大する等の利点がある。
In FIG. 3B, 313 is ionized Zn.
Is shown. Zn selectively doped only in the barrier layer
Emits holes to be ionized (partially diffuses into the quantum well layer). The ejected holes move to the top of the valence band of the more energy stable quantum well layer. As a result, the Fermi level of the valence band comes to be located inside the valence band of the quantum well, and in the case of a semiconductor laser, the net stimulated radiative transition increases, so that the relaxation oscillation frequency increases. There is.

【0005】一般に多重量子井戸構造はMBE(molecu
lar beam epitaxy)やMOVPE(metal organic vapo
r phase epitaxy)等の気相成長法を用いて形成される
が、変調ドープ多重量子井戸レーザは障壁層を成長して
いるときにのみドーピング原料を供給することで障壁層
に不純物を選択的に導入して作製する。しかしながら、
図3(b)に示されるように障壁層のみに導入されたは
ずの不純物は拡散によって量子井戸層まで入り込む。こ
の傾向は不純物としてZnを用いたときに著しい。量子
井戸層へ拡散していく不純物の量を低減するために、障
壁層の中央部分にのみ不純物を導入する方法、障壁層の
中央で一旦成長を停止して不純物を添加する方法等も提
案されている。
Generally, a multi-quantum well structure has an MBE (molecu
lar beam epitaxy) and MOVPE (metal organic vapo)
It is formed using a vapor phase epitaxy method such as r phase epitaxy), but the modulation-doped multiple quantum well laser selectively supplies impurities to the barrier layer by supplying the doping material only when the barrier layer is grown. Introduced and produced. However,
As shown in FIG. 3B, the impurities that should have been introduced only into the barrier layer enter the quantum well layer by diffusion. This tendency is remarkable when Zn is used as an impurity. In order to reduce the amount of impurities diffusing into the quantum well layer, a method of introducing impurities only in the central portion of the barrier layer, a method of temporarily stopping the growth in the center of the barrier layer and adding the impurities have been proposed. ing.

【0006】[0006]

【発明が解決しようとする課題】上述した従来の変調ド
ープ多重量子井戸レーザは、障壁層が単一組成であるた
めに障壁層内部での不純物の拡散を抑えることができ
ず、量子井戸層に不純物が入り込むことを避けることが
出来ない。量子井戸層へと拡散していった不純物は非発
光再結合中心になるため量子井戸層へと注入されたキャ
リアを消費してしまい、レーザの特性を悪化させるとい
う問題点がある。
In the conventional modulation-doped multi-quantum well laser described above, since the barrier layer has a single composition, the diffusion of impurities inside the barrier layer cannot be suppressed, and the quantum well layer cannot be suppressed. It is unavoidable that impurities enter. The impurity diffused into the quantum well layer becomes a non-radiative recombination center and consumes the carriers injected into the quantum well layer, which causes a problem that laser characteristics are deteriorated.

【0007】また、量子井戸層へ拡散していく不純物の
量を低減するために障壁層で導入する不純物の量を減ら
した場合には、変調ドープによって量子井戸内にできる
キャリアの数も減ってしまうため、もともとの変調ドー
プの効果が低減してしまうという問題点がある。
When the amount of impurities introduced into the barrier layer is reduced in order to reduce the amount of impurities diffusing into the quantum well layer, the number of carriers that can be formed in the quantum well is reduced by modulation doping. Therefore, there is a problem that the effect of the original modulation doping is reduced.

【0008】本発明は上述したような従来の技術が有す
る問題点を解決するためになされたもので、価電子帯の
フェルミ準位が量子井戸層の価電子帯の内部に位置する
ほどの不純物を障壁層に添加しながらも、その不純物が
量子井戸層に拡散する事を抑制し、緩和振動周波数等の
特性を向上させることを目的とする。
The present invention has been made in order to solve the problems of the above-mentioned conventional techniques, and impurities such that the Fermi level of the valence band is located inside the valence band of the quantum well layer. Is added to the barrier layer, its impurity is suppressed from diffusing into the quantum well layer, and the characteristics such as relaxation oscillation frequency are improved.

【0009】[0009]

【課題を解決するための手段】本発明の変調ドーブ多重
量子井戸レーザは、InGaAsもしくはInGaAsPからなる量
子井戸層と、該量子井戸層よりも広いバンドギャップを
有するInGaAsPからなり意図的にp型のドーパントがド
ーピングされた障壁層とにより活性層が形成される変調
ドープ多重量子井戸型半導体レーザにおいて、前記障壁
層内に設けられ、InGaAsからなり、障壁層との間でつく
られる量子井戸に電子の第一量子準位が存在しない厚さ
のドーパント拡散阻止層を有することを特徴とする。
A modulated dove multi-quantum well laser of the present invention comprises a quantum well layer made of InGaAs or InGaAsP and an InGaAsP having a bandgap wider than that of the quantum well layer, and is intentionally p-type. In a modulation-doped multi-quantum well type semiconductor laser in which an active layer is formed by a barrier layer doped with a dopant, electrons are stored in a quantum well formed between the barrier layer and InGaAs, which is formed in the barrier layer. It is characterized by having a dopant diffusion blocking layer having a thickness in which the first quantum level does not exist.

【0010】[0010]

【作用】一般的にInP系のp型のドーパントであるZn
は、拡散する物質のバンドギャップ波長が長い程その物
質中を拡散していく速度が遅く、InPとInGaAsではZn
の拡散速度は3倍程InGaAsのほうが遅い。従ってInGaAs
をZnの拡散防止層に適用できるが、InGaAsはこの物質
系で最もバンドギャップが小さいため、InGaAsPやInPと
の組み合わせでは量子井戸層となってしまい注入された
キャリアが消費されてしまう。
Function: Zn which is generally an InP-based p-type dopant
The longer the bandgap wavelength of the diffusing substance, the slower the rate of diffusing in that substance.
The diffusion rate of InGaAs is about 3 times slower than that of InGaAs. Therefore InGaAs
Can be applied to the Zn diffusion prevention layer, but InGaAs has the smallest bandgap in this material system, and therefore, in combination with InGaAsP or InP, it becomes a quantum well layer and the injected carriers are consumed.

【0011】しかしながら、InGaAsの層厚を十分薄くす
れば電子の量子準位は存在することが出来ないので、In
GaAs層でのキャリア再結合を防ぐことができる。
However, if the InGaAs layer is made sufficiently thin, the electron quantum level cannot exist.
Carrier recombination in the GaAs layer can be prevented.

【0012】本発明は以上述べた現象を利用してZnの
拡散防止層としてInGaAsを用いながらキャリアの余分な
消費を抑制するものである。
The present invention utilizes the above-mentioned phenomenon to suppress excessive carrier consumption while using InGaAs as a Zn diffusion preventing layer.

【0013】[0013]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0014】図1は本発明の一実施例であるp型変調ド
ープ多重量子井戸型半導体レーザの要部構造を示す図で
あり、(a)は、1.3μm帯の活性層におけるバンド
構造を示す図、(b)はその拡大図である。
FIG. 1 is a diagram showing a main structure of a p-type modulation-doped multiple quantum well semiconductor laser according to an embodiment of the present invention. FIG. 1 (a) shows a band structure in an active layer of 1.3 μm band. The figure and (b) are the enlarged views.

【0015】図1(a)中、101はn-InPからなるバ
ッファ層、102は1.13μm組成のInGaAsPからな
る光導波路層、103は1.13μm組成InGaAsPから
なる障壁層、104は1.4μm組成のInGaAsPからな
る量子井戸層、105はp-InPからなるクラッド層、1
06はInGaAsからなる拡散防止層である。
In FIG. 1A, 101 is a buffer layer made of n-InP, 102 is an optical waveguide layer made of InGaAsP having a composition of 1.13 μm, 103 is a barrier layer made of InGaAsP having a composition of 1.13 μm, and 104 is 1. Quantum well layer made of InGaAsP having a composition of 4 μm, 105 is a cladding layer made of p-InP, 1
Reference numeral 06 is a diffusion preventing layer made of InGaAs.

【0016】本実施例の場合はInGaAs拡散防止層106
にのみZnをドープしている。それぞれの層の厚さはn-
InPバッファ層101が0.4μm、InGaAsP光導波路層
102がp側、n側のそれぞれについて60nm、InGa
AsP障壁層103はInGaAs拡散防止層106の両わきで
それぞれ4nm、量子井戸層104が4.3nm、InGa
As拡散防止層106が0.6nm、p-InPからなるクラ
ッド層105が0.7μmである。また、InGaAs拡散防
止層106中のZn濃度はバルク結晶の時3×1018
-3となるようなZn原料比とされており、量子井戸の
数は10層である。111は電子の第一量子準位、11
2はホールの第一量子準位をそれぞれ示している。
In the present embodiment, the InGaAs diffusion prevention layer 106
Only Zn is doped. The thickness of each layer is n-
The InP buffer layer 101 is 0.4 μm, the InGaAsP optical waveguide layer 102 is 60 nm on each of the p-side and the n-side, InGa
The AsP barrier layer 103 is 4 nm on both sides of the InGaAs diffusion prevention layer 106, the quantum well layer 104 is 4.3 nm, and
The As diffusion prevention layer 106 has a thickness of 0.6 nm, and the p-InP clad layer 105 has a thickness of 0.7 μm. The Zn concentration in the InGaAs diffusion prevention layer 106 is 3 × 10 18 c when it is a bulk crystal.
The Zn raw material ratio is set to m −3, and the number of quantum wells is 10. 111 is the first quantum level of the electron, 11
2 indicates the first quantum level of the hole, respectively.

【0017】ここで、重要なのはInGaAs拡散防止層10
6を量子井戸と見たときに電子の量子準位が存在してい
ないことである。障壁層103に1.13μm組成のIn
GaAsPを用いた場合、InGaAs層の厚さが0.6nm以下
になると電子の束縛された量子準位は存在しえない。図
1(b)の拡大図中、113はイオン化したZnを示
し、114はInGaAsのホールの第一量子準位を示してい
る。
Here, what is important is the InGaAs diffusion prevention layer 10.
When 6 is regarded as a quantum well, there is no electron quantum level. 1.13 μm composition of In on the barrier layer 103
In the case of using GaAsP, if the thickness of the InGaAs layer is 0.6 nm or less, electron-bound quantum levels cannot exist. In the enlarged view of FIG. 1B, 113 indicates ionized Zn, and 114 indicates the first quantum level of InGaAs hole.

【0018】なお、本実施例においては、上記の様に極
めて薄い半導体層を形成する方法としてMOVPE法を
用いた。この後、例えばLPE成長法を用いてDC−P
BH構造等の埋め込み構造の埋め込み型半導体レーザと
した。
In this example, the MOVPE method was used as the method for forming the extremely thin semiconductor layer as described above. After this, DC-P is formed using, for example, the LPE growth method.
A buried semiconductor laser having a buried structure such as a BH structure was used.

【0019】上記のように構成された第1の実施例の半
導体レーザーでは、共振器長300μmで後方端面に7
0%の高反射膜をつけて光出力特性を測定したところ、
閾値の2倍のバイアス電流での緩和振動周波数は10G
Hzであった。この値は変調ドープをしない多重量子井
戸レーザにくらべて緩和振動周波数が2GHz程大きか
った。
In the semiconductor laser of the first embodiment constructed as described above, the resonator length is 300 μm, and 7 is formed on the rear end face.
When the light output characteristics were measured with a 0% high reflection film,
The relaxation oscillation frequency at a bias current twice the threshold is 10G
It was Hz. This value had a relaxation oscillation frequency of about 2 GHz larger than that of the multiple quantum well laser without modulation doping.

【0020】本実施例は、極めて低い閾値を実現するた
めに量子井戸層数を10層以上と多く設ける素子等の、
光閉じ込め係数を制御する障壁層の厚さを厚くできない
素子を構成する際に特に有用である。
In this embodiment, in order to realize an extremely low threshold value, such as an element provided with a large number of quantum well layers of 10 or more,
It is particularly useful in constructing a device in which the thickness of the barrier layer that controls the light confinement coefficient cannot be increased.

【0021】次に、本発明の第2の実施例について説明
する。
Next, a second embodiment of the present invention will be described.

【0022】図2は本発明の第2の実施例のp型変調ド
ープ多重量子井戸型半導体レーザの要部構造を示す図で
あり、(a)は1.55μm帯活性層におけるバンド構
造を示す図、(b)はその拡大図である。
FIG. 2 is a diagram showing a main structure of a p-type modulation-doped multiple quantum well type semiconductor laser according to a second embodiment of the present invention. FIG. 2A shows a band structure in a 1.55 μm band active layer. FIG. 1B is an enlarged view of the same.

【0023】図2(a)中、201はn-InPからなるバ
ッファ層、202は1.2μm組成のInGaAsPからなる
光導波路層、203は1.2μm組成InGaAsPからなる
障壁層、204はInGaAsからなる量子井戸層、205は
P-InPからなるクラッド層、206はInGaAsからなる拡
散防止層である。
In FIG. 2A, 201 is a buffer layer made of n-InP, 202 is an optical waveguide layer made of 1.2 μm composition InGaAsP, 203 is a barrier layer made of 1.2 μm composition InGaAsP, and 204 is made of InGaAs. Is a quantum well layer
The cladding layer made of P-InP and 206 are diffusion preventing layers made of InGaAs.

【0024】本実施例が第1の実施例と異なる点は、障
壁層203の中に2つのInGaAs拡散防止層206を設
け、p型の不純物であるZnをその2つのInGaAs拡散防
止層206の間のInGaAsPに導入していることである。
The present embodiment is different from the first embodiment in that two InGaAs diffusion preventing layers 206 are provided in the barrier layer 203, and Zn which is a p-type impurity is added to the two InGaAs diffusion preventing layers 206. It is being introduced into InGaAsP between.

【0025】量子井戸層204と拡散防止層206との
間にある障壁層203の厚さは4nm、Znを導入した
障壁層203の厚さは2nm、拡散阻止層206の厚さ
は0.7nmで量子井戸層数は4層である。この時のZ
n濃度は3×1018cm-3になるようにZn原料比をと
っている。
The barrier layer 203 between the quantum well layer 204 and the diffusion prevention layer 206 has a thickness of 4 nm, the barrier layer 203 having Zn introduced therein has a thickness of 2 nm, and the diffusion blocking layer 206 has a thickness of 0.7 nm. Therefore, the number of quantum well layers is four. Z at this time
The Zn raw material ratio is set so that the n concentration is 3 × 10 18 cm −3 .

【0026】上記のように構成された第2の実施例の半
導体レーザーでは、共振器長1200μmで端面にそれ
ぞれ6%,90%の低反射膜と高反射膜をつけた場合の
緩和振動周波数は閾値の2倍のバイアス電流のときに4
GHzで、変調ドープをしない多重量子井戸半導体レー
ザにくらべ、1GHz程高かった。
In the semiconductor laser of the second embodiment constructed as described above, the relaxation oscillation frequency when the resonator length is 1200 μm and the low reflection film and the high reflection film of 6% and 90% are respectively attached to the end faces is 4 when the bias current is twice the threshold
At GHz, it was about 1 GHz higher than that of the multiple quantum well semiconductor laser without modulation doping.

【0027】本実施例の場合には、量子井戸層の層数が
5層以下で、かつ、光閉じ込め率を大きくするため障壁
層の厚さを大きくとりたい素子に特に有用である。
This embodiment is particularly useful for an element in which the number of quantum well layers is 5 or less and the barrier layer is desired to have a large thickness in order to increase the optical confinement rate.

【0028】なお、以上説明した各実施例において、半
導体レーザーをInGaAsP系のファブリペロー型レーザの
例をあげたが、本発明の構成は、分布帰還型(DFB)
レーザーや分布反射型(DBR)レーザ等の単一軸モー
ドレーザにも当然適用することができる。
In each of the embodiments described above, the semiconductor laser is an InGaAsP Fabry-Perot type laser, but the structure of the present invention is a distributed feedback type (DFB).
Of course, it can be applied to a single axis mode laser such as a laser or a distributed reflection (DBR) laser.

【0029】[0029]

【発明の効果】本発明は以上説明したように構成されて
いるので、以下に記載するような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0030】本発明による変調ドープ多重量子井戸半導
体レーザでは、価電子帯のフェルミ準位が量子井戸層の
価電子帯内部に位置する程の不純物を障壁層に導入しな
がらも、その不純物が量子井戸層に拡散して非発光中心
になりレーザ特性を悪化させることを防ぐことができる
ため、p型変調ドープの効果を十分に引き出すことがで
き、緩和振動周波数等の特性を向上させることができる
効果がある。
In the modulation-doped multi-quantum well semiconductor laser according to the present invention, while introducing an impurity into the barrier layer such that the Fermi level of the valence band is located inside the valence band of the quantum well layer, the impurity is quantized. Since it can be prevented from diffusing into the well layer to become a non-emission center and deteriorating the laser characteristics, the effect of p-type modulation doping can be sufficiently brought out, and characteristics such as relaxation oscillation frequency can be improved. effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の要部構造を示す図であ
り、(a)は、バンド構造を示す図、(b)は(a)の
拡大図である。
FIG. 1 is a diagram showing a main part structure of a first embodiment of the present invention, (a) is a diagram showing a band structure, and (b) is an enlarged view of (a).

【図2】本発明の第2の実施例の要部構造を示す図であ
り、(a)は、バンド構造を示す図、(b)は(a)の
拡大図である。
2A and 2B are diagrams showing a main part structure of a second embodiment of the present invention, FIG. 2A is a view showing a band structure, and FIG. 2B is an enlarged view of FIG. 2A.

【図3】従来例の要部構造を示す図であり、(a)は、
バンド構造を示す図、(b)は(a)の拡大図である。
FIG. 3 is a diagram showing a main part structure of a conventional example, in which (a) is
The figure which shows a band structure, (b) is an enlarged view of (a).

【符号の説明】[Explanation of symbols]

101,201 n-InPバッファ層 102,202 InGaAsP光導波路層 103,203 InGaAsP障壁層 104,204 InGaAs(P)量子井戸層 105,205 p-InPクラッド層 106,206 InGaAs拡散防止層 111,211 電子の第一量子準位 112,212 ホールの第一量子準位 113,213 イオン化したZn 1l4,214 InGaAs拡散防止層のホールの第一量
子準位
101, 201 n-InP buffer layer 102, 202 InGaAsP optical waveguide layer 103, 203 InGaAsP barrier layer 104, 204 InGaAs (P) quantum well layer 105, 205 p-InP clad layer 106, 206 InGaAs diffusion prevention layer 111, 211 electrons First quantum level 112,212 first quantum level of hole 113,213 ionized Zn 11 4,214 first quantum level of hole of InGaAs diffusion prevention layer

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 InGaAsもしくはInGaAsPからなる量子井
戸層と、該量子井戸層よりも広いバンドギャップを有す
るInGaAsPからなり意図的にp型のドーパントがドーピ
ングされた障壁層とにより活性層が形成される変調ドー
プ多重量子井戸型半導体レーザにおいて、 前記障壁層内に設けられ、InGaAsからなり、障壁層との
間でつくられる量子井戸に電子の第一量子準位が存在し
ない厚さのドーパント拡散阻止層を有することを特徴と
する変調ドープ多重量子井戸型半導体レーザ。
1. An active layer is formed by a quantum well layer made of InGaAs or InGaAsP and a barrier layer made of InGaAsP having a band gap wider than that of the quantum well layer and intentionally doped with a p-type dopant. In a modulation-doped multi-quantum well semiconductor laser, a dopant diffusion blocking layer having a thickness in which the first quantum level of electrons does not exist in the quantum well formed between the barrier layer and the InGaAs, which is formed in the barrier layer. A modulation-doped multi-quantum well semiconductor laser having:
【請求項2】 請求項1記載の変調ドープ多重量子井戸
型半導体レーザにおいて、 ファブリペロー型共振構造が形成されていることを特徴
とする変調ドープ多重量子井戸型半導体レーザ。
2. A modulation-doped multi-quantum well semiconductor laser according to claim 1, wherein a Fabry-Perot resonance structure is formed.
【請求項3】 請求項1記載の変調ドープ多重量子井戸
型半導体レーザにおいて、 分布帰還型の単一モード型レーザに構成されていること
を特徴とする変調ドープ多重量子井戸型半導体レーザ。
3. The modulation-doped multiple quantum well semiconductor laser according to claim 1, wherein the modulation-doped multiple quantum well semiconductor laser is configured as a distributed feedback single-mode laser.
【請求項4】 請求項1記載の変調ドープ多重量子井戸
型半導体レーザにおいて、 分布反射型の単一モード型レーザに構成されていること
を特徴とする変調ドープ多重量子井戸型半導体レーザ。
4. The modulation-doped multi-quantum well semiconductor laser according to claim 1, which is a distributed reflection single-mode laser.
JP5271724A 1993-10-29 1993-10-29 Modulation-doped multiple quantum well semiconductor laser device Expired - Fee Related JP2556273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5271724A JP2556273B2 (en) 1993-10-29 1993-10-29 Modulation-doped multiple quantum well semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5271724A JP2556273B2 (en) 1993-10-29 1993-10-29 Modulation-doped multiple quantum well semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH07131105A JPH07131105A (en) 1995-05-19
JP2556273B2 true JP2556273B2 (en) 1996-11-20

Family

ID=17503962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5271724A Expired - Fee Related JP2556273B2 (en) 1993-10-29 1993-10-29 Modulation-doped multiple quantum well semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2556273B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6437372B1 (en) 2000-01-07 2002-08-20 Agere Systems Guardian Corp. Diffusion barrier spikes for III-V structures
JP4057802B2 (en) 2001-09-05 2008-03-05 株式会社日立製作所 Semiconductor optical device

Also Published As

Publication number Publication date
JPH07131105A (en) 1995-05-19

Similar Documents

Publication Publication Date Title
EP0332453B1 (en) Distributed feedback semiconductor laser device and current injection method therefor
US4928285A (en) Impurity-doped semiconductor laser device for single wavelength oscillation
US6989550B2 (en) Distributed feedback semiconductor laser equipment employing a grating
EP0400559B1 (en) Semiconductor optical device
JPS6254489A (en) Semiconductor light emitting element
JPH05102604A (en) Semiconductor laser device
US5914496A (en) Radiation emitting semiconductor diode of buried hetero type having confinement region of limited Al content between active layer and at least one inp cladding layer, and method of manufacturing same
US5737353A (en) Multiquantum-well semiconductor laser
JP4027639B2 (en) Semiconductor light emitting device
JP2778454B2 (en) Semiconductor laser
Mamijoh et al. Improved operation characteristics of long-wavelength lasers using strained MQW active layers
JP2556273B2 (en) Modulation-doped multiple quantum well semiconductor laser device
JP2522021B2 (en) Semiconductor laser
JP2882335B2 (en) Optical semiconductor device and method for manufacturing the same
Cao et al. GaInAsP/InP single-quantum-well (SQW) laser with wire-like active region towards quantum wire laser
US5351254A (en) Semiconductor laser
Lu et al. High-speed performance of partly gain-coupled 1.55-mu m strained-layer multiple-quantum-well DFB lasers
JPH04350988A (en) Light-emitting element of quantum well structure
US5170404A (en) Semiconductor laser device suitable for optical communications systems drive
JPH11145549A (en) Multiple quantum well structure, and optical semiconductor device and light modulator having the same
Nilsson et al. DFB laser with nonuniform coupling coefficient realized by double-layer buried grating
US6350629B1 (en) Optical semiconductor device having active layer and carrier recombination layer different from each other
JP2950853B2 (en) Semiconductor optical device
JP3572157B2 (en) Semiconductor laser device
JP2839397B2 (en) Tunable semiconductor laser device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees