JP2553338B2 - Liquid ozone production equipment - Google Patents

Liquid ozone production equipment

Info

Publication number
JP2553338B2
JP2553338B2 JP61246893A JP24689386A JP2553338B2 JP 2553338 B2 JP2553338 B2 JP 2553338B2 JP 61246893 A JP61246893 A JP 61246893A JP 24689386 A JP24689386 A JP 24689386A JP 2553338 B2 JP2553338 B2 JP 2553338B2
Authority
JP
Japan
Prior art keywords
ozone
liquefaction
cylindrical dielectric
gas
flow passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61246893A
Other languages
Japanese (ja)
Other versions
JPS63103803A (en
Inventor
閃一 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61246893A priority Critical patent/JP2553338B2/en
Publication of JPS63103803A publication Critical patent/JPS63103803A/en
Application granted granted Critical
Publication of JP2553338B2 publication Critical patent/JP2553338B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は殺菌,消毒及び漂白、その他一般の酸化等
に使用する液体オゾンの製造装置に関するものである。
TECHNICAL FIELD The present invention relates to an apparatus for producing liquid ozone used for sterilization, disinfection, bleaching, and other general oxidation.

従来の技術 従来の液体オゾンの製造装置の1つとして、筒状誘電
体の内面に複数の線状放電極を設け、その筒状誘電体の
肉厚内、或はその外面に面状に誘導電極を設け、これら
の両電極間に交流高電圧、又はパルス電圧を印加して、
該内面に沿面放電を発生させるオゾナイザにおいて、こ
こで生成したオゾンガスを別の装置で冷却して液化する
装置がある。
2. Description of the Related Art As one of the conventional liquid ozone production apparatuses, a plurality of linear discharge electrodes are provided on the inner surface of a cylindrical dielectric, and are guided in the thickness of the cylindrical dielectric or on the outer surface thereof. Electrodes are provided, and AC high voltage or pulse voltage is applied between these electrodes,
In an ozonizer that generates a creeping discharge on the inner surface, there is a device that cools and liquefies the ozone gas generated here by another device.

この装置はその沿面放電区域に酸素ガウ又は空気を供
給し、そこを流動する間にオゾンガスを生成するもので
あるので、該沿面放電区域を通過する際、一旦生成され
たオゾンの一部が上記沿面放電自体によって分解し、再
び酸素に戻るので、オゾン生成効率が低下する。
Since this device supplies oxygen gau or air to the creeping discharge area and generates ozone gas while flowing through the creeping discharge area, when passing through the creeping discharge area, a part of ozone once generated is Since it is decomposed by the creeping discharge itself and returns to oxygen again, the ozone generation efficiency decreases.

発明が解決しようとする問題点 この発明は沿面放電区域で一旦生成されたオゾンガス
がそこで再び酸素に戻ることのないようにして、オゾン
ガスの生成効率を向上することを目的とするものであ
る。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention aims at improving ozone gas generation efficiency by preventing ozone gas once generated in the creeping discharge area from returning to oxygen again.

他の目的は生成されたオゾンガスを液化温度以下に冷
却して液化し、筒状誘電体の内面にトラップせしめるこ
とである。
Another purpose is to cool the generated ozone gas below the liquefaction temperature to liquefy it and trap it on the inner surface of the tubular dielectric.

又、他の目的は生成されたオゾンガスを、その生成区
域で冷却することによってオゾンガス生成区域の圧力を
低下し、この低下現象によってその区域に新たな酸素を
自動的に供給することである。
Another object is to cool the ozone gas produced in the production zone to lower the pressure in the ozone gas production zone, and to supply new oxygen to the zone automatically by this reduction phenomenon.

更に他の目的はコロナ放電極を設けられている筒状誘
電体の一側面に液化オゾンが付着して沿面放電を妨げる
ことがないようにすることである。
Still another object is to prevent the liquefied ozone from adhering to one side surface of the cylindrical dielectric body provided with the corona discharge electrode to prevent the creeping discharge.

問題点を解決するための手段 この発明の液体オゾンの製造装置は筒状誘電体とオゾ
ン液化部との間にガス流通路を設け、該筒状誘電体のガ
ス流通路側に線状コロナ電極を設け、該線状コロナ電極
と対向するように、かつその筒状誘電体の肉厚の少なく
とも一部分を介して面状誘導電極を設け、両電極間に高
圧交流電源を接続した沿面放電によるオゾナイザに於い
て、前記オゾン液化部の温度をオゾンの液化温度以下に
強冷すると共に、筒状誘電体の温度をオゾンの液化温度
以上にガス流通路の反対側から冷却し、そのガス流通路
で生成したオゾンを熱拡散によって該オゾン液化部に付
着するものである。
Means for Solving the Problems In the liquid ozone manufacturing apparatus of the present invention, a gas flow passage is provided between the cylindrical dielectric and the ozone liquefaction section, and a linear corona electrode is provided on the gas flow passage side of the cylindrical dielectric. A planar induction electrode is provided so as to face the linear corona electrode and through at least a part of the wall thickness of the tubular dielectric, and an ozonizer by creeping discharge in which a high-voltage AC power supply is connected between both electrodes is provided. At this time, the temperature of the ozone liquefaction part is strongly cooled below the liquefaction temperature of ozone, and the temperature of the tubular dielectric is cooled above the liquefaction temperature of ozone from the opposite side of the gas flow passage and generated in the gas flow passage. The ozone is adhered to the ozone liquefaction section by thermal diffusion.

作 用 コロナ電極と面状誘導電極との間に交流高電圧を印加
し、筒状誘電体のコロナ電極を配設せる表面に沿面放電
を発生し、ここに酸素ガス又は空気を供給して、オゾン
ガスを生成する。この際、該沿面放電域に対向するオゾ
ン液化部はその附属冷却機構によってオゾンガスの液化
温度以下に冷却され、前記生成したオゾンガスは熱拡散
により急速にオゾン液化部に運ばれ、そこで強冷されて
液体オゾンとなり、該オゾン液化部の表面にトラップさ
れると共に、体積が収縮してこの部分の圧力が低下す
る。
A high AC voltage is applied between the corona electrode and the planar induction electrode to generate a creeping discharge on the surface of the cylindrical dielectric corona electrode on which oxygen gas or air is supplied. Generates ozone gas. At this time, the ozone liquefaction section facing the creeping discharge area is cooled to a temperature not higher than the liquefaction temperature of ozone gas by the auxiliary cooling mechanism, and the generated ozone gas is rapidly transported to the ozone liquefaction section by thermal diffusion, and is strongly cooled there. It becomes liquid ozone and is trapped on the surface of the ozone liquefaction part, and at the same time the volume contracts and the pressure in this part decreases.

トラップされた液体オゾンはオゾン液化部の表面に沿
って、重力によって流下し、落下孔から外部に流下し、
そこに予じめ用意された容器に貯溜される。
The trapped liquid ozone flows down by gravity along the surface of the ozone liquefaction part, and flows out from the fall hole to the outside.
It is stored in a container prepared there.

実施例 第1図に示す如くファインセラミック等で形成された
円筒状誘電体1の内面2に、本例では線状電極より成る
コロナ電極3を設け、該円筒状誘電体1の肉厚内に面状
誘導電極4を埋設して、該線状コロナ電極3と面状誘導
電極4との間に円筒状誘電体1の肉厚の一部分を介在せ
しめ、線状コロナ電極3と面状誘導電極4との間に交流
高圧電源5を接続し、この間に交流高電圧を印加し、円
筒状誘電体1の内面2に沿って沿面放電を発生させ、面
状の沿面放電域15を形成せしめる。
Example As shown in FIG. 1, a corona electrode 3 composed of a linear electrode in this example is provided on the inner surface 2 of a cylindrical dielectric 1 made of fine ceramic or the like, and the corona electrode 3 is formed within the thickness of the cylindrical dielectric 1. By embedding the planar induction electrode 4, a part of the wall thickness of the cylindrical dielectric 1 is interposed between the linear corona electrode 3 and the planar induction electrode 4, and the linear corona electrode 3 and the planar induction electrode An AC high-voltage power supply 5 is connected between the terminals 4 and 4, and an AC high voltage is applied between them to generate a creeping discharge along the inner surface 2 of the cylindrical dielectric 1 to form a planar creeping discharge area 15.

円筒状誘電体1の外週面に第3図の冷却フィン6付金
属帯7を第2図の如く捲き付けて第1図の如く、円筒状
誘電体1の外周面1aのほぼ全面に亘って冷却フィン6を
形成する。
A metal band 7 with cooling fins 6 shown in FIG. 3 is wound around the outer peripheral surface of the cylindrical dielectric 1 as shown in FIG. 2, and the outer peripheral surface 1a of the cylindrical dielectric 1 is almost entirely covered as shown in FIG. To form the cooling fins 6.

なおこの金属帯7は第3図に示すように、アルミニュ
ーム等の帯状金属帯7の両側7a,7aを折り曲げて断面溝
形7bに形成し、その両側折り曲げ片7a,7aに夫々多数の
切り込み7c,7cを入れて、刷子状に形成したものであ
る。
As shown in FIG. 3, the metal strip 7 is formed by bending both sides 7a, 7a of a strip-shaped metal strip 7 such as aluminum to form a groove 7b in cross section, and forming a large number of cuts on both side bent pieces 7a, 7a. It is formed into a brush shape by inserting 7c and 7c.

斯様にして円筒状誘電体1の外周面に形成された冷却
フィン6の外側にそれを囲むように蛇管8を設け、蛇管
8の前記冷却フィン6側に複数の噴出孔10を穿設し、蛇
管8の入口11から送り込んだ液体窒素等の液体ガスを各
噴出孔10から、冷却フィン6に向けて吹き付け、液体ガ
スの冷熱で冷却フィン6を強冷し、円筒状誘電体1の内
面2の温度をオゾンガスの液化温度(−112℃)よりや
や高い−100℃にする。
In this manner, a flexible tube 8 is provided outside the cooling fin 6 formed on the outer peripheral surface of the cylindrical dielectric body 1 so as to surround it, and a plurality of ejection holes 10 are formed on the cooling fin 6 side of the flexible tube 8. Liquid gas such as liquid nitrogen sent from the inlet 11 of the spiral tube 8 is sprayed from each ejection hole 10 toward the cooling fins 6, and the cooling fins 6 are strongly cooled by the cooling heat of the liquid gas to form an inner surface of the cylindrical dielectric 1. The temperature of 2 is set to -100 ° C, which is slightly higher than the liquefaction temperature of ozone gas (-112 ° C).

蛇管8の外側を断熱性筐体12で包囲し、その内部の冷
熱を外部に逃げないようにする。
The outer side of the flexible tube 8 is surrounded by a heat insulating casing 12 so that the cold heat inside does not escape to the outside.

更に円筒状誘電体1の内側に円筒状オゾン液化部14を
同心的に挿入し、その表面14aと筒状誘電体1の内面2
との間にガス流通路15aを形成する。
Further, a cylindrical ozone liquefaction part 14 is concentrically inserted inside the cylindrical dielectric 1, and the surface 14a and the inner surface 2 of the cylindrical dielectric 1 are inserted.
And a gas flow passage 15a is formed between

オゾン液化部14の中心部に酸素ガス供給管16を挿入
し、その下端を前記ガス流通路15aと連通し、この酸素
ガス供給管16から一定圧力に調整された酸素ガスを送入
し、該ガス流通路15aを通過せしめつつ沿面放電区域15
に供給する。
An oxygen gas supply pipe 16 is inserted in the center of the ozone liquefaction unit 14, the lower end thereof is communicated with the gas flow passage 15a, and oxygen gas adjusted to a constant pressure is fed from the oxygen gas supply pipe 16 to Creeping discharge area 15 while passing through the gas flow passage 15a
Supply to.

又、酸素ガス供給管16と前記表面14aとの間に冷却室1
7を形成し、ここに液体窒素等の液化ガス18を注入し、
その液化ガス18の冷熱で表面14aをその内側から強冷し
てその表面温度をオゾンガスの液化温度−112℃より充
分に低い温度、本例では−130℃に保つ。
Further, the cooling chamber 1 is provided between the oxygen gas supply pipe 16 and the surface 14a.
7 is formed, and a liquefied gas 18 such as liquid nitrogen is injected therein,
The surface 14a is strongly cooled from the inside by the cold heat of the liquefied gas 18 to keep the surface temperature at a temperature sufficiently lower than the liquefying temperature of ozone gas of −112 ° C., in this example −130 ° C.

沿面放電域15に供給された酸素ガスは前述の沿面放電
の作用をうけてオゾンガスとなり、それが直ちに拡散作
用によりガス流通路15aを通ってオゾン液化部14の表面1
4aに運ばれ、これに接して液化温度以下に冷却されて液
体オゾン19となって表面14aに付着し、徐々に累積して
表面14aに層を形成し、やがて重力により、14aに沿って
流下し、漏斗状底面20を経て落下孔21に達し、ここに接
続された液体オゾン容器22内に滴下して貯溜される。
Oxygen gas supplied to the creeping discharge area 15 becomes ozone gas under the action of the above-mentioned creeping discharge, which immediately diffuses through the gas flow passage 15a to the surface 1 of the ozone liquefying section 14.
4a is brought into contact with this, cooled below the liquefaction temperature to become liquid ozone 19 and adheres to the surface 14a, gradually accumulating to form a layer on the surface 14a, and eventually flows down along the surface 14a by gravity. Then, it reaches the drop hole 21 through the funnel-shaped bottom surface 20 and is dripped and stored in the liquid ozone container 22 connected thereto.

又オゾン液化部14の表面14aでオゾンガスが、上述の
ように液化される際、その体積を減じて圧力が低下する
ので、酸素ガス供給管16を通じて酸素ガスは前記圧力の
低下した沿面放電区域15に自動的に供給され、斯様にオ
ゾンの液化と酸素ガスの供給を継続的に行うものであ
る。
Further, when the ozone gas is liquefied on the surface 14a of the ozone liquefying unit 14 as described above, the volume of the ozone gas is reduced and the pressure is reduced. Therefore, the oxygen gas is supplied through the oxygen gas supply pipe 16 to the creeping discharge area 15 where the pressure is reduced. The liquefaction of ozone and the supply of oxygen gas are continuously performed.

効果 この発明は上述の通りの構成であり、沿面放電を発生
する筒状誘電体1の内面2の全域に対応して、ガス流通
路をへだてて円筒状のオゾン液化部14があり、その内側
冷却座17に導入せる液体窒素等の冷熱によってその表面
14aがオゾン液化温度以下に冷却され、上記沿面放電に
よって生成されたオゾンは熱放散によって直ちにオゾン
液化部14の表面14aに運ばれ、ここで液化して表面14aに
付着するので、一旦液化されたオゾンガスは沿面放電域
に戻り、ここで分解して酸素ガスに戻るおそれがない。
Advantageous Effects of Invention The present invention has the above-described configuration, and has a cylindrical ozone liquefying section 14 extending to the gas flow passage corresponding to the entire inner surface 2 of the cylindrical dielectric 1 that generates a creeping discharge, and the inside thereof. The surface of the cooling seat 17 is cooled by the cold heat of liquid nitrogen.
14a is cooled to below the ozone liquefaction temperature, and the ozone generated by the above-mentioned creeping discharge is immediately transported to the surface 14a of the ozone liquefaction part 14 by heat dissipation, where it is liquefied and adheres to the surface 14a, so it is once liquefied. Ozone gas returns to the creeping discharge region where it is not decomposed and returns to oxygen gas.

従ってオゾンの生成効率が前記従来のものと比較して
著しく向上できる。
Therefore, the ozone generation efficiency can be remarkably improved as compared with the conventional one.

又、生成されたオゾンガスが冷却されて液化するの
で、沿面放電区域の圧力が低下し、ここに新たな酸素ガ
スを自動的に供給することができ、液体オゾンの生成を
継続的に行うことができる。
In addition, since the generated ozone gas is cooled and liquefied, the pressure in the creeping discharge area is reduced, and new oxygen gas can be automatically supplied to this area, and liquid ozone can be continuously generated. it can.

上記の実施例においては筒状誘電体1の内面2にコロ
ナ電極3を設けた例を示したが、その外面1aにコロナ電
極3を設けてもよく、その時は誘電体1の外面1aに沿っ
てガス流通路を設け、該ガス流通路を介して、その外側
に該誘電体1を囲繞してオゾン液化部14を設けるとよ
い。
Although the corona electrode 3 is provided on the inner surface 2 of the cylindrical dielectric 1 in the above embodiment, the corona electrode 3 may be provided on the outer surface 1a of the cylindrical dielectric 1 at that time, along the outer surface 1a of the dielectric 1. A gas flow passage may be provided, and the ozone liquefaction portion 14 may be provided outside the dielectric flow passage 1 via the gas flow passage.

尚、沿面放電区域でのオゾン生成効率は温度が下るほ
ど上昇するので上記の如く筒状誘電体1の外側を冷却フ
ィン6を介して冷却し、その内面2の温度を充分低く保
ち、沿面放電域を強冷することにより、オゾンの生成効
率を大幅に上昇できる。しかし筒状誘電体1の内面2を
オゾンガスの液化温度(−112℃)以下にすると、ここ
でもオゾンが液化付着して沿面放電が阻害されるので好
ましくない。
Since the ozone generation efficiency in the creeping discharge area increases as the temperature decreases, the outside of the cylindrical dielectric 1 is cooled via the cooling fins 6 as described above, and the temperature of the inner surface 2 thereof is kept sufficiently low to prevent the creeping discharge. By strongly cooling the area, the ozone generation efficiency can be significantly increased. However, if the inner surface 2 of the tubular dielectric 1 is set to the liquefaction temperature of ozone gas (-112 ° C.) or less, ozone is liquefied and adheres here as well, and creeping discharge is hindered.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のオゾンガスの製造装置の縦断面図、第
2図はその一部分の構成を示す斜視図、第3図は第2図
の部分的拡大斜面図である。 1……筒状誘電体 2……筒状誘電体の内面 3……線状コロナ電極 4……面状誘導電極 5……高圧交流電源 6……冷却フィン 8……液化ガス用蛇管 10……噴出孔 14……オゾン液化部 18……液体オゾン 20……落下孔
FIG. 1 is a vertical cross-sectional view of the ozone gas producing apparatus of the present invention, FIG. 2 is a perspective view showing the structure of a part thereof, and FIG. 3 is a partially enlarged perspective view of FIG. 1 ... Cylindrical dielectric 2 ... Inner surface of cylindrical dielectric 3 ... Linear corona electrode 4 ... Planar induction electrode 5 ... High-voltage AC power supply 6 ... Cooling fin 8 ... Liquefied gas coil 10 ... … Spout hole 14 …… Ozone liquefaction part 18 …… Liquid ozone 20 …… Fall hole

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】筒状誘電体とオゾン液化部との間にガス流
通路を設け、該筒状誘電体のガス流通路側に線状コロナ
電極を設け、該線状コロナ電極と対向するように、かつ
その筒状誘電体の肉厚の少なくとも一部分を介して面状
誘導電極を設け、両電極間に高圧交流電源を接続した沿
面放電によるオゾナイザに於いて、前記オゾン液化部の
温度をオゾンの液化温度以下に強冷すると共に、筒状誘
電体の温度をオゾンの液化温度以上にガス流通路の反対
側から冷却し、そのガス流通路で生成したオゾンを熱拡
散によって該オゾン液化部に付着することを特徴とする
液体オゾンの製造装置。
1. A gas flow passage is provided between a cylindrical dielectric and an ozone liquefaction section, and a linear corona electrode is provided on the gas flow passage side of the cylindrical dielectric so as to face the linear corona electrode. In the ozonizer by creeping discharge in which a planar induction electrode is provided through at least a part of the wall thickness of the tubular dielectric, and a high-voltage AC power supply is connected between both electrodes, the temperature of the ozone liquefaction part is set to the value of ozone. It is strongly cooled below the liquefaction temperature, the temperature of the cylindrical dielectric is cooled above the liquefaction temperature of ozone from the opposite side of the gas flow passage, and the ozone generated in the gas flow passage is adhered to the ozone liquefaction portion by thermal diffusion. An apparatus for producing liquid ozone, which is characterized by:
【請求項2】オゾン液化部が液化ガスの冷熱を利用して
冷却されることを特徴とする特許請求の範囲第1項記載
の液体オゾンの製造装置
2. The apparatus for producing liquid ozone according to claim 1, wherein the ozone liquefaction section is cooled by utilizing the cold heat of the liquefied gas.
【請求項3】筒状誘電体が堅方向に形成され、その下端
部に液体オゾンの落下孔が形成されていることを特徴と
する特許請求の範囲1又は2記載の液体オゾンの製造装
置。
3. The apparatus for producing liquid ozone according to claim 1, wherein the cylindrical dielectric is formed in a rigid direction, and a drop hole for liquid ozone is formed at a lower end portion thereof.
JP61246893A 1986-10-17 1986-10-17 Liquid ozone production equipment Expired - Lifetime JP2553338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61246893A JP2553338B2 (en) 1986-10-17 1986-10-17 Liquid ozone production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61246893A JP2553338B2 (en) 1986-10-17 1986-10-17 Liquid ozone production equipment

Publications (2)

Publication Number Publication Date
JPS63103803A JPS63103803A (en) 1988-05-09
JP2553338B2 true JP2553338B2 (en) 1996-11-13

Family

ID=17155307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61246893A Expired - Lifetime JP2553338B2 (en) 1986-10-17 1986-10-17 Liquid ozone production equipment

Country Status (1)

Country Link
JP (1) JP2553338B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2623715B2 (en) * 1988-07-05 1997-06-25 三菱電機株式会社 Thin film forming equipment
JPH0687603A (en) * 1991-09-17 1994-03-29 Yanmaa Sangyo Kk Silent discharge ozonizer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921002A (en) * 1974-04-22 1975-11-18 Martin Marietta Corp Ozone generator
JPS5393196A (en) * 1977-01-26 1978-08-15 Hitachi Ltd Ozonizer
JPS5951060B2 (en) * 1977-03-30 1984-12-12 ソニー株式会社 tape recorder

Also Published As

Publication number Publication date
JPS63103803A (en) 1988-05-09

Similar Documents

Publication Publication Date Title
EP0160964A2 (en) Method for producing an ozone gas and apparatus for producing the same
US3967131A (en) Corona discharge ozone generating unit
US5573733A (en) Inner electrode for an ozone generator, ozone generator containing said electrode and method of use of said ozone generator
US4012770A (en) Cooling a heat-producing electrical or electronic component
US20150123540A1 (en) Device for providing a flow of plasma
US4320301A (en) Device for the production of ozone
JP2006509331A (en) Surface treatment equipment using atmospheric pressure plasma
JP2553338B2 (en) Liquid ozone production equipment
US20090211895A1 (en) Ozone generator
JPH05258882A (en) Electrodeless low pressure discharge lamp
US20080025883A1 (en) Ozone generator
JPH10182109A (en) Ozone generator
JPS6291405A (en) Ozonizer
JP3919989B2 (en) Liquid ozone production equipment
JPH082903A (en) Ozonizer
JP2005001991A (en) Ozonizer
JPS62124079A (en) Plasma arc cutting torch
JP2004224695A (en) Discharge cell for ozone generator
US1224150A (en) Arc-suppressing device.
JPS61155206A (en) Ozonizer
JP3502797B2 (en) Ozone generator
JPH0318077A (en) Metal vapor laser device
JPH0714802B2 (en) Ozonizer
JPH01208306A (en) Ozonizer
JP2001097704A (en) Multi-divided generator for high density ozone

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960514