JP2552702B2 - Dissolved gas concentration adjusting device for coolant for nuclear power generation - Google Patents

Dissolved gas concentration adjusting device for coolant for nuclear power generation

Info

Publication number
JP2552702B2
JP2552702B2 JP63047398A JP4739888A JP2552702B2 JP 2552702 B2 JP2552702 B2 JP 2552702B2 JP 63047398 A JP63047398 A JP 63047398A JP 4739888 A JP4739888 A JP 4739888A JP 2552702 B2 JP2552702 B2 JP 2552702B2
Authority
JP
Japan
Prior art keywords
gas
coolant
pressure
dissolved
supply source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63047398A
Other languages
Japanese (ja)
Other versions
JPH01223396A (en
Inventor
泰人 二子石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP63047398A priority Critical patent/JP2552702B2/en
Publication of JPH01223396A publication Critical patent/JPH01223396A/en
Application granted granted Critical
Publication of JP2552702B2 publication Critical patent/JP2552702B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Control Of Fluid Pressure (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、原子力発電等に使用される冷却材の溶存
ガス調整装置に係り、特に当該ガスの加圧ばっ気により
飽和濃度となった水(補給水)を定量ポンプで昇圧、流
量調整し、原子力発電等の冷却材に注入することにより
溶存ガス濃度を調整する原子力発電用冷却材の溶存ガス
濃度調整装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for adjusting a dissolved gas of a coolant used for nuclear power generation, etc., and particularly to water having a saturated concentration due to pressurized aeration of the gas. The present invention relates to a dissolved gas concentration adjusting device for a nuclear power generation coolant that adjusts the dissolved gas concentration by boosting and adjusting the flow rate of (make-up water) with a metering pump and injecting it into a coolant such as nuclear power generation.

[従来の技術] 一般に、原子炉の燃料の過熱に対する冷却、さらに原
子炉の炉心の熱を炉外に運び出す媒体として冷却材が使
用され、またこの冷却材は原子力発電のタービン回転の
駆動源としても用いられている。しかしながら、この冷
却材を使用すると金属を腐食するため、固体燃料を被覆
して使用したり、原子炉全系統に使用される材質はアル
ミニウムやジルコニウム、ステンレス等の耐食性のある
ものが使用されている。
[Prior Art] Generally, a coolant is used as a medium for cooling the nuclear reactor fuel against overheating, and for transporting the heat of the reactor core to the outside of the reactor. Is also used. However, when this coolant is used, it corrodes metals, so it is used as a solid fuel coating, and the materials used for the entire reactor system are corrosion resistant materials such as aluminum, zirconium, and stainless steel. .

一方、冷却材中にガス(酸素または水素)等を注入し
溶存させることにより、原子炉系の腐食を防止すること
も知られている。しかるに、ここで使用されるガスは、
酸化還元電位の低下する水素が使用され、または酸化還
元電位は上るが、これが不動態領域に入ることにより酸
化被膜を形成して腐食防止の効果のある酸素が好適に使
用される。
On the other hand, it is also known to prevent corrosion of a nuclear reactor system by injecting gas (oxygen or hydrogen) or the like into a coolant to dissolve it. However, the gas used here is
Hydrogen with a reduced redox potential is used, or oxygen with a high redox potential, which has an effect of preventing corrosion by forming an oxide film by entering the passive region, is preferably used.

そこで、従来は、前記ガスをガスボンベ等で供給し、
これを減圧弁で減圧し手動又は自動の流量調整弁で流量
を調整の上ノズルにより冷却材配管内に注入していた。
Therefore, conventionally, the gas is supplied by a gas cylinder or the like,
This was decompressed with a decompression valve, the flow rate was adjusted with a manual or automatic flow rate adjustment valve, and then injected into the coolant piping by a nozzle.

このような観点から、従来の原子力発電用冷却材への
ガス注入方式として、第2図に示すように構成したもの
が知られている。
From such a point of view, as a conventional gas injection method for a coolant for nuclear power generation, there is known a method configured as shown in FIG.

すなわち、第2図において、参照符号10はガス注入路
系を示し、このガス注入路系10にはガス供給源であるガ
スボンベ12(充填圧150kg/cm2)と、このボンベ12より
導びかれたガスを減圧(使用圧80kg/cm2)する減圧弁1
4、およびこの減圧弁で減圧されたガスの流量を調整す
る流量調整弁16と、これを制御する流量コントローラ18
が前記流量調整弁16に接続され、この流量コントローラ
18に注入路内のガスの状態(圧力、流量、温度)信号を
出力すべく、圧力センサ20、流量センサ22、および温度
センサ24がそれぞれ接続配置されている。
That is, in FIG. 2, reference numeral 10 indicates a gas injection path system, and a gas cylinder 12 (filling pressure 150 kg / cm 2 ) which is a gas supply source and a gas injection path system 10 are guided to the gas injection path system 10. Pressure reducing valve 1 for reducing the pressure of the gas (working pressure 80 kg / cm 2 )
4, and a flow rate adjusting valve 16 for adjusting the flow rate of gas decompressed by this pressure reducing valve, and a flow rate controller 18 for controlling this
Is connected to the flow rate adjusting valve 16, and this flow rate controller
A pressure sensor 20, a flow rate sensor 22, and a temperature sensor 24 are connected and arranged at 18 in order to output a signal of the gas state (pressure, flow rate, temperature) in the injection path.

そこで、このように構成されたガス注入路系10におい
て、ガスボンベ12から供給されるガスは、減圧弁14で15
0kg/cm2から80kg/cm2に減圧され、その後のガスの状態
(圧力、流量)を各センサ(圧力センサ20、流量センサ
22)で検出し、これらの検出信号と予め設定された設定
値とが流量コントローラ18で比較され、これによってガ
スの流量は流量調整弁16で冷却材内への注入に最適な流
量に調整され、冷却材配管26に接続されたノズル28によ
り注入され、冷却材中にガスを溶存させていた。
Therefore, in the gas injection path system 10 configured as described above, the gas supplied from the gas cylinder 12 is reduced by 15
The pressure is reduced from 0 kg / cm 2 to 80 kg / cm 2, and the gas state (pressure and flow rate) after that is reduced by each sensor (pressure sensor 20, flow sensor).
22), and these detection signals are compared with the preset set value by the flow rate controller 18, whereby the gas flow rate is adjusted by the flow rate adjusting valve 16 to the optimum flow rate for injection into the coolant. The gas was injected by the nozzle 28 connected to the coolant pipe 26 to dissolve the gas in the coolant.

[発明が解決しようとする課題] しかしながら、前述した従来の原子力発電用冷却材へ
のガス注入方式としては、冷却材へのガスの注入はボン
ベ圧力で決定されてしまう為、供給圧が高圧になればな
るほどボンベの残ガスが増加し、(例えば150kg/cm2
充填ポンプを80kg/cm2の注入ラインに使用すると約半分
のガスは残存することとなる)このため、ボンベの交換
頻度が高くなり、不経済となる難点がある。
[Problems to be Solved by the Invention] However, in the above-described conventional method for injecting gas into the coolant for nuclear power generation, since the injection of gas into the coolant is determined by the cylinder pressure, the supply pressure becomes high. The higher the residual gas in the cylinder, the more likely it is that when a 150 kg / cm 2 filling pump is used in an 80 kg / cm 2 injection line, about half of the gas will remain. It is expensive and uneconomical.

また、注入ガス冷却材中で溶解する為、冷却材の攪拌
能力に依存する。この為、冷却水ははげしく流動してい
る必要があり、特殊なノズルが必要となり、さらに冷却
材の圧力変動に対し、流量の調整が困難となる問題点を
有していた。
Further, since it dissolves in the injected gas coolant, it depends on the stirring ability of the coolant. Therefore, the cooling water needs to flow violently, requires a special nozzle, and has a problem that it is difficult to adjust the flow rate with respect to the pressure fluctuation of the coolant.

そこで、本発明の目的は、冷却材に溶存させるガス
を、補給液に溶解した状態で冷却材に注入することによ
り、注入量の制御を容易とし、しかもこの場合、注入水
の溶存ガス濃度を高くして注入水量を低減できると共
に、溶存ガス濃度を一定に制御することが容易であり、
さらに冷却材中に高圧で注入してもガスボンベ内の残ガ
スを少なくすることができる原子力発電用冷却材の溶存
ガス濃度調整装置を提供することにある。
Therefore, the object of the present invention is to facilitate the control of the injection amount by injecting the gas to be dissolved in the coolant into the coolant in the state of being dissolved in the replenisher, and in this case, to adjust the dissolved gas concentration of the injection water. It is possible to increase the amount of injected water by increasing it, and it is easy to control the dissolved gas concentration at a constant level.
Another object of the present invention is to provide a dissolved gas concentration adjusting device for a coolant for nuclear power generation, which can reduce the residual gas in the gas cylinder even when injected into the coolant at high pressure.

[課題を解決するための手段] 前記目的を達成するため、本発明に係る原子力発電用
冷却材の溶存ガス濃度調整装置は、原子力発電用冷却材
中にガス溶存液を注入するためのガス供給源と補給液供
給源とを設けて、前記補給液供給源に貯留される補給液
を前記ガス供給源のガス圧で加圧するように構成し、前
記補給液供給源の補給液を導入すると共に前記ガス供給
源から供給されるガスを導入してばっ気を行うばっ気器
を設け、さらに前記ばっ気器で得られたガス溶存液を前
記冷却材中に注入する吐出量調整可能なポンプを設けて
なり、前記冷却材中に前記ばっ気器および前記ポンプに
より適正な濃度のガス溶存液を連続的に注入し得るよう
構成することを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, a dissolved gas concentration adjusting device for a nuclear power generation coolant according to the present invention is provided with a gas supply for injecting a gas dissolved liquid into a nuclear power generation coolant. And a replenishing liquid supply source, the replenishing liquid stored in the replenishing liquid supply source is configured to be pressurized by the gas pressure of the gas supply source, and the replenishing liquid of the replenishing liquid supply source is introduced. An aerator is provided for introducing gas supplied from the gas supply source to perform aeration, and a discharge amount adjustable pump for injecting the gas-dissolved liquid obtained by the aerator into the coolant. It is characterized in that it is configured such that a gas dissolved liquid having an appropriate concentration can be continuously injected into the coolant by the aeration device and the pump.

この場合、前記ばっ気器に圧力検出器を設け、前記圧
力検出器の検出信号により圧力調整弁を制御して、ばっ
気器に供給される供給ガスを適正圧に調整するよう構成
すれば好適である。
In this case, it is preferable that a pressure detector is provided in the aerator and the pressure adjusting valve is controlled by a detection signal of the pressure detector to adjust the supply gas supplied to the aerator to an appropriate pressure. Is.

[作用] 本発明に係る原子力発電用冷却材の溶存ガス濃度調整
装置によれば、ガス供給源より供給されたガスは減圧し
たのち、補給液供給源およびばっ気器に供給される。
[Operation] According to the dissolved gas concentration adjusting device for a nuclear power generation coolant according to the present invention, the gas supplied from the gas supply source is depressurized and then supplied to the replenisher supply source and the aerator.

さらに前記供給ガスおよび補給液供給源の液は圧力調
整弁によりそれぞれ適正圧に調整されて前記ばっ気器に
供給され、前記液中にガスを溶解させて所定の溶存ガス
溶存液を得る。
Further, the liquids of the supply gas and the replenishing liquid supply source are adjusted to proper pressures by the pressure adjusting valves and supplied to the aerator, and the gas is dissolved in the liquid to obtain a predetermined dissolved gas dissolved liquid.

このガス溶存液を定量ポンプにて昇圧、定流量に制御
すると共に吐出量制御器で適宜制御したものを冷却材中
に注入することにより冷却材の溶存ガス濃度を調整する
ことができる。
The dissolved gas concentration of the coolant can be adjusted by injecting into the coolant the gas-dissolved liquid whose pressure is controlled by the metering pump to a constant flow rate and which is appropriately controlled by the discharge amount controller.

[実施例] 次に、本発明に係る原子力発電用冷却材の溶存ガス濃
度調整装置の実施例につき、添附図面を参照しながら以
下詳細に説明する。なお、説明の便宜上、第2図に示す
従来例と同一の部分については同一の参照符号を付して
その詳細な説明は省略する。
[Embodiment] Next, an embodiment of the dissolved gas concentration adjusting device for a coolant for nuclear power generation according to the present invention will be described in detail below with reference to the accompanying drawings. For convenience of explanation, the same parts as those of the conventional example shown in FIG. 2 are designated by the same reference numerals, and detailed description thereof will be omitted.

第1図において、12はガス供給源となるガスボンベで
あり、32は補給液供給源である純水補給用の補給水タン
クを示し、34はばっ気器を示す。このばっ気器34では、
ガスボンベ(充填圧150kg/cm2)から供給されるガス圧
を減圧弁14で9kg/cm2に減圧し、さらに圧力調整弁30で
調整された供給ガスを補給水タンク32より供給された補
給水中に溶解させ、所定の溶存ガス濃度のガス溶存液を
得る。さらにこのばっ気器34には内部圧を検出する圧力
検出器である圧力センサ20を設け、この圧力センサ20に
は圧力コントローラ36が接続されている。この圧力コン
トローラ36から出力される制御信号で前記圧力調整弁30
を制御し、前記ばっ気器34に供給される補給水と、供給
ガス圧を適正な圧力に調整する。
In FIG. 1, 12 is a gas cylinder which is a gas supply source, 32 is a makeup water tank for supplementing pure water which is a makeup liquid supply source, and 34 is an aerator. In this aerator 34,
The gas pressure supplied from a gas cylinder (filling pressure 150 kg / cm 2 ) was reduced to 9 kg / cm 2 by the pressure reducing valve 14, and the supply gas adjusted by the pressure adjusting valve 30 was supplied to the make-up water supplied from the make-up water tank 32. To obtain a gas-dissolved liquid having a predetermined dissolved gas concentration. Further, the aerator 34 is provided with a pressure sensor 20 which is a pressure detector for detecting an internal pressure, and a pressure controller 36 is connected to the pressure sensor 20. With the control signal output from the pressure controller 36, the pressure regulating valve 30
Is controlled to adjust the makeup water supplied to the aerator 34 and the supply gas pressure to an appropriate pressure.

また、前記ばっ気器34内で所定の溶存ガス濃度に溶解
したガス溶存液である注入水を冷却材中に注入するた
め、定量ポンプ38の吸込側は前記ばっ気器34に接続さ
れ,さらに前記定量ポンプ38の吐出側は原子力発電冷却
用配管26に接続されている。これによって冷却材の溶存
ガス濃度調整装置が構成される。
Further, in order to inject the injection water, which is a gas-dissolved liquid dissolved in a predetermined dissolved gas concentration in the aerator 34, into the coolant, the suction side of the metering pump 38 is connected to the aerator 34, and The discharge side of the metering pump 38 is connected to the nuclear power generation cooling pipe 26. This constitutes a dissolved gas concentration adjusting device for the coolant.

このように構成された本実施例における溶存ガス濃度
調整装置は、ガスボンベ12より導かれたガスを減圧弁14
で減圧し、圧力調整弁30を通過したガスはそれぞれ補給
水タンク32およびばっ気器34に供給される。
The dissolved gas concentration adjusting apparatus in the present embodiment configured as described above, the gas introduced from the gas cylinder 12 pressure reducing valve 14
The gas whose pressure has been reduced by and which has passed through the pressure control valve 30 is supplied to the makeup water tank 32 and the aerator 34, respectively.

さらにこのばっ気器34では、ばっ気器34内の圧力を圧
力センサ20で検出し圧力コントローラ36からのフィード
バック信号を介して圧力調整弁30により供給ガスを適正
圧(例えば9kg/cm2)に調整し、このガスを補給水タン
ク32から供給される純水中に溶解(例えば8PPM程度)の
注入水を得る。
Further, in this aeration device 34, the pressure inside the aeration device 34 is detected by the pressure sensor 20, and the supply gas is adjusted to an appropriate pressure (for example, 9 kg / cm 2 ) by the pressure adjusting valve 30 via the feedback signal from the pressure controller 36. Adjustment is performed to obtain injection water of which this gas is dissolved (for example, about 8 PPM) in pure water supplied from the makeup water tank 32.

このようにして、酸素または水素を好適に溶解して得
られた注入水は、定量ポンプ38で昇圧し、定流量を冷却
材配管26または容器(図示せず)に連続的に注入するこ
とができる。また、この定量ポンプ38の吐出量はポンプ
吐出量制御器40により調整し、冷却材の溶存ガス濃度を
調整することができる。
In this way, the injection water obtained by preferably dissolving oxygen or hydrogen is pressurized by the metering pump 38, and a constant flow rate can be continuously injected into the coolant pipe 26 or the container (not shown). it can. Further, the discharge amount of the metering pump 38 can be adjusted by the pump discharge amount controller 40 to adjust the dissolved gas concentration of the coolant.

[発明の効果] 以上説明したように、本発明に係る原子力発電用冷却
材の溶存ガス濃度調整装置によれば、原子力発電用冷却
材中にガス溶存液を注入するためのガス供給源と補給液
供給源とを設けて、前記補給液供給源に貯留される補給
液を前記ガス供給源のガス圧で加圧するように構成し、
前記補給液供給源の補給液を導入すると共に前記ガス供
給源から供給されるガスを導入してばっ気を行うばっ気
器を設け、さらに前記ばっ気器で得られたガス溶存液を
前記冷却材中に注入する吐出量調節可能なポンプを設け
てなり、前記冷却材中に前記ばっ気器および前記ポンプ
により適正な濃度のガス溶存液を連続的に注入し得る構
成としたことにより、供給ガスを補給水に溶解した状態
で、冷却材中に注入することができ、これにより注入量
の制御を容易に達成することができる。
[Advantages of the Invention] As described above, according to the dissolved gas concentration adjusting device for a nuclear power generation coolant according to the present invention, a gas supply source and a replenisher for injecting a gas dissolved liquid into the nuclear power generation coolant. A liquid supply source is provided, and the replenishment liquid stored in the replenishment liquid supply source is configured to be pressurized by the gas pressure of the gas supply source,
An aerator for introducing a supply liquid of the supply liquid supply source and introducing gas supplied from the gas supply source is provided, and the gas-dissolved liquid obtained by the aeration device is further cooled. A pump capable of adjusting the discharge amount to be injected into the material is provided, and a gas dissolved liquid having an appropriate concentration can be continuously injected into the coolant by the aeration device and the pump The gas can be injected into the coolant in the state of being dissolved in the makeup water, whereby the injection amount can be easily controlled.

また、本発明においては、ガス溶存液を冷却材中に注
入するポンプを設けていることから、例えばガス供給圧
力を10kg/cm2未満に減圧して使用することができるた
め、冷却材中に高圧で注入しても、ガスボンベ内の残ガ
スは、従来よりも少なくすることができる。
Further, in the present invention, since a pump for injecting a gas-dissolved liquid into the coolant is provided, for example, the gas supply pressure can be reduced to less than 10 kg / cm 2 and can be used. Even if the gas is injected at a high pressure, the residual gas in the gas cylinder can be reduced as compared with the conventional case.

さらに、補給水を所要のガス圧によって加圧してばっ
気器に供給することにより、冷却材中への注入水の溶存
ガス濃度を高くして、注入水量を低減することができる
と共に、溶存ガス濃度を一定に制御することが容易とな
る等、多くの優れた利点が得られる。
Furthermore, by supplying makeup water to the aerator by pressurizing it with the required gas pressure, it is possible to increase the concentration of the dissolved gas in the injected water into the coolant and reduce the amount of injected water. There are many excellent advantages, such as easy control of the concentration.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る原子力発電用冷却材の溶存ガス濃
度調整装置を示す系統図、 第2図は従来の冷却材の溶存ガス濃度調整装置の一実施
例を示す系統図である。 10……ガス注入路系 12……ガスボンベ 14……減圧弁 16……流量調整弁 18……流量コントローラ 20……圧力センサ 22……流量センサ 24……温度センサ 26……冷却材配管 28……注入ノズル 30……圧力調整弁 32……補給水タンク 34……ばっ気器 36……圧力コントローラ 38……定量ポンプ 40……ポンプ吐出量制御器
FIG. 1 is a system diagram showing a dissolved gas concentration adjusting apparatus for a coolant for nuclear power generation according to the present invention, and FIG. 2 is a system diagram showing an embodiment of a conventional dissolved gas concentration adjusting apparatus for a coolant. 10 …… Gas injection path system 12 …… Gas cylinder 14 …… Reducing valve 16 …… Flow control valve 18 …… Flow controller 20 …… Pressure sensor 22 …… Flow sensor 24 …… Temperature sensor 26 …… Coolant piping 28… Injecting nozzle 30 Pressure adjusting valve 32 Makeup water tank 34 Aeration device 36 Pressure controller 38 Metering pump 40 Pump discharge rate controller

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原子力発電用冷却材中にガス溶存液を注入
するためのガス供給源と補給液供給源とを設けて、前記
補給液供給源に貯留される補給液を前記ガス供給源のガ
ス圧で加圧するように構成し、前記補給液供給源の補給
液を導入すると共に前記ガス供給源から供給されるガス
を導入してばっ気を行うばっ気器を設け、さらに前記ば
っ気器で得られたガス溶存液を前記冷却材中に注入する
吐出量調節可能なポンプを設けてなり、前記冷却材中に
前記ばっ気器および前記ポンプにより適正な濃度のガス
溶存液を連続的に注入し得るよう構成することを特徴と
する原子力発電用冷却材の溶存ガス濃度調整装置。
1. A gas supply source for injecting a gas-dissolved liquid into a coolant for nuclear power generation and a replenishment liquid supply source, wherein the replenishment liquid stored in the replenishment liquid supply source is supplied to the gas supply source. An aerator is provided which is configured to pressurize with a gas pressure, introduces the replenishing liquid of the replenishing liquid supply source and introduces the gas supplied from the gas supply source to perform aeration, and further the aerator. A discharge amount adjustable pump for injecting the gas-dissolved liquid obtained in 1. into the coolant is provided, and the gas-dissolved liquid having an appropriate concentration is continuously supplied to the coolant by the aeration device and the pump. An apparatus for adjusting a dissolved gas concentration of a coolant for nuclear power generation, which is configured to be injected.
【請求項2】ばっ気器に圧力検出器を設け、前記圧力検
出器の検出信号により圧力調整弁を制御して、ばっ気器
に供給される供給ガスを適正圧に調整するよう構成して
なる請求項1記載の原子力発電用冷却材の溶存ガス濃度
調整装置。
2. A pressure detector is provided on the aerator, and a pressure control valve is controlled by a detection signal of the pressure detector to adjust the supply gas supplied to the aerator to an appropriate pressure. The dissolved gas concentration adjusting device for a coolant for nuclear power generation according to claim 1.
JP63047398A 1988-03-02 1988-03-02 Dissolved gas concentration adjusting device for coolant for nuclear power generation Expired - Lifetime JP2552702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63047398A JP2552702B2 (en) 1988-03-02 1988-03-02 Dissolved gas concentration adjusting device for coolant for nuclear power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63047398A JP2552702B2 (en) 1988-03-02 1988-03-02 Dissolved gas concentration adjusting device for coolant for nuclear power generation

Publications (2)

Publication Number Publication Date
JPH01223396A JPH01223396A (en) 1989-09-06
JP2552702B2 true JP2552702B2 (en) 1996-11-13

Family

ID=12774009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63047398A Expired - Lifetime JP2552702B2 (en) 1988-03-02 1988-03-02 Dissolved gas concentration adjusting device for coolant for nuclear power generation

Country Status (1)

Country Link
JP (1) JP2552702B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002379A (en) * 2008-06-23 2010-01-07 Toshiba Corp Manufacturing method for radioactive waste processing material, radioactive waste processing method, and radioactive waste backfilling method
EP3994707A1 (en) * 2019-07-03 2022-05-11 Framatome Gmbh Hydrogenation system for a pressurized water reactor and according method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142497A (en) * 1980-04-09 1981-11-06 Tokyo Shibaura Electric Co Device for controlling concentration of dissolved oxgen in atomic power plant condenser and feedwater system
JPS58105097A (en) * 1981-12-18 1983-06-22 株式会社日立製作所 Method of controlling water quality of reactor coolant
JPH01110296A (en) * 1987-10-23 1989-04-26 Hitachi Ltd Gas injection in high pressure liquid and its device

Also Published As

Publication number Publication date
JPH01223396A (en) 1989-09-06

Similar Documents

Publication Publication Date Title
US7329312B2 (en) Apparatus for supplying water containing dissolved gas
US6766810B1 (en) Methods and apparatus to control pressure in a supercritical fluid reactor
JP2552702B2 (en) Dissolved gas concentration adjusting device for coolant for nuclear power generation
US20200353431A1 (en) Functional water producing apparatus and functional water producing method
KR880000514B1 (en) Liquid mixing method and apparatus thereof
JP4237473B2 (en) Chemical injection method and apparatus
KR100487387B1 (en) Device for introducing gas into the primary coolant in a pressurised water reactor
JPS63236530A (en) Apparatus for injecting low vapor pressure substance in low pressure or vacuum system
JP3135385B2 (en) Nuclear plant water quality improvement equipment
JP4379170B2 (en) Pressure filling device
JP2005133785A (en) Supplying device
JPH05149506A (en) Feeding method for aqueous ammonia
JP7223173B2 (en) Hydrogenation system for pressurized water reactor and corresponding method
JP2987333B2 (en) Boiler dosing control method
JP3332574B2 (en) Low-temperature fluid deep-sea charging device
SU1239520A1 (en) Device for metered dispensing of liquid
JP3118123B2 (en) Yeast addition device
JPS55112891A (en) Roller pump apparatus
JPH0626609A (en) Water supplying device
JPH06304459A (en) Method for feeding oxygen in condensate and supply water system
JPS5942769B2 (en) Chemical injection device
JPH1047607A (en) Oxygen injection device in condensate and feed water system
JPH01110296A (en) Gas injection in high pressure liquid and its device
JPS61294331A (en) Pressure proof temperature controller
JP2009213946A (en) Surface treatment apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12