JPS5942769B2 - Chemical injection device - Google Patents
Chemical injection deviceInfo
- Publication number
- JPS5942769B2 JPS5942769B2 JP186480A JP186480A JPS5942769B2 JP S5942769 B2 JPS5942769 B2 JP S5942769B2 JP 186480 A JP186480 A JP 186480A JP 186480 A JP186480 A JP 186480A JP S5942769 B2 JPS5942769 B2 JP S5942769B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon dioxide
- flow rate
- dioxide gas
- pressure
- ground
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
Description
【発明の詳細な説明】
本発明は水ガラス系固結薬液を軟弱または漏水地盤以下
単に地盤という)に注入して地盤の固結または止水(以
下単に固結という)を計る薬液注入工法および装置に関
し、さらに詳細には水ガラスの反応剤として炭酸ガスを
用いた薬液注入工法および装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a chemical injection method in which a water glass-based solidifying chemical is injected into soft or leaky ground (hereinafter simply referred to as "ground") to solidify or stop water (hereinafter simply referred to as "solidification"). The present invention relates to a device, and more particularly to a chemical injection method and device using carbon dioxide gas as a reactant for water glass.
従来、地盤を固結させるに際し、水ガラス水溶液とその
硬化剤との混合注入は液−液または固液の状態で行なわ
れて来たが、硬化剤として炭酸ガスを利用する工法が開
発されるに至り薬液が気−液の状態で混合注入されるよ
うになった。Conventionally, when consolidating the ground, aqueous water glass solution and its hardening agent were mixed and injected in a liquid-liquid or solid-liquid state, but a method using carbon dioxide gas as the hardening agent was developed. As a result, chemical solutions were mixed and injected in a gas-liquid state.
水ガラス水溶液に炭酸ガスを合流させて注入する場合、
両者はその容積流量比率ではなく絶対流量比重水ガラス
のアルカリ量と炭酸ガスとの当量関係)をある一定範囲
にしないと、常に同一状態の均一な固結体を形成させる
ことは不可能である。When injecting carbon dioxide gas into a water glass aqueous solution,
Unless the relationship between the alkali content of water glass and the equivalent amount of carbon dioxide gas is within a certain range, it is impossible to form a uniform solid that is always in the same state. .
公知の工法では、水ガラス水容液は合流される流量その
ものがほぼその絶対量であるのに反して、炭酸ガスは合
流される流量が一定であっても、地盤内の圧力が変化す
るとその炭酸量は大巾に変動し、従って水ガラスとの比
率が一定でな(なり、この反応によって生成するゲル化
物の品質にばらつきを生じる欠陥を有していた。In known construction methods, the combined flow rate of water glass aqueous liquid is almost the absolute amount, whereas for carbon dioxide gas, even if the combined flow rate is constant, it changes when the pressure in the ground changes. The amount of carbonic acid fluctuated widely, and therefore the ratio to water glass was not constant (this resulted in a defect that caused variations in the quality of the gelled product produced by this reaction).
本発明の目的は、水ガラス量に対して混合すべき炭酸ガ
スを絶対量で常にほぼ一定割合で注入しテ均一な固結体
を形成させることにある。An object of the present invention is to form a uniform solid by always injecting an absolute amount of carbon dioxide gas to be mixed with the amount of water glass at a substantially constant ratio.
本発明によれば、上記の目的は、地盤に水ガラス水溶液
と加圧炭酸ガスとを合流注入するにあたり)地盤圧の変
動にかかわらず水ガラス水溶液と炭酸ガスの絶対流量を
一定比率で合流して注入する薬液注入工法によって達成
される。According to the present invention, the above object is to combine the absolute flow rates of the water glass aqueous solution and the pressurized carbon dioxide gas at a constant ratio regardless of changes in ground pressure (when injecting the water glass aqueous solution and pressurized carbon dioxide gas into the ground). This is achieved using the chemical injection method.
さらに上記目的を可能にするための装置の例を示せば、
地盤中に挿入された注入管に連結された水ガラス貯槽と
前記多重管内に連結された炭酸ガス貯槽とを備えた薬液
注入装置において、前記炭酸ガス貯槽と前記注入管との
間に圧力変動感知装置を設けた薬液注入装置を提示する
ことができる。Furthermore, an example of a device for realizing the above purpose is as follows.
In a chemical liquid injection device comprising a water glass storage tank connected to an injection pipe inserted into the ground and a carbon dioxide gas storage tank connected within the multiple pipes, pressure fluctuations are detected between the carbon dioxide gas storage tank and the injection pipe. A liquid drug injection device provided with the device can be presented.
以下、本発明を詳述する。The present invention will be explained in detail below.
薬液注入工法において、注入開始から終了まで常に地盤
の圧力が一定であることはほとんどなく、薬液注入工程
で地盤の固結状態によって絶えず地盤内の圧力は変動を
きたす。In the chemical injection method, the pressure in the ground is rarely constant from the start to the end of the injection, and the pressure in the ground constantly fluctuates depending on the consolidation state of the ground during the chemical injection process.
液−液または固−液系の薬液注入では、地盤内の圧力変
動があっても、液−液または固−液の絶対流量比率にそ
れほど変動はきたさないし、また注入ポンプの回転数の
調節をはかることにより、比較的容易に注入量の比率を
一定に保つことができる。In liquid-liquid or solid-liquid chemical injection, even if there are pressure fluctuations in the ground, the absolute flow rate ratio of liquid-liquid or solid-liquid does not change much, and the rotation speed of the injection pump cannot be adjusted. By measuring, it is possible to keep the injection amount ratio constant relatively easily.
すなわち、注入量の比率そのものが絶対量の比率に対応
する。That is, the ratio of injection amounts itself corresponds to the ratio of absolute amounts.
従って、水ガラス水溶液と反応剤の水溶液を一定の流量
比率で合流させることにより、一定の反応による固結効
果をうることができる。Therefore, by combining the water glass aqueous solution and the reactant aqueous solution at a constant flow rate, it is possible to obtain a solidification effect due to a constant reaction.
ところが水ガラス水溶液に炭酸ガスを合流させて注入す
る場合、地盤内の圧力変化があってもその容積比率をほ
ぼ一定に維持することは比較的容易であるが、水ガラス
水溶液の方は、合流される流量そのものがほぼその絶対
量であるにもかかわらず、炭酸ガスの方は上記の通り、
合流される流量が一定であっても、地盤の圧力変化に伴
って絶対量に変動を来し、不均一な固結体を生じる原因
となる。However, when injecting carbon dioxide gas into a water glass aqueous solution, it is relatively easy to maintain the volume ratio almost constant even if there are pressure changes in the ground. Although the flow rate itself is almost the absolute amount, as mentioned above, the carbon dioxide gas is
Even if the combined flow rate is constant, the absolute amount will fluctuate due to changes in ground pressure, causing non-uniform solidification.
以下、図面を用いて本発明をさらに詳述する。Hereinafter, the present invention will be explained in further detail using the drawings.
第1〜3図は、それぞれ本発明を具体的に説明するフロ
ーシートである。1 to 3 are flow sheets specifically explaining the present invention.
第1図中、炭酸ガスは貯槽1から減圧調整弁2によって
一定圧に制御されて圧送される。In FIG. 1, carbon dioxide gas is pumped from a storage tank 1 while being controlled to a constant pressure by a pressure reduction regulating valve 2.
変動する地盤4の圧力は圧力変動感知装置Aに感知させ
て地盤圧に対応した近似的な絶対流量の炭酸ガスを圧送
することができる。The changing pressure of the ground 4 can be sensed by the pressure fluctuation sensing device A, and carbon dioxide gas can be pumped at an approximate absolute flow rate corresponding to the ground pressure.
一方、水ガラス水溶液は貯槽5から減圧調整弁6を通り
、回転数を調節したポンプ7、流量計8を経て地盤4に
向って送られる。On the other hand, the water glass aqueous solution is sent from the storage tank 5 to the ground 4 through a pressure reduction regulating valve 6, a pump 7 whose rotation speed is adjusted, and a flow meter 8.
水ガラス水溶液と炭酸ガスは注入管の上端部または多重
管9よりなる注入管の末端部で合流されて地盤4に注入
される。The water glass aqueous solution and carbon dioxide gas are combined at the upper end of the injection tube or at the end of the injection tube consisting of multiple tubes 9 and are injected into the ground 4.
さらに、本発明に用いを具体的な装置の例として第2図
に示すような装置を示すことができる。Furthermore, a device as shown in FIG. 2 can be shown as a specific example of the device used in the present invention.
第2図中、炭酸ガスは貯槽10から減圧調整弁20によ
って一定圧に制御されて圧送される。In FIG. 2, carbon dioxide gas is pumped from a storage tank 10 while being controlled to a constant pressure by a pressure reduction regulating valve 20.
変動する地盤40の圧力は、炭酸ガス量コントローラー
40が感知して、それぞれに別個の流量を予め設定した
並列に連結された複数個の自動流量調節弁50,50’
・・・・・・を開または閉に作動させることによって、
炭酸ガスを地盤圧に対応した近似的な絶対流量に制御し
て圧送することができる。The fluctuating pressure of the ground 40 is sensed by the carbon dioxide gas amount controller 40, and a plurality of automatic flow control valves 50, 50' connected in parallel each have a separate flow rate set in advance.
・・・・・・By operating to open or close,
Carbon dioxide gas can be controlled and pumped at an approximate absolute flow rate corresponding to ground pressure.
調節弁50,50’・・・・・・はその数を増すほど炭
酸ガスの絶対流量がより適確に制御される。As the number of control valves 50, 50', . . . increases, the absolute flow rate of carbon dioxide gas is controlled more accurately.
炭酸カス圧力流量指示計60は地盤圧と炭酸ガスの注入
ガスの注入容量の指示計で、炭酸ガスの送入容量と地盤
圧を指示または記録してその相互関係から炭酸ガスの絶
対流量をチェックするためのものである。The carbon dioxide gas pressure flow rate indicator 60 is an indicator for ground pressure and carbon dioxide injection gas injection capacity, and indicates or records the carbon dioxide gas feeding capacity and ground pressure, and checks the absolute flow rate of carbon dioxide gas from the correlation between them. It is for the purpose of
水ガラス水溶液は、第1図の場合と同様に貯槽90から
減圧調整弁100を通り、回転数を調節したポンプ11
0、流量計120を経て地盤140に向って送られる。As in the case of FIG.
0, is sent toward the ground 140 via the flow meter 120.
このようにして水ガラス水溶液と炭酸ガスは注入管の上
端部または多重管130よりなる注入管の末端部で合流
されて地盤140に注入される。In this way, the water glass aqueous solution and the carbon dioxide gas are combined at the upper end of the injection tube or at the end of the injection tube made up of multiple tubes 130 and are injected into the ground 140.
さらに、本発明に用いる装置の例として第3図に示すよ
うな装置を示すことができる。Further, as an example of the device used in the present invention, a device as shown in FIG. 3 can be shown.
第3図中、炭酸ガスは貯槽200から減圧調整弁210
によって一定圧に制御されて圧送される。In FIG. 3, carbon dioxide is supplied from a storage tank 200 to a pressure reduction regulating valve 210.
It is controlled to a constant pressure and fed under pressure.
変動する地盤230の圧力は圧力伝送器240から発す
る電流信号によってグラフィック演算器250に伝送さ
れる。The changing pressure of the ground 230 is transmitted to the graphic calculator 250 by a current signal generated from the pressure transmitter 240.
一方、流量計260の前後の圧力差を3個のバルブマニ
ホールド270,270/。On the other hand, the pressure difference before and after the flow meter 260 is measured by three valve manifolds 270, 270/.
270〃を通じて差圧伝送器280によって開閉演算器
290に伝送される。270, the differential pressure transmitter 280 transmits the signal to the switching operator 290.
両演算器250および290の演算結果を流量指示調節
計300で調節し、自動流量調節弁310を作動させる
ことにより、地盤圧に対応して連続的に一定の絶対流量
を圧送することができる。By adjusting the calculation results of both calculation units 250 and 290 with the flow rate indicating controller 300 and operating the automatic flow rate control valve 310, it is possible to continuously pump a constant absolute flow rate in accordance with the ground pressure.
水ガラス水溶液は、第1図の場合と同様に貯槽320か
ら減圧調整弁330を通り、ポンプ340および流量計
350を経て地盤230に向って送られる。As in the case of FIG. 1, the water glass aqueous solution is sent from the storage tank 320 to the ground 230 through the pressure reduction regulating valve 330, through the pump 340 and the flow meter 350.
このようにして水ガラス水溶液と炭酸ガスは注入管の上
端部または多重管360よりなる注入管の末端部で合流
されて地盤230に注入される。In this way, the water glass aqueous solution and the carbon dioxide gas are combined at the upper end of the injection tube or at the end of the injection tube consisting of multiple tubes 360 and are injected into the ground 230.
以上、第1〜3図のいずれの装置を用いても炭酸ガスの
絶対流量が好ましく制御され、水ガラス水溶液と炭酸ガ
スの絶対流量を一定比率で合流注入する二とができ、そ
の結果均一な固結体が得られる。As described above, the absolute flow rate of carbon dioxide gas can be preferably controlled using any of the devices shown in Figs. A solid is obtained.
第2図の場合策池盤の圧力の変動に応じた炭酸ガスの絶
対流量を連続的に制御されるので、第1図の断続的の制
御に比べて誤差は極めて少ない。In the case of FIG. 2, the absolute flow rate of carbon dioxide gas is continuously controlled in response to fluctuations in the pressure of the basin plate, so the error is extremely small compared to the intermittent control shown in FIG.
しかし、勿論、設備面では第1図の場合の方が安価です
む。However, of course, in terms of equipment, the case shown in FIG. 1 is cheaper.
ここで絶対流量で一定比率に保たれた水ガラス水溶液と
炭酸ガスを地盤に注入するにあたっては、Y字管等を用
いて注入管の上端部で合流注入する方式を用いることも
できるが、水ガラスの濃度が濃厚な場合は管内で固結し
てしまうおそれがある。In order to inject the water glass aqueous solution and carbon dioxide gas, which are kept at a constant absolute flow rate, into the ground, it is possible to use a method such as a Y-shaped pipe where they are combined at the upper end of the injection pipe. If the glass is highly concentrated, it may solidify inside the pipe.
このため注入管の末端部付近で噴射合流させることによ
って十分満足な固結体をうろことができる。Therefore, by merging the injections near the end of the injection tube, a sufficiently satisfactory amount of solids can be obtained.
これには多重管を用いて多重管の末端部で水ガラス水溶
液と炭酸ガスを合流させればよい。For this purpose, multiple tubes may be used and the water glass aqueous solution and carbon dioxide gas may be combined at the ends of the multiple tubes.
使用する多重管の末端部は可及的に気−液の接触面積を
太き(して反応効率を高めることが望ましい。It is desirable to increase the gas-liquid contact area as much as possible at the end of the multi-tube used to increase reaction efficiency.
具体的には多重管末端部の混合室で混合して注入するか
、または末端部から水ガラスと炭酸ガスをそれぞれ地盤
に噴出させ、地盤中で混合しながら、気−液混合物の状
態で地盤中に浸透させる方法をとることができる。Specifically, water glass and carbon dioxide gas can be mixed in a mixing chamber at the end of multiple pipes and then injected, or water glass and carbon dioxide gas can be jetted into the ground from the end, and while mixing in the ground, the gas-liquid mixture is poured into the ground. You can take the method of infiltrating it inside.
以下、実施例により本発明をさらに詳述する。Hereinafter, the present invention will be explained in further detail with reference to Examples.
例1゜ 第2図の装置を用いて下記の実験を行なった。Example 1゜ The following experiment was conducted using the apparatus shown in FIG.
まず、直径2m高さ2mの耐圧モールド中に砂質土を填
充し深度1mの位置に二重管を挿入し、炭酸ガスは内管
から、水ガラス水溶液は外管から送入した。First, a pressure-resistant mold with a diameter of 2 m and a height of 2 m was filled with sandy soil, a double pipe was inserted at a depth of 1 m, and carbon dioxide gas was introduced from the inner pipe and a water glass solution was introduced from the outer pipe.
水ガラスは3号水ガラスの25q6水溶液を用い、吐出
量101扁で送入した。A 25q6 aqueous solution of No. 3 water glass was used as the water glass, and it was fed at a discharge rate of 101 mm.
炭酸ガスは減圧調整弁にて10に’;l/c4の一定圧
に保ち、注入開始時の吐出圧力を5.5kq/c!で仕
出量を25tlnユとした。The carbon dioxide gas is kept at a constant pressure of 10'l/c4 with a pressure reducing valve, and the discharge pressure at the start of injection is 5.5kq/c! The amount of catering was set at 25 tln.
モールド中には人為的に外部より圧力を加減出来るよう
にして注入管出口の圧力を変化させた。During the molding, the pressure at the outlet of the injection tube was changed by artificially controlling the pressure from the outside.
自動流量調節弁50,50’・・・・・・は6個設置し
、第1表に示す炭酸ガス量でそれぞれ作動するようにこ
れらの調節弁(電磁弁)を調節した。Six automatic flow rate control valves 50, 50', .
地盤圧の変動をコントローラーに感知させて、その指令
によって6個の電磁弁が地盤圧に対応して作動した。The controller sensed changes in ground pressure, and the commands activated six solenoid valves in response to ground pressure.
地盤圧の変動とそれに対応して流れた炭酸ガス容量流量
と、その時の電磁弁の作動状態は第4A図に示す如(な
った。Figure 4A shows the changes in ground pressure, the corresponding flow rate of carbon dioxide gas, and the operating state of the solenoid valve at that time.
第4A図で明らかなように電磁弁の開・閉によって制御
されるので地盤圧の連続的な変動に対して炭酸ガスの流
量は段階的である。As is clear from FIG. 4A, since it is controlled by opening and closing a solenoid valve, the flow rate of carbon dioxide gas changes in stages in response to continuous fluctuations in ground pressure.
しかし電磁弁の数を増やし、それぞれの設定流量を巧み
に組合せて作動させることにより、かなりの精度が期待
できる。However, considerable accuracy can be expected by increasing the number of solenoid valves and skillfully combining the set flow rates of each valve.
例2゜
第3図の装置を用いて例1の実験を行なつ丸炭酸ガス流
量計260はオリフィス計を使用し、その前後の差圧は
3個のパルプマニホールドを介して開閉演算器に導いた
。Example 2゜The experiment of Example 1 was carried out using the apparatus shown in Figure 3. The round carbon dioxide gas flow meter 260 uses an orifice meter, and the differential pressure before and after the meter is led to the opening/closing calculator via three pulp manifolds. Ta.
自動流量調節弁310はダイヤフラム弁を用い、流量調
節計からの指示により炭酸ガスの流量は地盤圧の変動に
対応してダイヤフラム弁を連続的に作動させることがで
きた。A diaphragm valve was used as the automatic flow rate control valve 310, and the diaphragm valve could be operated continuously according to instructions from a flow rate controller to adjust the flow rate of carbon dioxide in response to changes in ground pressure.
例1の場合のように炭酸ガスの流量は段階的ではなくゆ
るやかなサインカーブを招いて制御された。As in Example 1, the flow rate of carbon dioxide gas was controlled not in steps but in a gradual sinusoidal curve.
例1の場合と例2の場合の炭酸ガス流量の変動を注入開
始時の5.5ky/cAの圧力に換算して表示した結果
は第4B図の如くなった。Figure 4B shows the results obtained by converting the fluctuations in the carbon dioxide flow rate in Example 1 and Example 2 into a pressure of 5.5 ky/cA at the start of injection.
すなわち、第2図の方式では5.5kq/dで25t/
分の一定流量の注入に対して最大約2.71程度の流量
の変動がある。In other words, in the method shown in Figure 2, 5.5kq/d and 25t/
There is a maximum variation in flow rate of about 2.71 min for a constant flow rate injection of 2.7 min.
地盤圧力が上昇してい(時には正に、下降してい(時に
は負に夫々誤差を生じ、その誤差は約±10係強あった
。The ground pressure was rising (sometimes positive) and falling (sometimes negative), both of which caused errors, and the errors were about ±10%.
しかしこの誤差は電磁弁の個数を増やしてその組合せの
仕方によって減少してい(ことはあきらかである。However, this error can be reduced by increasing the number of solenoid valves and how they are combined (this is obvious).
これに対し第2図の方式では常に上下して、ゆるやかな
サインカーブを描いた誤差を生ずるが、その程度は約±
4係程度であった。On the other hand, with the method shown in Figure 2, the error always rises and falls, creating a gentle sine curve, but the degree of error is approximately ±±.
There were about 4 people in charge.
第1〜3図はいずれも本発明を具体的に説明するフロー
シートである。
第4A図は地盤圧の変動および炭酸ガス容量渡世と電磁
弁の作動状態の関係を示す図であり、第4B図は第2図
および第3図の装置を用いた場合の炭酸ガス流量の変動
を示す図である。
1、 10. 200・・・・・・炭酸ガス貯槽、2,
6゜20.100,210.330・・・・・・減圧調
整弁、3.30,80,220・・・・・・圧力計、4
,140゜230・・・・・・地盤、5,90,320
・・・・・・水ガラス水溶液貯槽、7,140,340
・・・・・・ポンプ、8゜70.120,260,35
0・・・・・・流量計、9゜130.360・・・・・
・多重管、40・・・・・・コントローラー、50,5
0’・・・・・・、310自動流量調節弁、60・・・
・・・炭酸ガス圧力流量指示計、240圧力伝送器、2
50・・・・・・グラフィック演算器、270゜270
’、270“・・・・・・マニホールド、280・・・
・・・差圧伝送器、290・・・・・・開閉演算器、3
00・・・・・・流量指示調算計、A・・・・・・圧力
変動感知装置、■・・・・・・炭酸ガス流量、■・・・
・・・地盤圧、θ・・・・・・第2図の装置の場合、■
・・・・・・第3図の装置の場合。1 to 3 are flow sheets specifically explaining the present invention. Figure 4A is a diagram showing the relationship between variations in ground pressure, carbon dioxide capacity, and the operating state of the solenoid valve, and Figure 4B is a diagram showing variations in carbon dioxide flow rate when using the devices shown in Figures 2 and 3. FIG. 1, 10. 200... Carbon dioxide storage tank, 2,
6゜20.100, 210.330... pressure reducing adjustment valve, 3.30, 80, 220... pressure gauge, 4
, 140° 230... Ground, 5, 90, 320
...Water glass aqueous solution storage tank, 7,140,340
...Pump, 8゜70.120,260,35
0...Flowmeter, 9°130.360...
・Multiple pipes, 40... Controller, 50,5
0'..., 310 automatic flow control valve, 60...
...carbon dioxide pressure flow indicator, 240 pressure transmitter, 2
50...Graphic calculator, 270°270
', 270"... Manifold, 280...
...Differential pressure transmitter, 290...Switching operator, 3
00...Flow rate indicator adjustment meter, A...Pressure fluctuation sensing device, ■...Carbon dioxide gas flow rate, ■...
...Ground pressure, θ...In the case of the device shown in Figure 2, ■
...For the device shown in Figure 3.
Claims (1)
された水ガラス貯槽と、前記注入管内に連結された炭酸
ガス貯槽とを備えた薬液注入装置において、前記炭酸ガ
ス貯槽と前記注入管との間に圧力変動感知装置を設けた
ことを特徴とし、前記圧力変動感知装置は前記注入管と
前記炭酸ガス貯槽の間に下流へ向って順次自動流量調節
弁と、差圧伝送器および開閉演算器を経て流量指示調節
器に連絡された流量計と、グラフィック演算器を経て同
じ(前記流量指示調節器に連絡された圧力伝送器とが連
絡されてなり、前記両演算器の演算結果に基づき前記流
量指示調節計が前記自動流量調節弁を作動させることに
よって炭酸ガスの絶対流量を制御し、水ガラス水溶液と
炭酸ガスの絶対流量を一定比率で合流して注入すること
を特徴とする薬液注入装置。1. In a chemical injection device comprising an injection pipe inserted into the ground, a water glass storage tank connected to the injection pipe, and a carbon dioxide gas storage tank connected to the injection pipe, the carbon dioxide gas storage tank and the injection pipe A pressure fluctuation sensing device is provided between the injection pipe and the carbon dioxide storage tank, and the pressure fluctuation sensing device sequentially connects an automatic flow rate control valve, a differential pressure transmitter, and an opening/closing valve downstream between the injection pipe and the carbon dioxide storage tank. The flow meter connected to the flow rate indicating regulator via the computing unit is connected to the same pressure transmitter (which is connected to the flow rate indicating regulator via the graphic computing unit), and the calculation results of both computing units are Based on this, the flow rate indicating controller operates the automatic flow rate control valve to control the absolute flow rate of carbon dioxide gas, and the water glass aqueous solution and the carbon dioxide gas are combined at a constant ratio and then injected. Injection device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP186480A JPS5942769B2 (en) | 1980-01-11 | 1980-01-11 | Chemical injection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP186480A JPS5942769B2 (en) | 1980-01-11 | 1980-01-11 | Chemical injection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56100921A JPS56100921A (en) | 1981-08-13 |
JPS5942769B2 true JPS5942769B2 (en) | 1984-10-17 |
Family
ID=11513406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP186480A Expired JPS5942769B2 (en) | 1980-01-11 | 1980-01-11 | Chemical injection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5942769B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60135335U (en) * | 1984-02-21 | 1985-09-09 | 巧苑商事株式会社 | Combined injection device |
JP2630587B2 (en) * | 1986-03-04 | 1997-07-16 | 日東化学工業株式会社 | Grout injection method |
CN105133570B (en) * | 2015-09-17 | 2017-03-29 | 济南轨道交通集团有限公司 | A kind of individual well single control takes out filling integral system and its control method |
-
1980
- 1980-01-11 JP JP186480A patent/JPS5942769B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS56100921A (en) | 1981-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103410718B (en) | The multi-function test stand of a kind of Liquid-Gas Jet Pump Perfqrmance and application | |
CN101418913A (en) | Pressure priming device | |
CN212766881U (en) | Filling system with online sterilization function | |
JPS5942769B2 (en) | Chemical injection device | |
CN207126392U (en) | A kind of foam-making apparatus | |
CN208161519U (en) | A kind of preparation facilities cleaning foam | |
CN106837288B (en) | Method for controlling static pressure in reservoir of liquefied gas and proppant mixture | |
US8486272B2 (en) | Method and device for maintaining a constant pH value of a medical liquid during the dispensing thereof from a container | |
CN109306858B (en) | Polymer injection well online concentration device and method | |
CN108928907A (en) | Overcritical water oxidization reactor and its self-adaptive pressure regulator control system and method | |
JPS63236530A (en) | Apparatus for injecting low vapor pressure substance in low pressure or vacuum system | |
CN205721398U (en) | A kind of chemical feeding quantity automatic gauge and regulation system | |
CN208898583U (en) | Evaporate wall type overcritical water oxidization reactor and its self-adaptive pressure regulator control system | |
CN210145855U (en) | Production device for ionic membrane caustic soda salt | |
JPS6381191A (en) | Production device for impregnating material for ground | |
JPH0243931A (en) | Apparatus for making carbonated beverage | |
CN105511532B (en) | Asphalt foaming machine intelligent control system | |
CN221514425U (en) | Metering device is added to liquid | |
CN211198708U (en) | Water treatment medicine system | |
CN220811995U (en) | Water supply disinfection system | |
KR910009252B1 (en) | Manufacture of ground grouting material | |
JPS562500A (en) | Supplier of constant flow rate | |
CN221868388U (en) | Accurate feeding device for saturated solution | |
CN214474639U (en) | Intelligent injection control device for trace gasoline antistatic agent | |
CN218795070U (en) | Continuous dosing device of desulfurizing tower |