JP2551844B2 - Hot plate for heating element - Google Patents

Hot plate for heating element

Info

Publication number
JP2551844B2
JP2551844B2 JP1115059A JP11505989A JP2551844B2 JP 2551844 B2 JP2551844 B2 JP 2551844B2 JP 1115059 A JP1115059 A JP 1115059A JP 11505989 A JP11505989 A JP 11505989A JP 2551844 B2 JP2551844 B2 JP 2551844B2
Authority
JP
Japan
Prior art keywords
ultrafine
hot plate
heating
molding
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1115059A
Other languages
Japanese (ja)
Other versions
JPH02297887A (en
Inventor
隆之 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON MAIKURO SAAMU KK
Original Assignee
NIPPON MAIKURO SAAMU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON MAIKURO SAAMU KK filed Critical NIPPON MAIKURO SAAMU KK
Priority to JP1115059A priority Critical patent/JP2551844B2/en
Publication of JPH02297887A publication Critical patent/JPH02297887A/en
Application granted granted Critical
Publication of JP2551844B2 publication Critical patent/JP2551844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高温使用での耐久性及び成形性に優れた電熱
ヒータ等の加熱体用熱板に関する。
Description: TECHNICAL FIELD The present invention relates to a hot plate for a heating body such as an electric heater, which has excellent durability and moldability at high temperatures.

〔従来技術と問題点〕[Conventional technology and problems]

調理用もしくは厨房用として従来一般に使用される電
熱ヒータ用熱板は、天然産のセラミック材料粉末を水と
混練して成形、焼成したものである。この製品は天然産
の粘土質の原料を用いるので成形し易くかつ安価である
ため広く使用されているが、熱効率の面では満足できる
ものではない。また器具上面をセラミックガラスで覆っ
たスムーストップと称するヒータが開発されている。こ
の製品は表面が平滑で掃除が簡単であり、清潔感のある
器具として需要者に好まれている。上記ヒータの熱板に
は、熱効率を良くし加熱の増減に対する応答性を高める
ために熱伝導度が小さくかつ比熱の小さい超微粒子状シ
リカ粉末を主体とする組成物からなる成形体が多く使用
されている。ところが、この熱板は熱効率は良いものの
耐熱性に劣る欠点があり、約900℃以上の温度で長時間
使用すると、加熱源に接する部分がヒビ割れする問題が
ある。更に、超微粒子状シリカ粉末は成形性が悪く、特
に、周縁部を高く成形した熱板は、プレス成形の型から
取り出す際に、該周縁部が破損し易い。
A hot plate for an electric heater, which has been conventionally generally used for cooking or kitchen, is obtained by kneading a naturally-occurring ceramic material powder with water, molding and firing it. This product is widely used because it uses a naturally occurring clay-based material and is easy to mold and inexpensive, but it is not satisfactory in terms of thermal efficiency. In addition, a heater called smooth stop has been developed in which the upper surface of the device is covered with ceramic glass. This product has a smooth surface and is easy to clean, and is preferred by consumers as a clean instrument. For the hot plate of the heater, a molded product composed of a composition mainly composed of ultrafine silica powder having a low thermal conductivity and a low specific heat is often used in order to improve the thermal efficiency and the responsiveness to increase / decrease of heating. ing. However, although this hot plate has good thermal efficiency, it has a drawback of being poor in heat resistance. When it is used at a temperature of about 900 ° C. or higher for a long time, there is a problem that a portion in contact with a heating source is cracked. Further, the ultrafine silica powder has poor moldability, and particularly in the case of a hot plate having a high peripheral edge formed, the peripheral edge is easily damaged when taken out from the press-molding die.

このため、熱効率が良く且つ耐熱性に優れ、しかも成
形性の良い熱板が求められている。例えば、加熱源であ
るニクロムコイルやハロゲンランプの温度は1000℃を超
える場合が多く、従って1000℃の高温使用に耐える熱板
が求められる。
For this reason, there is a demand for a hot plate having good thermal efficiency, excellent heat resistance, and good moldability. For example, the temperature of a nichrome coil or a halogen lamp, which is a heating source, often exceeds 1000 ° C. Therefore, a hot plate that can withstand use at a high temperature of 1000 ° C. is required.

〔問題解決の知見〕[Knowledge of problem solving]

本発明において、超微粒子状アルミナを主体とする成
形材料を用いることにより、従来の超微粒子状シリカを
主体とする成形材料からなる熱板では得られなかった優
れた耐熱性と成形性を達成できることが見出された。
In the present invention, by using a molding material mainly composed of ultrafine particle alumina, it is possible to achieve excellent heat resistance and moldability which cannot be obtained by a hot plate composed of a conventional molding material mainly composed of ultrafine particle silica. Was found.

〔発明の構成〕[Structure of Invention]

本発明によれば、超微粒子状アルミナ粉末に赤外線不
透過剤と繊維状強化材とを混合した成形材料からなる加
熱体用熱板が提供される。
According to the present invention, there is provided a hot plate for a heating body, which is made of a molding material in which an infrared ray impermeable agent and a fibrous reinforcing material are mixed with ultrafine particulate alumina powder.

また本発明において、超微粒子状アルミナ粉末を主体
とする成形材料は超微粒子状シリカ粉末を含有するもの
でもよく、更には、超微粒子状アルミナ粉末と超微粒子
状シリカ粉末が層状に積層されたものでも良く、本発明
によれば、これら混合成形材料または積層成形材料から
なる加熱体用熱板が夫々提供される。
Further, in the present invention, the molding material mainly composed of ultrafine particle alumina powder may contain ultrafine particle silica powder, and further, ultrafine particle alumina powder and ultrafine particle silica powder are laminated in layers. However, according to the present invention, a hot plate for a heating element is provided, which is made of these mixed molding materials or laminated molding materials.

本発明に用いる超微粒子状アルミナはフュームドアル
ミナと呼ばれ、揮発性あるいは昇華性のアルミニウム化
合物を火炎中で燃焼して煙霧質のアルミナとして製造さ
れたもので、代表的なものとしては西独デグサ社製の
「アルミニウムオキサイドC」が知られており、その平
均一次粒子径は約0.02ミクロン、比表面積は100m2/gで
ある。
The ultrafine particulate alumina used in the present invention is called fumed alumina, which is produced as fumed alumina by burning a volatile or sublimable aluminum compound in a flame, and a typical example is West Germany Degussa. "Aluminum Oxide C" manufactured by the company is known and has an average primary particle diameter of about 0.02 micron and a specific surface area of 100 m 2 / g.

上記超微粒子状アルミナは高温領域、特に900℃以上
の耐熱性を有し熱収縮等が極めて少なく、かつ熱伝導率
も小さいので高温域での断熱材として好適である。本発
明においては、熱板の高温域での断熱性を更に向上する
ために該超微粒子状アルミナ粉末に赤外線不透過剤が添
加される。
The ultrafine-particulate alumina is suitable as a heat insulating material in a high temperature region, particularly in a high temperature region because it has heat resistance of 900 ° C. or higher, has very little heat shrinkage, and has a small thermal conductivity. In the present invention, an infrared ray opaque agent is added to the ultrafine particulate alumina powder in order to further improve the heat insulating property of the hot plate in a high temperature range.

赤外線不透過剤としては酸化チタン、酸化鉄、酸化ジ
ルコニウム、カーボンブラックその他赤外線に対する屈
折率、反射率あるいは散乱効果の大きい耐熱性の物質が
用いられる。中でも酸化チタンはその効果が大きく、ま
た入手し易く安価であるので好適である。赤外線不透過
剤は平均粒径が数ミクロン、例えば0.5〜25ミクロンの
ものを超微粒子状アルミナ組成物全重量の10〜70重量%
(容積0.2〜8%)加えることにより成形体の熱伝導率
を下げることができる。赤外線不透過剤は断熱材の内部
で赤外線(加熱源からの輻射熱)を散乱させ、輻射熱が
断熱材を通過するのを防止するので成形体の断熱効果が
大幅に向上する。
As the infrared ray opaque agent, titanium oxide, iron oxide, zirconium oxide, carbon black and other heat-resistant substances having a large infrared refractive index, reflectance or scattering effect are used. Among them, titanium oxide is preferable because it has a large effect, is easily available, and is inexpensive. The infrared opaque agent has an average particle size of several microns, for example, 0.5 to 25 microns, and is 10 to 70% by weight based on the total weight of the ultrafine particulate alumina composition.
By adding (volume 0.2 to 8%), the thermal conductivity of the molded body can be lowered. The infrared ray impermeable agent scatters infrared rays (radiant heat from the heating source) inside the heat insulating material and prevents the radiant heat from passing through the heat insulating material, so that the heat insulating effect of the molded body is significantly improved.

上記超微粒子状アルミナ粉末はシリカ粉末に比べて成
形性が良いが、本発明においては更にその成形性と強度
を高めるために繊維状補強材が添加される。本発明にお
いて用いられる繊維状補強材は、アスベスト、ロックウ
ール、その他種々の耐熱性の繊維状物質であり、特にバ
ルク状のセラミックファイバーが補強性に優れており、
耐熱性、経済性の面からも好適である。含有量は組成物
全重量の3〜30重量%、通常は5〜10重量%である。な
おアルミナファイバーはセラミックファイバーに比べて
耐熱性が良く熱伝導度も僅かに低いが、極めて高価であ
り経済性に乏しい難点がある。
The above-mentioned ultrafine-particle alumina powder has better moldability than silica powder, but in the present invention, a fibrous reinforcing material is added to further enhance the moldability and strength. The fibrous reinforcing material used in the present invention is asbestos, rock wool, and various other heat-resistant fibrous substances, and particularly bulk ceramic fibers have excellent reinforcing properties,
It is also suitable in terms of heat resistance and economy. The content is 3 to 30% by weight, usually 5 to 10% by weight based on the total weight of the composition. Alumina fibers have better heat resistance and slightly lower thermal conductivity than ceramic fibers, but they are extremely expensive and poor in economic efficiency.

本発明の熱板は上記超微粒子状アルミナ粉末を主体と
して成形されるが、この成形材料として更に超微粒子状
シリカを混合したものも用いられる。上記超微粒子状シ
リカは、フュームドシリカと呼ばれ、揮発性のケイ素化
合物を火炎中で燃焼して煙霧質のシリカとして製造され
るものであり、代表的なものとして例えば日本アエロジ
ル社製の「アエロジル」が知られており、その1次粒子
の平均径は約0.01〜0.02μm、比表面積は100〜400m2/g
である。上記超微粒子状シリカ粉末は優れた断熱性を有
し、超微粒子状アルミナ粉末に混合することにより上記
熱板の断熱性が向上する。超微粒子シリカ粉末の混合量
は75重量%以下、特に50重量%以下が好ましい。該シリ
カ粉末の混合量は80重量%を超えると成形体の熱収縮が
増大するので好ましくない。
The hot plate of the present invention is formed mainly by the above-mentioned ultrafine particle alumina powder, but a material obtained by further mixing ultrafine particle silica may be used as this forming material. The ultrafine silica is called fumed silica, which is produced as fumed silica by burning a volatile silicon compound in a flame, and as a typical one, for example, manufactured by Nippon Aerosil Co., Ltd. Aerosil "is known, and the average diameter of its primary particles is about 0.01 to 0.02 μm, and the specific surface area is 100 to 400 m 2 / g.
Is. The ultrafine particle silica powder has excellent heat insulating properties, and the heat insulating property of the hot plate is improved by mixing with the ultrafine particle alumina powder. The mixing amount of the ultrafine silica powder is preferably 75% by weight or less, particularly preferably 50% by weight or less. If the mixing amount of the silica powder exceeds 80% by weight, the heat shrinkage of the molded body increases, which is not preferable.

本発明の熱板はまた、上記超微粒子状アルミナ粉末を
主体とする成形材料と上記超微粒子状シリカを主体とす
る成形材料とを二重に積層した構造を有するものも含
む。この場合、加熱ヒーターに接する側には耐熱性に優
れる超微粒子アルミナ粉末層が設けられる。超微粒子状
アルミナ層と超微粒子状シリカ層との二重構造を有する
熱板は、これら二重の微粉末を均一に混合した材料から
なる熱板よりも、やや耐熱性が良く且つ成形性も優れて
いる。
The hot plate of the present invention also includes a hot plate having a structure in which the molding material mainly containing the ultrafine particle alumina powder and the molding material mainly containing the ultrafine particle silica are laminated in two layers. In this case, an ultrafine alumina powder layer having excellent heat resistance is provided on the side in contact with the heater. A hot plate having a double structure of an ultrafine particle alumina layer and an ultrafine particle silica layer has slightly better heat resistance and moldability than a hot plate made of a material in which these double fine powders are uniformly mixed. Are better.

本発明の加熱体用熱板は、上記成形材料を用いてプレ
ス成形することにより製造される。
The hot plate for a heating element of the present invention is manufactured by press molding using the above molding material.

成形の際、モールドの底部に縁周部が高い金属製の皿
を設置し、この中に成形材料を入れてプレス成形し、成
形品を皿と一緒に取り出すと脱型し易くその後の処理も
容易である。成形品の厚さには所謂寸法戻りがあるの
で、加圧成形時の戻り分を考慮して成形することが必要
である。尚、上記金属皿を用いない場合には成形体の径
方向にも寸法戻りが生じる。
At the time of molding, place a metal dish with a high edge around the bottom of the mold, put the molding material in this and press-mold, and take out the molded product together with the plate, it is easy to remove from the mold and subsequent processing It's easy. Since the thickness of the molded product has a so-called dimensional return, it is necessary to take into consideration the return amount at the time of pressure molding. In addition, when the metal dish is not used, a dimensional return occurs in the radial direction of the molded body.

各種成形材料をプレス成形して得た成形体の例を第1
〜4図に示す。第1図は、超微粒子状アルミナの成形材
料を用いたニクロムコイル等の加熱ヒーター用熱板の断
面図、第2図は超微粒子状のシリカの成形材料を用いた
同形のニクロムコイル等の加熱ヒーター用熱板の断面図
を夫々示す。シリカの微粉末を用いた場合には成形性が
悪いので、周壁部A′を低くし、かつ内周面B′の傾斜
を緩くし、ヒータの溝C′を浅く設定しないと、モール
ドから脱型する際に、周壁部A′が破損する。この為、
シリカ粉末を用いて周壁部の高い成形体を製造するに
は、従来予め周縁部A′の低い成形体を製造した後に不
足部分D′を別途他の材料で成型し接合している。とこ
ろが本発明では、超微粒子状アルミナを主体とする材料
を用いるので、成形体の強度が大きく、第1図のように
周壁部Aを予め高く成形でき、かつ該周壁部Aから熱板
表面にかけての内周面Bも急角度にでき、ヒータ等の加
熱体を収納する溝Cも深く成形できる。
First example of molded products obtained by press molding various molding materials
~ Fig. 4 shows. FIG. 1 is a cross-sectional view of a heating plate for a heater such as a nichrome coil using a molding material of ultrafine particle alumina, and FIG. 2 is a heating of a nichrome coil of the same shape using a molding material of ultrafine particle silica. Sectional drawing of the heating plate for heaters is shown, respectively. When fine powder of silica is used, the moldability is poor. Therefore, unless the peripheral wall portion A'is made low and the inner peripheral surface B'is made slant and the heater groove C'is not set shallow, it is removed from the mold. When molding, the peripheral wall portion A'is damaged. Therefore,
In order to manufacture a molded body having a high peripheral wall portion using silica powder, conventionally, a molded body having a low peripheral edge portion A'is manufactured in advance, and then the lacking portion D'is separately molded and joined with another material. However, in the present invention, since a material mainly composed of ultrafine particulate alumina is used, the strength of the molded body is large, the peripheral wall portion A can be preliminarily formed high as shown in FIG. 1, and the peripheral wall portion A to the hot plate surface extends. The inner peripheral surface B can also have a steep angle, and the groove C for accommodating a heating body such as a heater can be deeply formed.

第3図(a)はハロゲンランプ用熱板Eの平面図、同
図(b)は超微粒子状アルミナ粉末を主体とする本発明
に係る熱板の断面図であり、第4図は従来の超微粒子状
シリカ粉末を主体とする同形の熱板の断面図である。第
3図(b)の本発明に係る熱板は一体成形物として成形
できるが、第4図の従来の熱板は微粒子状シリカ粉末を
主体とするので成形性が悪く、周縁部が高いときには内
周面の傾斜角を相当大きく設定しないと全体を一体成形
できない場合が多く、下部のベース部分Fを予め成形し
た後に別途成形した周縁部Gの部分を接合しなければな
らない。
FIG. 3 (a) is a plan view of a hot plate E for halogen lamps, FIG. 3 (b) is a cross-sectional view of a hot plate according to the present invention mainly containing ultrafine alumina powder, and FIG. FIG. 3 is a cross-sectional view of a hot plate of the same shape mainly containing ultrafine silica powder. The hot plate according to the present invention in FIG. 3 (b) can be molded as an integrally molded product. However, since the conventional hot plate in FIG. 4 is mainly composed of fine particle silica powder, the moldability is poor and when the peripheral edge is high. In many cases, the whole body cannot be integrally molded unless the inclination angle of the inner peripheral surface is set to a considerably large value, and therefore, the peripheral part G separately molded must be joined after the lower base part F is previously molded.

次に、2層構造の成形体を製造するには、まず、モー
ルドの底に超微粒子状シリカ粉末を装入し、その上側に
超微粒子状アルミナ粉末を充填し、加圧成型する。超微
粒子状シリカ粉末の量は超微粒子アルミナ粉末の量に対
して3重量部以下、好ましくは1重量部以下である。
Next, in order to produce a molded product having a two-layer structure, first, ultrafine silica powder is charged in the bottom of the mold, and ultrafine alumina powder is filled on the upper side of the mold and pressure molding is performed. The amount of ultrafine silica powder is 3 parts by weight or less, preferably 1 part by weight or less, based on the amount of ultrafine alumina powder.

〔発明の効果〕〔The invention's effect〕

本発明による超微粒子状アルミナ粉末を主体とする成
形材料を用いて製造した加熱体用熱板は、1000℃以上の
高温での使用に耐え、その場合の熱収縮も小さくかつ熱
伝導度も極めて低い(一例として平均温度500℃におい
て0.03〜0.04Kcal/m・hr・℃)。また成形後の型からの
離型性、寸法安定性がよく、耐熱性、成形性共に従来の
超微粒子状シリカ粉末からなる成形材料を用いて製造さ
れた熱板に比べ極めて優れており、製造上および使用上
の利点が著しい。
The heating plate for a heating element produced by using a molding material mainly composed of ultrafine particulate alumina powder according to the present invention withstands use at a high temperature of 1000 ° C. or higher, and in that case the thermal contraction is small and the thermal conductivity is extremely high. Low (for example, 0.03 to 0.04 Kcal / m · hr · ° C at an average temperature of 500 ° C). Also, it has good mold releasability from the mold after molding, dimensional stability, and is extremely superior in both heat resistance and moldability to a hot plate manufactured using a conventional molding material composed of ultrafine particulate silica powder. The advantages in use and use are significant.

〔実施例および比較例〕[Examples and Comparative Examples]

実施例1〜6、比較例,2 第1表に示す原料を用い、各原料を容量50のプロペ
ラ型高速撹拌器中に密閉し10分間混合して成形材料を調
製した。次に第5図に示すような四辺形を有し、各辺毎
に外周縁の幅、内壁の勾配、溝の形状が夫々異なるテス
ト用モールド10をプレス成形機に装着し、該モールドに
上記各原料を装入し、成形後の体積密度0.35g/ml、中央
部の厚さ15mm、内壁の高さ15mmになるように約5分間加
圧成形した。各試料の成形材料の組成、成形体の特性、
成形性の評価等を第1表に纏めて示す。
Examples 1 to 6, Comparative Examples, 2 Using the raw materials shown in Table 1, the raw materials were sealed in a propeller-type high-speed stirrer with a capacity of 50 and mixed for 10 minutes to prepare molding materials. Next, a test mold 10 having a quadrilateral shape as shown in FIG. 5 in which the width of the outer peripheral edge, the slope of the inner wall, and the shape of the groove are different for each side is mounted on a press molding machine, and the mold is subjected to the above. Each raw material was charged and pressure-molded for about 5 minutes so that the volume density after molding was 0.35 g / ml, the thickness of the central portion was 15 mm, and the height of the inner wall was 15 mm. The composition of the molding material of each sample, the characteristics of the molded body,
The evaluation of the moldability and the like are summarized in Table 1.

また別途、同一原料を用い同一密度の25mm厚の板状の
試料を製造し、これを成形体の厚さの変化、円筒法によ
る熱伝導度、加熱時の収縮率及び曲げ強度の測定試料と
した。
Separately, a 25 mm thick plate-shaped sample of the same density is manufactured using the same raw material, and this is used as a sample for measuring the change in the thickness of the molded body, the thermal conductivity by the cylindrical method, the shrinkage factor during heating, and the bending strength. did.

成形時の厚さの変化は、クロース袋に装入した原料を
一定の厚さに加圧し、加圧を解除した際に成形体が復帰
した厚さと加圧時の厚さを比較して求めた。
The change in thickness at the time of molding is obtained by pressing the raw material charged in the close bag to a certain thickness and comparing the thickness when the molded body returns when the pressure is released and the thickness when pressed. It was

熱伝導度は円筒法により求めた。即ち、外径及び高さ
100mm、厚さ25mmの円筒状試料を製作し、該試料の内側
に熱源を設置して加熱し、試料の内表面と外表面温度が
一定になった時の温度と、加熱熱量から算出した。
The thermal conductivity was determined by the cylindrical method. That is, outer diameter and height
A cylindrical sample having a thickness of 100 mm and a thickness of 25 mm was produced, and a heat source was installed inside the sample to heat the sample, and the temperature was calculated when the inner surface temperature and the outer surface temperature of the sample became constant and the heating calorie.

熱収縮は、直径100mm、厚さ25mmの円板上試料の中央
に設けた孔に鉄棒を通し、該鉄棒の両端を支えて電気炉
に装入し、1100℃、2時間加熱後、直径の変化を測定し
て求めた。
Heat shrinkage is performed by inserting an iron rod through a hole provided at the center of a sample on a disc having a diameter of 100 mm and a thickness of 25 mm, supporting both ends of the iron rod into an electric furnace, heating at 1100 ° C. for 2 hours, The change was measured and determined.

曲げ強度は、200×400×25mmの試料を用い、該試料を
300mm間隔の支点に載せ、試料上面中央に20mm角の棒を
介して加重を加え、試料が破壊する時の加重を測定し
た。
Bending strength uses a sample of 200 × 400 × 25 mm,
The sample was placed on fulcrums at intervals of 300 mm, and a load was applied to the center of the upper surface of the sample through a 20 mm square rod, and the load when the sample was broken was measured.

本発明の実施例1〜6は、上記成形体の厚さの変化、
熱伝導度、加熱時の収縮率及び曲げ強度の何れについて
も良好な結果を得た。更に、本発明に係る熱板は、プレ
ス後の脱型において破損したものは極めて少なく、脱型
が容易であった。
Examples 1 to 6 of the present invention are the changes in the thickness of the molded body,
Good results were obtained in terms of thermal conductivity, shrinkage upon heating, and bending strength. Furthermore, the hot plate according to the present invention had very few damages during the demolding after pressing, and the demolding was easy.

比較例1は超微粒子状シリカ粉末からなる成形材料を
用いた場合の成形体で、型から取り出す際に破壊し易
く、熱収縮が大きく使用に適さなかった。比較例2の超
微粒子状チタニアからなる成形体は、熱収縮および熱伝
導度が本発明の実施例より大幅に劣っている。超微粒子
状チタニアの原料価格は超微粒子状アルミナと略等しい
ので、価格の点からも超微粒子状チタニアを用いる利点
は無い。
Comparative Example 1 is a molded article using a molding material made of ultrafine silica powder, which is easily broken when taken out from the mold and has a large heat shrinkage, which is not suitable for use. The molded product made of the ultrafine particulate titania of Comparative Example 2 is significantly inferior to the examples of the present invention in heat shrinkage and thermal conductivity. Since the raw material price of ultrafine particulate titania is almost the same as that of ultrafine particulate alumina, there is no advantage in using ultrafine particulate titania from the viewpoint of price.

[第1表注] 試料の寸法:第5図に示す断面形状の四角形板(150mm
×150mm)、中央部厚さ15mm、縁部の高さ30mm、 成形時の厚さ変化:プレス時厚さ/製品厚さ×100% 熱収縮率:加熱後の直径/加熱前の直径×100% 実施例5の第1層と第2層の重量比:1:1 実施例6はプレス時に鉄製の皿を使用 総合評価:○適する ×不適当 実施例7及び比較例3、4 (イ)市販の天然産セラミック材料、(ロ)超微粒子
状シリカ粉末からなる成形材料、(ハ)微粒子状アルミ
ナ粉末からなる成形材料を夫々用いて、直径180mm、厚
さ15mmの円板状の熱板基板を成形した。各基板に外径18
0mm、内径150mm、高さ20mmのセラミックファイバーボー
ド製のリングを取付けて熱板を形成し、これに夫々ニク
ロムヒータを取り付けた。該熱板に1の水を入れたホ
ーロー引きの鍋を載置し、ニクロムヒータを1kw/hrの電
力で加熱したときの効果を第2表に示す。本発明の熱板
(ハ)は表面温度が1,100℃に達しても使用でき熱効率
が良く、耐熱性に優れることが判る。
[Table 1 Note] Dimension of sample: Square plate (150mm in cross section shown in Fig. 5)
× 150mm), central thickness 15mm, edge height 30mm, thickness change during molding: thickness at press / product thickness × 100% heat shrinkage: diameter after heating / diameter before heating × 100 % Weight ratio of the first layer and the second layer of Example 5: 1: 1 Example 6 uses an iron dish during pressing Overall evaluation: ○ Suitable × Inappropriate Example 7 and Comparative Examples 3 and 4 (a) A commercially available natural ceramic material, (b) a molding material made of ultrafine silica powder, and (c) a molding material made of fine alumina powder were used, respectively, and a diameter of 180 mm was obtained. A disc-shaped hot plate substrate having a thickness of 15 mm was formed. Outer diameter 18 on each board
A ring made of ceramic fiber board having a diameter of 0 mm, an inner diameter of 150 mm and a height of 20 mm was attached to form hot plates, and nichrome heaters were attached to the hot plates. Table 2 shows the effect of placing an enameled pot containing 1 of water on the hot plate and heating the nichrome heater with electric power of 1 kw / hr. It can be seen that the hot plate (c) of the present invention can be used even when the surface temperature reaches 1,100 ° C., has good thermal efficiency and excellent heat resistance.

【図面の簡単な説明】[Brief description of drawings]

第1図は超微粒子状アルミナ粉末を用いた成形材料から
なる本発明のニクロムコイル等の加熱ヒーター用熱板の
断面図、第2図は従来の超微粒子状シリカ粉末を用いた
成形材料からなるニクロムコイル等の加熱ヒーター用熱
板の断面図、第3図(a)はアルミナ粉末を用いた成形
材料からなる本発明のハロゲンランプ用熱板の平面図、
第3図(b)は同図(a)のX−X′線断面図、第4図
はシリカ粉末を用いた成形材料からなるハロゲンランプ
用熱板の断面図、第5図(a)及び(b)は加圧板の平
面図及び側面図、同図(c)はモールドの断面図であ
る。 図面中、A,A′……周壁部、B,B′……内周面、C,C′…
…溝、D′……接合部分、E……成形体、F……ベース
部分、G……周縁部、H……加熱体、10……テスト用モ
ールド、11……加圧板、12……外枠。
FIG. 1 is a cross-sectional view of a hot plate for a heater such as a nichrome coil of the present invention made of a molding material using ultrafine particle alumina powder, and FIG. 2 is made of a conventional molding material using ultrafine particle silica powder. A cross-sectional view of a hot plate for a heater such as a nichrome coil, Fig. 3 (a) is a plan view of a hot plate for a halogen lamp of the present invention, which is made of a molding material using alumina powder,
FIG. 3 (b) is a sectional view taken along line XX 'in FIG. 3 (a), FIG. 4 is a sectional view of a hot plate for a halogen lamp made of a molding material using silica powder, FIG. 5 (a) and FIG. (B) is a plan view and a side view of the pressure plate, and (c) is a sectional view of the mold. In the drawing, A, A '... peripheral wall part, B, B' ... inner peripheral surface, C, C '...
… Groove, D ′ …… Joint part, E …… Molded body, F …… Base part, G …… Peripheral part, H …… Heating body, 10 …… Test mold, 11 …… Pressure plate, 12 …… Outer frame.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超微粒子状アルミナ粉末に赤外線不透過剤
と繊維状強化材とを混合した成形材料からなる加熱体用
熱板。
1. A heating plate for a heating body, which is made of a molding material in which an infrared ray opaque agent and a fibrous reinforcing material are mixed with ultrafine particulate alumina powder.
【請求項2】超微粒子状アルミナ粉末と超微粒子状シリ
カ粉末の混合物に赤外線不透過剤と繊維状強化材とを混
合した成形材料からなる加熱体用熱板。
2. A heating plate for a heating element, which is made of a molding material in which an infrared ray opaque agent and a fibrous reinforcing material are mixed in a mixture of ultrafine particle alumina powder and ultrafine particle silica powder.
【請求項3】超微粒子状アルミナ粉末と超微粒子状シリ
カ粉末とに夫々に赤外線不透過剤と繊維状強化材とを混
合した成形材料を積層し、超微粒子状アルミナ層がヒー
タ側に位置する加熱体用熱板。
3. An ultrafine-particulate alumina powder and an ultrafine-particulate silica powder are respectively mixed with an infrared ray impermeable agent and a fibrous reinforcing material, which are laminated, and the ultrafine-particulate alumina layer is located on the heater side. Hot plate for heating element.
JP1115059A 1989-05-10 1989-05-10 Hot plate for heating element Expired - Fee Related JP2551844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1115059A JP2551844B2 (en) 1989-05-10 1989-05-10 Hot plate for heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1115059A JP2551844B2 (en) 1989-05-10 1989-05-10 Hot plate for heating element

Publications (2)

Publication Number Publication Date
JPH02297887A JPH02297887A (en) 1990-12-10
JP2551844B2 true JP2551844B2 (en) 1996-11-06

Family

ID=14653158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1115059A Expired - Fee Related JP2551844B2 (en) 1989-05-10 1989-05-10 Hot plate for heating element

Country Status (1)

Country Link
JP (1) JP2551844B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562378U (en) * 1979-06-20 1981-01-10
JPS62270461A (en) * 1986-05-19 1987-11-24 三菱重工業株式会社 Manufacture of alumina ceramics

Also Published As

Publication number Publication date
JPH02297887A (en) 1990-12-10

Similar Documents

Publication Publication Date Title
CS226155B2 (en) Electric heating unit
US4296311A (en) Electric hot plate
GB1488159A (en) Heater element
JPS61279091A (en) Radiant heater and method and apparatus for manufacturing the same
JP2551844B2 (en) Hot plate for heating element
US1345377A (en) Refractory article and method of making the same
US7320277B2 (en) Cooking utensil
BE902615A (en) ELECTRIC HEATERS.
JPH10511879A (en) Cooking pot for use on the stove
JP2532939B2 (en) Adiabatic molded article for orifice using ultrafine particle alumina composition
JP2005342227A (en) Heat retaining dish
US2010768A (en) Electric range heating unit
US20020113058A1 (en) Base for an electric heater and method of manufacture
CN101142855A (en) Integrated microwaveable heat storage device
KR102297048B1 (en) Porcelain pot for induction range and manufacturing method the same
JPH0227687A (en) Nonmetallic container for heated cooking utensil and its manufacture
JPH0427454Y2 (en)
CN1021501C (en) Ceramic cooking utensils and making method thereof
US4427356A (en) Bondable insulating plate
EP1375446A1 (en) Thermal insulation material
CN1062729C (en) Heat accumulation cooker for closed cooking or roasting
JPS6321216Y2 (en)
CN2163969Y (en) Electric-heating energy-storage warmer
GB2318489A (en) Disk-like support for radiant electric heater
SU1694549A1 (en) Refractory lining

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees