JP2551350B2 - Magnetoresistive thin film and method of manufacturing the same - Google Patents
Magnetoresistive thin film and method of manufacturing the sameInfo
- Publication number
- JP2551350B2 JP2551350B2 JP5240978A JP24097893A JP2551350B2 JP 2551350 B2 JP2551350 B2 JP 2551350B2 JP 5240978 A JP5240978 A JP 5240978A JP 24097893 A JP24097893 A JP 24097893A JP 2551350 B2 JP2551350 B2 JP 2551350B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- thin film
- specific resistance
- magnetoresistive
- crystal grain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010409 thin film Substances 0.000 title claims description 39
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000010408 film Substances 0.000 claims description 104
- 229910003271 Ni-Fe Inorganic materials 0.000 claims description 35
- 239000013078 crystal Substances 0.000 claims description 19
- 230000000694 effects Effects 0.000 claims description 13
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- 230000008021 deposition Effects 0.000 claims description 6
- 229910017112 Fe—C Inorganic materials 0.000 claims description 3
- 230000003116 impacting effect Effects 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 239000000758 substrate Substances 0.000 description 18
- 239000011521 glass Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 10
- 229910017061 Fe Co Inorganic materials 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000000151 deposition Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 230000005291 magnetic effect Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- BVGSSXDMHDNNIF-UHFFFAOYSA-N (4-oxo-2,3-dihydro-1h-cyclopenta[c]chromen-7-yl) 3-chloro-4-[2-[(2-methylpropan-2-yl)oxycarbonylamino]acetyl]oxybenzoate Chemical compound C1=C(Cl)C(OC(=O)CNC(=O)OC(C)(C)C)=CC=C1C(=O)OC1=CC=C(C2=C(CCC2)C(=O)O2)C2=C1 BVGSSXDMHDNNIF-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910018499 Ni—F Inorganic materials 0.000 description 2
- 241000047703 Nonion Species 0.000 description 2
- 238000001659 ion-beam spectroscopy Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001803 electron scattering Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/0036—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Power Engineering (AREA)
- Hall/Mr Elements (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Physical Vapour Deposition (AREA)
- Magnetic Heads (AREA)
- Thin Magnetic Films (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は磁気抵抗効果薄膜、およ
び、その製造方法に関する。さらに詳しくは、比抵抗の
小さい磁気抵抗効果薄膜、および、その製造方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive thin film and a method for manufacturing the same. More specifically, the present invention relates to a magnetoresistive thin film having a small specific resistance and a manufacturing method thereof.
【0002】[0002]
【従来の技術】磁気記録機器の小型大容量化に伴って、
磁気記録技術の高密度化が急速に進展している。その中
にあって磁気抵抗(以下MRと略す)効果を利用した再
生ヘッド(MRヘッド)は、大きい再生出力が得られる
ことから、磁気記録の密度化を推進する主要な技術の一
つである。このMRヘッドについては、アイイーイーイ
ー トランザクションズ オン マグネティクス(IE
EE Trans.Magn.),MAG−7(197
1)150において、アール ピー ハント(R.P.
Hunt)により「ア マグネトレジスティブ リード
アウト トランスデューサー」(”A Magneto
resistive Readout Transdu
cer”)と題して論じられている。2. Description of the Related Art With the increase in size and capacity of magnetic recording equipment,
The magnetic recording technology is rapidly becoming higher in density. Among them, a reproducing head (MR head) utilizing a magnetoresistive (hereinafter abbreviated as MR) effect is one of the main techniques for promoting the density of magnetic recording because a large reproducing output can be obtained. . Regarding this MR head, IEE Transactions on Magnetics (IE
EE Trans. Magn. ), MAG-7 (197)
1) At 150, the Earl Hunt (RP.
Hunt) "A Magneto Resistive Readout Transducer"("AMagneto")
resistive Readout Transdu
cer ").
【0003】ところで、MRヘッドを構成するMR素子
は、磁気抵抗効果の大きなNi−Fe合金薄膜などのM
R薄膜からなり、このMRヘッドの特性はMR薄膜の特
性に強く依存している。特に、MR素子の通電寿命はM
R薄膜の比抵抗の大きさに関係する。すなわち、比抵抗
が大きいとMR素子のジュール熱による発熱量が増大
し、素子のエレクトロマイグレーションが起きやすくな
り、通電寿命が短くなる。また、発熱量の増大は素子の
熱雑音を増大させる。よって、MR薄膜の比抵抗は小さ
いほどよい。By the way, the MR element constituting the MR head is an M-element such as a Ni--Fe alloy thin film having a large magnetoresistive effect.
It consists of an R thin film, and the characteristics of this MR head strongly depend on the characteristics of the MR thin film. In particular, the energization life of the MR element is M
It is related to the magnitude of the specific resistance of the R thin film. That is, if the specific resistance is high, the amount of heat generated by the Joule heat of the MR element increases, electromigration of the element easily occurs, and the energization life is shortened. Further, the increase in the amount of heat generated increases the thermal noise of the device. Therefore, the smaller the specific resistance of the MR thin film, the better.
【0004】そこで、この比抵抗を小さくするために、
例えば、特開昭61−151822号公報の発明がなさ
れた。これは、10- 7 Torr以下の高真空中で蒸着
法によりNi−Fe薄膜を形成することにより、膜中の
残留不純物ガス量を低減させ、比抵抗を小さくするもの
である。また、通常の真空度(2×10- 6 Torr程
度)での形成であっても、膜形成後に熱処理を施すこと
によって、膜中の残留ガス量を低減させることによって
も、比抵抗を小さくすることができるとしている。ま
た、特開昭60−9183号公報の発明では、スパッタ
法によりNi−Fe薄膜を形成する場合について、母材
であるNi−Feターゲットの溶融時の真空度を10
- 5 Torr以下とすることによって、比抵抗の小さい
薄膜を得ている。これは、ターゲット中に含まれるガス
成分が低減したことによって、膜中の不純物濃度が低下
したことによる。Therefore, in order to reduce this specific resistance,
For example, the invention of JP-A-61-151822 was made. This is 10 - by forming a Ni-Fe thin film by vapor deposition at 7 Torr in high vacuum below, to reduce the residual impurity gas content in the film, it is to reduce the specific resistance. Further, conventional vacuum - it is formed in the (2 × 10 about 6 Torr), by performing heat treatment after film formation, by reducing the amount of residual gas in the film, to reduce the specific resistance I'm trying to do it. Further, in the invention of Japanese Patent Laid-Open No. 60-9183, when the Ni—Fe thin film is formed by the sputtering method, the vacuum degree at the time of melting the Ni—Fe target as the base material is 10
-By setting the pressure to 5 Torr or less, a thin film having a small specific resistance is obtained. This is because the concentration of impurities in the film was lowered due to the reduction of the gas component contained in the target.
【0005】[0005]
【発明が解決しようとする課題】従来、MR薄膜の比抵
抗を小さくするためには前述したように、蒸着法であっ
ても、スパッタ法であっても、膜中の不純物濃度を低下
させる方法が一般的であった。しかしながら、前述の発
明を実施しても、実際に形成されるMR薄膜の比抵抗は
大幅にばらつき、MRヘッドの特性をばらつかせる原因
となっている。Conventionally, in order to reduce the specific resistance of the MR thin film, as described above, the method of reducing the impurity concentration in the film by either the vapor deposition method or the sputtering method is used. Was common. However, even if the above-mentioned invention is carried out, the specific resistance of the actually formed MR thin film greatly varies, which causes the characteristics of the MR head to vary.
【0006】本発明はこの大幅にばらつくMR薄膜の比
抵抗を小さい値に安定化させることを目的としている。An object of the present invention is to stabilize the specific resistance of the MR thin film, which varies greatly, to a small value.
【0007】[0007]
【課題を解決するための手段】Ni−Fe、あるいは、
Ni−Fe−Coの合金の多結晶集合体よりなる磁気抵
抗効果薄膜において、結晶粒径Dと膜厚δとの関係が、
0.58δ≦D≦δであることを特徴とした磁気抵抗効
果薄膜とする。このとき15nm<δ<40nmとす
る。そして、この条件を満足する磁気抵抗効果型薄膜を
形成する製造方法として、膜堆積中に不活性ガスを加速
し堆積中の膜表面に衝撃を与えながら膜堆積を行う、磁
気抵抗効果薄膜の製造方法とする。Means for Solving the Problems Ni--Fe, or
In a magnetoresistive effect thin film made of a polycrystalline aggregate of Ni—Fe—Co alloy, the relationship between the crystal grain size D and the film thickness δ is
The magnetoresistive effect thin film is characterized in that 0.58δ ≦ D ≦ δ. At this time, 15 nm <δ <40 nm. Then, as a manufacturing method for forming a magnetoresistive effect thin film satisfying these conditions, the film is deposited while accelerating an inert gas during the film deposition and impacting the film surface during the deposition. Let's do it.
【0008】[0008]
【作用】Ni−Fe薄膜の比抵抗は、たとえ膜中の不純
物が十分に低くても、形成される膜の結晶性に依存して
大きく変化する。図1および図2に、それぞれ、結晶性
の良好なNi−Fe薄膜と結晶性の良好でないNi−F
e薄膜のX線回折パタンを示す。膜厚は図1と図2とも
に、10、15、20、30nmである。図1および図
2の膜を結晶粒の大きさについて比較した場合、結晶粒
の小さい図2の膜の比抵抗は、結晶粒の大きい図1の膜
の比抵抗に比べて大きい。これは、結晶粒が小さいこと
によって、結晶粒界が多く存在し、電子が結晶粒界で頻
繁に散乱されるためである。よって、結晶粒径の小さい
図2のNi−Fe薄膜を用いたMRヘッドはエレクトロ
マイグレーションを起こしやすく、通電寿命が短い。そ
れに対して、結晶粒径の大きい図1のNi−Fe薄膜を
用いたMRヘッドはエレクトロマイグレーションを起こ
しにくく、通電寿命が長い。The specific resistance of the Ni-Fe thin film changes greatly depending on the crystallinity of the formed film even if the impurities in the film are sufficiently low. 1 and 2 show a Ni—Fe thin film having good crystallinity and a Ni—F film having poor crystallinity, respectively.
3 shows an X-ray diffraction pattern of a thin film. The film thicknesses in both FIGS. 1 and 2 are 10, 15, 20, and 30 nm. When the films of FIGS. 1 and 2 are compared with respect to the size of crystal grains, the resistivity of the film of FIG. 2 having a small crystal grain is larger than the resistivity of the film of FIG. 1 having a large crystal grain. This is because there are many crystal grain boundaries due to the small crystal grains, and electrons are frequently scattered at the crystal grain boundaries. Therefore, the MR head using the Ni—Fe thin film of FIG. 2 having a small crystal grain size easily causes electromigration and has a short energization life. On the other hand, the MR head using the Ni—Fe thin film of FIG. 1 having a large crystal grain size is unlikely to cause electromigration and has a long energization life.
【0009】図3は、Ni−Fe薄膜を10μmの幅に
パタン化し、250℃の加速環境中で0.5×107 A
/cm2 の電流を流したときの、通電寿命とNi−Fe
膜の比抵抗の関係を示す。膜の比抵抗の増大とともに通
電寿命は短くなる。比抵抗が20μΩcm以下のとき
に、1000時間を越える実用的な寿命が得られる。よ
って、Ni−Fe膜の比抵抗としては20μΩcmであ
ることが望ましい。In FIG. 3, a Ni-Fe thin film is patterned into a width of 10 μm and 0.5 × 10 7 A in an accelerated environment of 250 ° C.
Life and Ni-Fe when a current of 1 / cm 2 is applied
The relationship of the specific resistance of a film is shown. The energization life becomes shorter as the specific resistance of the film increases. When the specific resistance is 20 μΩcm or less, a practical life exceeding 1000 hours can be obtained. Therefore, it is desirable that the specific resistance of the Ni—Fe film is 20 μΩcm.
【0010】この比抵抗を得るためには、膜厚と結晶粒
径とからの規定が必要である。すなわち、膜厚が15n
m以下となると、膜表面での電子散乱の影響が顕著とな
り比抵抗が増大する。一方、膜厚が40nm以上となる
と、比抵抗は低下するが、この膜厚のNi−Fe膜を用
いたMRヘッドは分解能が低下し不都合となる。よっ
て、膜厚δは15nm<δ<40nmとなる。In order to obtain this specific resistance, it is necessary to specify the film thickness and the crystal grain size. That is, the film thickness is 15n
When it is less than m, the effect of electron scattering on the film surface becomes remarkable and the specific resistance increases. On the other hand, when the film thickness is 40 nm or more, the specific resistance decreases, but the MR head using the Ni—Fe film having this film thickness has a disadvantage that the resolution is decreased. Therefore, the film thickness δ is 15 nm <δ <40 nm.
【0011】結晶粒径Dと膜厚とは相関があり、図4に
示すように、基本的には膜厚の増大とともにDは増大す
る。また、膜厚以上にDを大きくすることは実際上困難
である。図4から、20μΩcm以下の比抵抗を得るた
めには、15nm<δ<40nmにおて、0.58δ≦
D≦δとする。この条件を満たすときに、比抵抗は20
μΩcm以下となり、通電寿命は長くなり実用的なMR
薄膜が得られる。There is a correlation between the crystal grain size D and the film thickness, and as shown in FIG. 4, basically D increases as the film thickness increases. Further, it is practically difficult to make D larger than the film thickness. From FIG. 4, in order to obtain a specific resistance of 20 μΩcm or less, 0.58δ ≦ 15 nm <δ <40 nm
Let D ≦ δ. When this condition is satisfied, the specific resistance is 20
It becomes less than μΩcm, the energization life is long and practical MR
A thin film is obtained.
【0012】これはNI−Fe薄膜に限らず、Ni−F
e−Co薄膜においても同様である。This is not limited to the NI-Fe thin film, but Ni-F
The same applies to the e-Co thin film.
【0013】[0013]
【実施例】次に本発明の実施例について説明する。 (実施例1)ガラス基板上に下地膜として、膜厚20n
mのTa薄膜を形成し、真空を破らずにNi−Fe膜を
形成した。膜形成にはマグネトロンスパッタ法を用い
て、圧力3mTorrのアルゴンプラズマによりターゲ
ットをスパッタした。Ni−Fe膜はNi1 8 Fe1 9
合金ターゲットを用い、膜厚10、15、20、および
30nmの4種類作成した。EXAMPLES Next, examples of the present invention will be described. (Example 1) As a base film on a glass substrate, a film thickness of 20 n
A Ta thin film of m was formed, and a Ni—Fe film was formed without breaking the vacuum. A magnetron sputtering method was used for film formation, and a target was sputtered by argon plasma with a pressure of 3 mTorr. Ni-Fe film is Ni 1 8 Fe 1 9
Four kinds of film thicknesses of 10, 15, 20, and 30 nm were created using an alloy target.
【0014】図1にこのときのX線回折パタンを示す。FIG. 1 shows the X-ray diffraction pattern at this time.
【0015】膜厚が10nmと薄くても、面心立方格子
の(111)面からの回折が顕著に現れ、結晶性が良好
なことが伺える。これはNi−Fe膜がTa膜上にエピ
タキシャル的に成長したことによると考えられる。 (比較例1)実施例1と同様に、ただし、Ta薄膜を設
けず、ガラス基板上に直接Ni−Fe膜を形成した。ガ
ラス基板表面はアモルファス構造である。この時のNi
−Fe膜のX線回折パタンを図2に示す。図1に対し
て、ノイズ成分の大きい回折パタンとなっており、面心
立方格子の(111)面からの回折強度も小さい。Ni
−Fe膜の結晶性があまり良くないことが伺える。Even if the film thickness is as thin as 10 nm, diffraction from the (111) plane of the face-centered cubic lattice appears remarkably, and it can be seen that the crystallinity is good. It is considered that this is because the Ni—Fe film was epitaxially grown on the Ta film. (Comparative Example 1) As in Example 1, except that the Ta thin film was not provided, the Ni-Fe film was formed directly on the glass substrate. The glass substrate surface has an amorphous structure. Ni at this time
The X-ray diffraction pattern of the —Fe film is shown in FIG. Compared with FIG. 1, the diffraction pattern has a large noise component, and the diffraction intensity from the (111) plane of the face-centered cubic lattice is also small. Ni
It can be seen that the crystallinity of the —Fe film is not so good.
【0016】図5に図1および図2から求められる結晶
粒径(D)と膜厚(δ)との関係を示す。Dはδと正の
相関にある。表面がアモルファス構造のガラス基板上に
直接形成されたNi−Fe膜のDはδに対して、D<
0.58δである。それに対して、Ta膜上に形成され
たNi−Fe膜のDはδに対して、D≧0.58δと大
きい。図6にTa膜上に形成されたNi−Fe膜の比抵
抗(ρ)と、ガラス基板上に形成されたNi−Fe膜の
ρの膜厚依存性を示す。Ta膜上に形成された膜の比抵
抗は、ガラス基板上に形成された膜のそれに比べて小さ
い。これは、図5に示したように、Ta膜上に形成され
たNi−Fe膜の結晶粒径が、ガラス基板上に形成され
た膜のそれよりも大きいことによると考えられる。FIG. 5 shows the relationship between the crystal grain size (D) and the film thickness (δ) obtained from FIGS. 1 and 2. D has a positive correlation with δ. The D of the Ni-Fe film directly formed on the glass substrate having the amorphous structure is D <
It is 0.58δ. On the other hand, D of the Ni-Fe film formed on the Ta film is as large as D ≧ 0.58δ with respect to δ. FIG. 6 shows the film thickness dependence of the specific resistance (ρ) of the Ni—Fe film formed on the Ta film and the ρ of the Ni—Fe film formed on the glass substrate. The specific resistance of the film formed on the Ta film is smaller than that of the film formed on the glass substrate. It is considered that this is because, as shown in FIG. 5, the crystal grain size of the Ni—Fe film formed on the Ta film is larger than that of the film formed on the glass substrate.
【0017】図7に抵抗変化率(Δρ/ρ)の膜厚依存
性を示す。Ta膜上に形成されたNi−Fe膜のΔρ/
ρは、ガラス基板上の膜のそれよりも大きい。これは、
Ta膜上に形成されたNi−Fe膜の比抵抗が、ガラス
基板上に形成された膜のそれよりも小さいためである。 (実施例2)イオンビームスパッタ装置を用いて、NI
8 1 Fe1 9 合金ターゲットをArイオンビームスパッ
タし、ガラス基板上にNi−Fe膜を形成した。このと
き、膜堆積中の基板表面を加速電圧200V、電流密度
0.01mA/cm2 のArイオンビームでアシストし
た。Ar圧力は0.3Torr、Ni−Fe膜厚は1
0、15、20、および30nmとした。 (比較例2)実施例2と同様に、ただし、膜堆積中のA
rイオンビームでのアシストは行わずにNi−Fe膜を
形成した。FIG. 7 shows the film thickness dependence of the resistance change rate (Δρ / ρ). Δρ / of Ni-Fe film formed on Ta film
ρ is larger than that of the film on the glass substrate. this is,
This is because the specific resistance of the Ni-Fe film formed on the Ta film is smaller than that of the film formed on the glass substrate. (Example 2) Using an ion beam sputtering apparatus, NI
An 8 1 Fe 19 alloy target was subjected to Ar ion beam sputtering to form a Ni—Fe film on a glass substrate. At this time, the substrate surface during film deposition was assisted with an Ar ion beam having an acceleration voltage of 200 V and a current density of 0.01 mA / cm 2 . Ar pressure is 0.3 Torr, Ni-Fe film thickness is 1
0, 15, 20, and 30 nm. (Comparative Example 2) Similar to Example 2, except that A during film deposition
The Ni—Fe film was formed without assisting with the r ion beam.
【0018】図9にNi−Fe膜の膜厚δに対する結晶
粒径Dを示す。Dはδと正の相関にある。イオンアシス
トをせずに堆積させたNi−Fe膜のDはδに対して、
D<0.58δである。それに対して、イオンアシスト
したときのNi−Fe膜のDはδに対して、D≧0.5
8δと大きくなった。図10にイオンアシストの有無で
のNi−Fe膜の比抵抗(ρ)の膜厚依存性を示す。イ
オンアシストしたNi−Fe膜の比抵抗は、イオンアシ
ストしない膜のそれに比べて小さい。これは、図9に示
したように、イオンアシストしたNi−Fe膜の結晶粒
径が、イオンアシストしない膜のそれよりも大きいこと
による。 (実施例3)ガラス基板上に下地膜として、膜厚20n
mのTa薄膜を形成し、真空を破らずにNi−Fe−C
o膜を形成した。膜形成にはマグネトロンスパッタ法を
用いて、圧力3mTorrのArプラズマによりターゲ
ットをスパッタした。Ni−Fe−Co膜はNi8 2 F
e4 Co1 4 合金ターゲットを用い、膜厚10、15、
20および30nmの4種類作成した。FIG. 9 shows the crystal grain size D with respect to the film thickness δ of the Ni—Fe film. D has a positive correlation with δ. D of the Ni—Fe film deposited without ion assist is δ,
D <0.58δ. On the other hand, D of the Ni—Fe film when ion-assisted is δ with respect to δ, and D ≧ 0.5.
It increased to 8δ. FIG. 10 shows the film thickness dependence of the specific resistance (ρ) of the Ni—Fe film with and without ion assist. The specific resistance of the ion-assisted Ni-Fe film is smaller than that of the non-ion-assisted film. This is because, as shown in FIG. 9, the crystal grain size of the ion-assisted Ni-Fe film is larger than that of the non-ion-assisted film. (Example 3) A film having a thickness of 20 n is formed on a glass substrate as a base film.
m Ta film is formed, and Ni-Fe-C is formed without breaking vacuum.
o film was formed. A magnetron sputtering method was used for film formation, and a target was sputtered by Ar plasma at a pressure of 3 mTorr. Ni-Fe-Co film Ni 8 2 F
Using an e 4 Co 14 alloy target, film thickness 10, 15,
Four types of 20 and 30 nm were prepared.
【0019】X線回折の結果、Ta下地膜を設けたNi
−Fe−Co膜はTa膜上にエピタキシャル的に成長
し、面心立方格子(111)面が膜面に平行に配向した
結晶性の良好な膜となった。このとき、膜厚が30nm
において20μΩcm以下の小さい比抵抗が得られた。
このときDは、24nmであった。 (比較例3)実施例3と同様に、ただし、Ta薄膜を設
けず、ガラス基板上に直接Ni−Fe−Co膜を形成し
た。ガラス基板上に直接形成されたNi−Fe−Co膜
は、面心立方格子の(111)面からの回折強度が小さ
く、結晶性があまり良くない膜となった。ガラス基板上
に形成した、膜厚30nmのNi−Fe−Co膜のD
は、11nmであった。As a result of X-ray diffraction, Ni with a Ta underlayer was provided.
The -Fe-Co film was epitaxially grown on the Ta film and became a film with good crystallinity in which the face-centered cubic lattice (111) plane was oriented parallel to the film surface. At this time, the film thickness is 30 nm
In, a small specific resistance of 20 μΩcm or less was obtained.
At this time, D was 24 nm. (Comparative Example 3) As in Example 3, except that the Ta thin film was not provided, the Ni-Fe-Co film was formed directly on the glass substrate. The Ni-Fe-Co film formed directly on the glass substrate had a small diffraction intensity from the (111) plane of the face-centered cubic lattice and had a poor crystallinity. D of a Ni-Fe-Co film with a film thickness of 30 nm formed on a glass substrate
Was 11 nm.
【0020】実施例1〜3および比較例1〜3の磁気抵
抗効果薄膜を用いて、図8に示すMRヘッドを作製し、
通電寿命の評価を行った。図8において、81は磁気抵
抗効果薄膜、82はAu電極、83は基板である。Au
電極82の膜厚は200nm、電極間隔は5μm、磁気
抵抗効果薄膜81の幅は3μmとした。評価時の電極密
度は1×107 A/cm2 である。評価結果を表1に示
す。Using the magnetoresistive thin films of Examples 1 to 3 and Comparative Examples 1 to 3, the MR head shown in FIG.
The energization life was evaluated. In FIG. 8, 81 is a magnetoresistive thin film, 82 is an Au electrode, and 83 is a substrate. Au
The thickness of the electrode 82 was 200 nm, the electrode interval was 5 μm, and the width of the magnetoresistive thin film 81 was 3 μm. The electrode density at the time of evaluation is 1 × 10 7 A / cm 2 . Table 1 shows the evaluation results.
【0021】[0021]
【表1】 [Table 1]
【0022】この評価結果から、比較例の磁気抵抗効果
薄膜では、結晶粒界が多く存在し比抵抗が高いことか
ら、粒界での断線が発生しやすいのに対して、実施例の
磁気抵抗効果薄膜では、結晶粒界が減少した比抵抗が低
下したことから、粒界での断線が発生しにくくなったと
考えられる。From these evaluation results, in the magnetoresistive effect thin film of the comparative example, many crystal grain boundaries are present and the specific resistance is high, so that the wire breakage easily occurs at the grain boundary, while the magnetoresistive effect of the example In the effect thin film, it is considered that disconnection at the grain boundary was less likely to occur because the crystal grain boundary decreased and the specific resistance decreased.
【0023】[0023]
【発明の効果】本発明によると、磁気抵抗効果膜の比抵
抗を小さくすることができる。その結果、本発明の磁気
抵抗効果膜を用いたMRヘッドでは、通電寿命が顕著に
長くなる。また、従来のMRヘッドに比べて、磁気抵抗
効果膜の比抵抗が小さいことから、素子に流す電流を増
すことが可能となり、ヘッドの再生出力を増大させるこ
とも可能となる。According to the present invention, the specific resistance of the magnetoresistive film can be reduced. As a result, the MR head using the magnetoresistive film of the present invention has a remarkably long energization life. Further, since the specific resistance of the magnetoresistive film is smaller than that of the conventional MR head, the current flowing through the element can be increased, and the reproduction output of the head can also be increased.
【0024】また、本発明の製造方法により、非晶質基
板上に直接磁気抵抗効果薄膜を設けても、結晶粒径の大
きな膜を得ることができる。Further, according to the manufacturing method of the present invention, even if the magnetoresistive thin film is directly provided on the amorphous substrate, a film having a large crystal grain size can be obtained.
【図1】本発明実施例1のNi−Fe膜のX線回折パタ
ンを示す図。FIG. 1 is a diagram showing an X-ray diffraction pattern of a Ni—Fe film of Example 1 of the present invention.
【図2】比較例のNi−Fe膜のX線回折パタンを示す
図FIG. 2 is a diagram showing an X-ray diffraction pattern of a Ni—Fe film of a comparative example.
【図3】本発明の作用を説明するための図。FIG. 3 is a diagram for explaining the operation of the present invention.
【図4】本発明の作用を説明するための図。FIG. 4 is a diagram for explaining the operation of the present invention.
【図5】本発明の作用を説明するための図。FIG. 5 is a diagram for explaining the operation of the present invention.
【図6】本発明の作用を説明するための図。FIG. 6 is a diagram for explaining the operation of the present invention.
【図7】本発明の作用を説明するための図。FIG. 7 is a diagram for explaining the operation of the present invention.
【図8】本発明実施例のMRヘッドの構成図。FIG. 8 is a configuration diagram of an MR head according to an embodiment of the present invention.
【図9】本発明の作用を説明するための図。FIG. 9 is a diagram for explaining the operation of the present invention.
【図10】本発明の作用を説明するための図。FIG. 10 is a diagram for explaining the operation of the present invention.
81 磁気抵抗効果膜 82 Au電極 83 基板 81 Magnetoresistive film 82 Au electrode 83 Substrate
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 43/10 H01L 43/10 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01L 43/10 H01L 43/10
Claims (2)
oの合金の多結晶集合体よりなる磁気抵抗効果薄膜にお
いて、膜厚δが15nm<δ<40nmであり、かつ、
δと結晶粒径Dとの関係が、0.58δ≦D≦δである
ことを特徴とする磁気抵抗効果薄膜。1. Ni-Fe or Ni-Fe-C
In a magnetoresistive effect thin film made of a polycrystalline aggregate of an alloy of o, the film thickness δ is 15 nm <δ <40 nm, and
A magnetoresistive effect thin film characterized in that the relationship between δ and crystal grain size D is 0.58δ ≦ D ≦ δ.
oの合金の多結晶集合体よりなる磁気抵抗効果薄膜の製
造方法において、膜堆積中に不活性ガスを加速し堆積中
の膜表面に衝撃を与えながら膜堆積を行うことを特徴と
する磁気抵抗効果薄膜の製造方法。2. Ni-Fe or Ni-Fe-C
In a method of manufacturing a magnetoresistive effect thin film made of a polycrystalline aggregate of an alloy of o, the magnetoresistive film is deposited while accelerating an inert gas during film deposition and impacting the film surface during deposition. Effect thin film manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5240978A JP2551350B2 (en) | 1993-09-28 | 1993-09-28 | Magnetoresistive thin film and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5240978A JP2551350B2 (en) | 1993-09-28 | 1993-09-28 | Magnetoresistive thin film and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0799114A JPH0799114A (en) | 1995-04-11 |
JP2551350B2 true JP2551350B2 (en) | 1996-11-06 |
Family
ID=17067499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5240978A Expired - Fee Related JP2551350B2 (en) | 1993-09-28 | 1993-09-28 | Magnetoresistive thin film and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2551350B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3233039B2 (en) * | 1996-08-28 | 2001-11-26 | 三菱自動車工業株式会社 | Control device for in-cylinder injection spark ignition internal combustion engine |
KR100590211B1 (en) | 2002-11-21 | 2006-06-15 | 가부시키가이샤 덴소 | Magnetic impedance device, sensor apparatus using the same and method for manufacturing the same |
-
1993
- 1993-09-28 JP JP5240978A patent/JP2551350B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0799114A (en) | 1995-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3088478B2 (en) | Magnetoresistive element | |
JP2962415B2 (en) | Exchange coupling membrane | |
JP3735443B2 (en) | Exchange coupling film, magnetoresistive effect element, magnetic head, and magnetic storage device using the same | |
JP2000012365A (en) | Tunnel junction and method for forming the same | |
JPH087859B2 (en) | Magnetic recording medium and manufacturing method thereof | |
US20060157810A1 (en) | CPP magneto-resistive element, method of manufacturing CPP magneto-resistive element, magnetic head, and magnetic memory apparatus | |
JP3088519B2 (en) | Magnetoresistive element | |
JP3497573B2 (en) | Exchange coupling film and magnetoresistive element | |
JP2551350B2 (en) | Magnetoresistive thin film and method of manufacturing the same | |
US5510941A (en) | Magneto-resistive type magnetic head with a shunt layer of molybdenum | |
JP3219329B2 (en) | Magnetoresistance effect element | |
JPH076328A (en) | Magnetic reluctance reproducing head and its preparation | |
JP2000268340A (en) | Magnetic recording medium and its manufacture | |
JPH06314617A (en) | Exchange connection film and magnetoresistance effect element | |
JPH09305968A (en) | Manufacture of magnetic recording medium | |
JP2001102656A (en) | Ferromagnetic hall element | |
JP2853923B2 (en) | Soft magnetic alloy film | |
JP2516064B2 (en) | Magnetic recording medium and manufacturing method thereof | |
JP3274449B2 (en) | Magneto-resistance effect element and thin-film magnetic head using the magneto-resistance effect element | |
JP2692468B2 (en) | Magnetoresistive head | |
JP3255901B2 (en) | Method for producing exchange coupling membrane | |
JP3274440B2 (en) | Magneto-resistance effect element and thin-film magnetic head using the magneto-resistance effect element | |
JP2000031562A (en) | Switched connection film and its manufacture, magneto- resistance effect element using the film, and thin-film magnetic head using the element | |
JP3048572B2 (en) | Magneto-resistance effect element and thin-film magnetic head using the magneto-resistance effect element | |
JP2002074625A (en) | Method for manufacturing low resistance tantalum thin film, thin film magnetic head and magnetic recording and reproducing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19960702 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080822 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080822 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090822 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090822 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100822 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100822 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110822 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120822 Year of fee payment: 16 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130822 Year of fee payment: 17 |
|
LAPS | Cancellation because of no payment of annual fees |