JP2550602B2 - Catalyst for transalkylation reaction - Google Patents

Catalyst for transalkylation reaction

Info

Publication number
JP2550602B2
JP2550602B2 JP62226203A JP22620387A JP2550602B2 JP 2550602 B2 JP2550602 B2 JP 2550602B2 JP 62226203 A JP62226203 A JP 62226203A JP 22620387 A JP22620387 A JP 22620387A JP 2550602 B2 JP2550602 B2 JP 2550602B2
Authority
JP
Japan
Prior art keywords
reaction
saponite
catalyst
ion
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62226203A
Other languages
Japanese (ja)
Other versions
JPS6470142A (en
Inventor
有亮 泉
和夫 卜部
宏昭 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP62226203A priority Critical patent/JP2550602B2/en
Publication of JPS6470142A publication Critical patent/JPS6470142A/en
Application granted granted Critical
Publication of JP2550602B2 publication Critical patent/JP2550602B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 (産業上利用の分野) 本発明は、サポナイトを金属元素でイオン交換した
後、焼成することによって得られる変性サポナイトを含
むトランスアルキル化反応用触媒に関する。
TECHNICAL FIELD The present invention relates to a transalkylation catalyst containing a modified saponite obtained by subjecting saponite to ion exchange with a metal element and then calcining.

(従来の技術) 層状粘土鉱物はシリカ、アルミナ、水、さらに鉄、ア
ルカリ土類金属、アルカリ金属などから成る鉱物であ
り、古くから固体酸性を示す物質として知られている。
(Prior Art) Layered clay minerals are minerals composed of silica, alumina, water, iron, alkaline earth metals, alkali metals, and the like, and have long been known as substances exhibiting solid acidity.

スメクタイト型層状粘土鉱物は、Al、Mg、Li、Fe、Zn
などの酸化物又は水酸化物で配位した八面体層とSiおよ
び/又はAlの酸化物の形態で配位した四面体層とからな
っている層状格子構造をとっている。この層状構造の粘
土の結合力の弱い二次元層間へ各種の化合物、例えばイ
オン、錯体、有機もしくは無機化合物を挿入することに
よって層間隔を任意に変化させることができることが知
られている。
Smectite type layered clay minerals include Al, Mg, Li, Fe, Zn
Has a layered lattice structure composed of an octahedral layer coordinated with an oxide or hydroxide and a tetrahedral layer coordinated in the form of an oxide of Si and / or Al. It is known that the layer spacing can be arbitrarily changed by inserting various compounds, such as ions, complexes, organic or inorganic compounds, between two-dimensional layers of clay having a weak layered structure and having a weak binding force.

スメクタイト型層状粘土鉱物の代表的なモンモリロナ
イトを主成分とする粘土は石油化学プロセスなどにおい
て芳香族化合物(ベンゼン、トルエン、キシレン等)の
脱色、微量オレフィン類の除去に使用されている。一
方、層状粘土鉱物が固体酸性を有すること、層間に各種
の化合物の挿入によって層間隔を任意に変化させ得るこ
となどの理由から、形状選択性を有する触媒としての使
用が期待されている。しかしながら、層状粘土鉱物の多
くは、加熱することによって、層間に挿入された各種の
分子や層間水を放出し、層間隔が収縮したりあるいは層
状構造が破壊されることなどがある。さらに高温度での
触媒反応では、層状粘土鉱物は上述のように層間隔が収
縮したり破壊されることが多いので実質的には外表面し
か反応に寄与できない。そこで層状粘土鉱物を固体酸触
媒として有効に利用するために層間に“柱”立てること
によって層状粘土鉱物を補強するいわゆる架橋による改
善が提案されている。例えば、特開昭59−139328号公報
にはスメクタイト型粘土を重合体陽イオン性ピドロキシ
無機金属錯体と反応させることによって補強層状粘土を
作り、これをジイソプロピルベンゼンからモノイソプロ
ピルベンゼンへの転化反応における触媒として使用する
方法が開示されている。また、特開昭59−163328号公報
においても層状粘土鉱物触媒を調製する際に陽イオン性
ヒドロキシ金属錯体によって架橋させる方法が採用され
ている。しかし、架橋の形成は必ずしも容易ではなく、
例えばアルミニウムの多核水酸化物錯体の調製には、煩
雑な操作と共に錯体の熟成など触媒の調製には多大の時
間を要するものであった。
Clay containing montmorillonite as a main component, which is a typical smectite type layered clay mineral, is used for decolorizing aromatic compounds (benzene, toluene, xylene, etc.) and removing trace olefins in petrochemical processes. On the other hand, the layered clay mineral is expected to be used as a catalyst having shape selectivity, because the layered clay mineral has solid acidity, and the layer spacing can be arbitrarily changed by inserting various compounds between layers. However, many layered clay minerals release various molecules inserted between layers and interlayer water when heated, and the layer spacing may be contracted or the layered structure may be destroyed. Further, in the catalytic reaction at a higher temperature, the layered clay mineral often shrinks or is destroyed as described above, so that substantially only the outer surface can contribute to the reaction. Therefore, in order to effectively utilize the layered clay mineral as a solid acid catalyst, improvement by so-called cross-linking has been proposed to reinforce the layered clay mineral by forming "pillars" between layers. For example, in JP-A-59-139328, a reinforcing layered clay is prepared by reacting a smectite type clay with a polymer cationic pyridoxy inorganic metal complex, which is used as a catalyst in a conversion reaction of diisopropylbenzene to monoisopropylbenzene. Is disclosed. Further, Japanese Patent Laid-Open No. 163328/1984 also adopts a method of crosslinking with a cationic hydroxy metal complex when preparing a layered clay mineral catalyst. However, the formation of crosslinks is not always easy,
For example, in the preparation of a polynuclear hydroxide complex of aluminum, it takes a lot of time to prepare a catalyst such as aging of the complex and complicated operation.

(発明が解決しようとする問題点) 上記のように、従来の層状粘土鉱物触媒は、高温で十
分な活性を発揮し得ず、活性維持のための架橋法も必ず
しも容易ではない。そこで本発明の目的は十分に高温に
耐えしかも高いトランスアルキル化反応触媒性能を有す
る層状粘土鉱物を提供することにある。
(Problems to be Solved by the Invention) As described above, the conventional layered clay mineral catalyst cannot exhibit sufficient activity at high temperatures, and the crosslinking method for maintaining activity is not always easy. Therefore, it is an object of the present invention to provide a layered clay mineral that can sufficiently withstand high temperatures and that has high catalytic performance for transalkylation reaction.

(問題点を解決するための手段) 本発明者らは、上記問題点を解決するために鋭意研究
した結果、スメクタイト型層状粘土鉱物を特定の元素で
イオン交換した後、焼成することによって固体酸性を発
現する層状粘土鉱物が存在することを見出し、さらに該
層状粘土鉱物アトランスフアルキル化反応活性を有する
ことを見出して本発明を完成させるに至った。
(Means for Solving Problems) The inventors of the present invention have conducted extensive studies to solve the above problems, and as a result, ion-exchange the smectite-type layered clay mineral with a specific element and then calcining the solid acid. The present invention has been completed by finding out that there is a layered clay mineral that expresses, and further finding that the layered clay mineral has a transalkylation reaction activity.

すなわち、本発明は、サポナイトを、Al、Zr、Ti、Fe
及びMgから選ばれる一種又は二種以上の金属元素のイオ
ンでイオン交換し、次いで焼成して得られる一般式 (式中Mn+はAl、Zr、Ti、Fe及びMgからなる群から選ば
れる金属元素のイオンであり、nは2〜4の整数であ
る)で示される変性サポナイトを含むトランスアルキル
化反応用触媒に関する。
That is, the present invention, saponite, Al, Zr, Ti, Fe
And a general formula obtained by ion-exchange with ions of one or more metal elements selected from Mg and then firing. (Wherein M n + is an ion of a metal element selected from the group consisting of Al, Zr, Ti, Fe and Mg, and n is an integer of 2 to 4) for a transalkylation reaction containing a modified saponite Regarding catalysts.

以下本発明について説明する。 The present invention will be described below.

本発明においては、 で表わされるサポナイトを用い、まず該サポナイトをイ
オン交換する。イオン交換には、Al、Zr、Ti、Fe及びMg
から選ばれる一種又は二種以上の金属元素を用いる。こ
れらの金属元素は硝酸塩、硫酸塩、リン酸塩等の無機酸
塩および塩化物などあるいは酢酸、蓚酸などの有機酸塩
など水溶液中でイオンを生成する化合物として用いられ
る。一般には硝酸塩あるいは塩化物等の水溶液を用いる
のが簡単である。金属硝酸塩あるいは塩化物の水溶液濃
度については特に制限はないが通常は0.1〜1mol/程度
とすることが好ましい。この様に調製された金属イオン
水溶液へ、サポナイトを浸漬することによってイオン交
換することができる。イオン交換のための温度は0〜90
℃、好ましくは10〜70℃とすることが適当である。尚、
室温においても十分にイオン交換は実施できる。イオン
交換に要する時間は1〜50時間であり、通常は5〜20時
間で十分である。尚、イオン交換の際には水溶液中にサ
ポナイトを分散させるためにゆるやかに撹拌するのが良
い。所定の時間イオン交換を行った後、イオン交換され
たサポナイトをろ過し、水洗する。水洗は洗液中に金属
イオンが検出されなくなるまで実施するのが良い。
In the present invention, First, the saponite is ion-exchanged. For ion exchange, Al, Zr, Ti, Fe and Mg
One or more metal elements selected from the above are used. These metal elements are used as compounds that generate ions in an aqueous solution such as inorganic acid salts such as nitrates, sulfates and phosphates and chlorides, or organic acid salts such as acetic acid and oxalic acid. Generally, it is easy to use an aqueous solution of nitrate or chloride. The concentration of the aqueous solution of the metal nitrate or chloride is not particularly limited, but usually it is preferably about 0.1 to 1 mol /. Ion exchange can be performed by immersing saponite in the metal ion aqueous solution thus prepared. Temperature for ion exchange is 0 to 90
C., preferably 10 to 70.degree. C. is suitable. still,
Ion exchange can be sufficiently performed even at room temperature. The time required for ion exchange is 1 to 50 hours, and 5 to 20 hours is usually sufficient. During ion exchange, it is preferable to gently stir in order to disperse saponite in the aqueous solution. After performing ion exchange for a predetermined time, the ion exchanged saponite is filtered and washed with water. Washing with water is preferably carried out until no metal ions are detected in the washing liquid.

以上のような方法でイオン交換されたサポナイトは乾
燥させた後、焼成に付される。焼成温度は650℃以下、
好ましくは300〜600℃が望ましい。650℃を超える焼成
温度では得られる変性サポナイトの比表面積が減少する
傾向がある。焼成時間は0.5〜30時間程度、好ましくは
1〜10時間とすることが適当である。また焼成は酸素又
は空気雰囲気であるいは窒素雰囲気下で実施することが
できる。
The saponite ion-exchanged by the above method is dried and then fired. The firing temperature is 650 ° C or lower,
It is preferably 300 to 600 ° C. At a firing temperature of higher than 650 ° C, the specific surface area of the modified saponite obtained tends to decrease. The firing time is about 0.5 to 30 hours, preferably 1 to 10 hours. The firing can be carried out in an oxygen or air atmosphere or a nitrogen atmosphere.

尚、本発明の変性サポナイトの原料として用いるサポ
ナイトは、サポナイト自身のみならずサポナイトを含有
する層状粘土鉱物、特にスメクタイト型層状粘土鉱物で
あることができる。スメクタイト型層状粘土鉱物として
は、サポナイト以外に例えばモンモリロナイト、ヘクト
ライト、ラポナイト、ベントナイト、バイデライト、ノ
ントロナイト、ソーコナイト等を含有するものを用いる
ことができる。サポナイトの含有量に特に制限はなく、
使用目的、反応条件等によって異なるが、通常50重量%
以上であることが望ましい。又、サポナイトを含有する
スメクタイト型層状粘土鉱物は天然品であってもあるい
は水熱合成法等によって作られた合成品であってもよ
い。
The saponite used as a raw material for the modified saponite of the present invention can be not only the saponite itself but also a layered clay mineral containing saponite, particularly a smectite type layered clay mineral. As the smectite-type layered clay mineral, those containing, for example, montmorillonite, hectorite, laponite, bentonite, beidellite, nontronite, sauconite, etc. can be used in addition to saponite. There is no particular limitation on the content of saponite,
Usually 50% by weight, depending on the purpose of use, reaction conditions, etc.
The above is desirable. The smectite type layered clay mineral containing saponite may be a natural product or a synthetic product prepared by a hydrothermal synthesis method or the like.

以上のようにして本発明の変性サポナイトを含むトラ
ンスアルキル化反応用触媒を得ることができる。
As described above, the transalkylation catalyst containing the modified saponite of the present invention can be obtained.

以下、該触媒を用いたトランスアルキル化反応につい
て説明する。
The transalkylation reaction using the catalyst will be described below.

本発明においてトランスアルキル化反応としては、例
えばジアルキルベンゼンとベンゼンとからモノアルキル
ベンゼンを得る反応を挙げることができる。ジアルキル
ベンゼン及びモノアルキルベンゼンのアルキル基として
はC1〜6の低級アルキル基、例えばエチル、メチル、プ
ロピル、イソプロピル、ブチル、t−ブチル、ペンチ
ル、イソペンチル、ヘキシル等を挙げることができる。
In the present invention, the transalkylation reaction includes, for example, a reaction in which monoalkylbenzene is obtained from dialkylbenzene and benzene. Examples of the alkyl group of dialkylbenzene and monoalkylbenzene include C1-6 lower alkyl groups such as ethyl, methyl, propyl, isopropyl, butyl, t-butyl, pentyl, isopentyl, and hexyl.

反応方式は固定床あるいは流動床式連続流通式反応装
置が適している。反応圧力は常圧〜100kg/cm2G、好まし
くは常圧〜50kg/cm2Gが適当である。反応温度は約150〜
500℃、好ましくは200〜450℃の範囲に設定する。ジア
ルキルベンゼンに対するベンゼンのモル比は1〜20、好
ましくは5〜10とする。重量単位時間空間速度(WHSV)
は0.3〜10h-1、好ましくは0.5〜5h-1とする。また、ジ
アルキルベンゼンおよびベンゼンと共に反応系内にキャ
リヤーガスとして反応に不活性な窒素、アルゴン、炭酸
ガスなどのガス類を供給するのが好ましい。その耐触媒
の活性を維持するために水素を反応系内に共存させるの
も効果的である。
As the reaction system, a fixed bed or fluidized bed continuous flow reactor is suitable. The reaction pressure is usually atmospheric pressure to 100 kg / cm 2 G, preferably atmospheric pressure to 50 kg / cm 2 G. Reaction temperature is about 150 ~
The temperature is set to 500 ° C, preferably 200 to 450 ° C. The molar ratio of benzene to dialkylbenzene is 1 to 20, preferably 5 to 10. Weight unit hourly space velocity (WHSV)
Is 0.3 to 10 h -1 , preferably 0.5 to 5 h -1 . Further, it is preferable to supply, together with dialkylbenzene and benzene, gases such as nitrogen, argon, carbon dioxide, etc., which are inert to the reaction, as a carrier gas into the reaction system. It is also effective to make hydrogen coexist in the reaction system in order to maintain the activity of the catalyst resistant.

尚、本発明はサポナイトを原料とする変性サポナイト
を用いる触媒に関するが、 のF型サポナイト以外に のOH型もサポナイトも同様の方法で処理することによっ
てトランスアルキル化反応触媒活性を発現することがあ
る。
Although the present invention relates to a catalyst using a modified saponite made from saponite as a raw material, Other than F type saponite Both the OH type and saponite may exhibit catalytic activity for transalkylation reaction when treated in the same manner.

(実施例) 以下、本発明を実施例により更に詳しく説明する。(Examples) Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1 Al(NO3の0.2mol/水溶液1にサポナイト 24gを分散し、室温において12時間ゆるやかに撹拌しな
がらイオン交換を行った。イオン交換したサポナイトを
濾別して、洗液中にAl3+が検出されなくなるまで水洗し
た後、Al3+交換サポナイト(以下Al3+−Sと略す)を11
0℃において12時間乾燥した。その後、電気炉を用いて
空気の存在下、400℃において4時間焼成した。
Example 1 0.2 mol of Al (NO 3 ) 3 / saponite in aqueous solution 1 24 g was dispersed, and ion exchange was performed at room temperature for 12 hours with gentle stirring. Ion-exchanged saponite is filtered off, washed with water until Al 3+ is no longer detected in the washing solution, and then Al 3 + -exchanged saponite (hereinafter abbreviated as Al 3+ -S) is used.
It was dried at 0 ° C. for 12 hours. Then, it was fired at 400 ° C. for 4 hours in the presence of air using an electric furnace.

次に焼成したAl3+−Sの存在下ににおいてジイソプロ
ピルベンゼンの転化反応を行った。反応には固定床式流
通反応装置を使用し、反応圧力は常圧とし、反応温度は
300℃、m−ジイソプロピルベンゼンに対するベンゼン
のモル比は8.4、重量単位時間空間速度(WHSV)は1.0h
-1とした。また、キャリヤーガスとして窒素を400ml/h
の流量で反応器へ供給した。反応開始してから1時間の
平均m−ジイソプロピルベンゼンの転化率およびクメン
の選択率を表1に示す。
Next, the conversion reaction of diisopropylbenzene was carried out in the presence of calcined Al 3+ -S. A fixed bed flow reactor was used for the reaction, the reaction pressure was normal pressure, and the reaction temperature was
300 ℃, the molar ratio of benzene to m-diisopropylbenzene is 8.4, the weight unit hourly space velocity (WHSV) is 1.0h
-1 was set. Also, nitrogen as a carrier gas is 400 ml / h
Was fed to the reactor at a flow rate of. Table 1 shows the average conversion rate of m-diisopropylbenzene and the selectivity of cumene for 1 hour after the start of the reaction.

実施例2 実施例1と同一の条件によって調製、焼成したAl3+
Sを用いて実施例1と同一の装置を用いてジイソプロピ
ルベンゼンの転化反応を行った。転化反応は、反応温度
を250℃とした以外は実施例1と同一条件とした。反応
を開始してから1時間のm−ジイソプロピルベンゼンの
転化率およびクメンの選択率を表1に示す。
Example 2 Al 3 ++ prepared and fired under the same conditions as in Example 1
Using S, the same apparatus as in Example 1 was used to carry out the conversion reaction of diisopropylbenzene. The conversion reaction was carried out under the same conditions as in Example 1 except that the reaction temperature was 250 ° C. Table 1 shows the conversion rate of m-diisopropylbenzene and the selectivity of cumene for 1 hour after starting the reaction.

実施例3 実施例1と同一条件で調製したAl3+−Sを電気炉を用
いて600℃において4時間焼成した。焼成したAl3+−S
を用いて実施例1と同一の反応を反応温度を400℃とす
る以外は同一の条件で実施した。結果を表1に示す。
Example 3 Al 3+ -S prepared under the same conditions as in Example 1 was fired at 600 ° C. for 4 hours using an electric furnace. Calcined Al 3+ -S
Was carried out under the same conditions as in Example 1 except that the reaction temperature was 400 ° C. The results are shown in Table 1.

実施例4 実施例1と同一条件で調製したAl3+−Sを窒素雰囲気
下、300℃で4時間焼成した。焼成して得られたAl3+
Sを用いて実施例1と同一の反応を行った。反応条件は
WHSVを0.62h-1とした以外は実施例1と同一条件とし
た。結果を表1に示す。
Example 4 Al 3+ -S prepared under the same conditions as in Example 1 was fired at 300 ° C. for 4 hours in a nitrogen atmosphere. Al 3+ obtained by firing
The same reaction as in Example 1 was carried out using S. The reaction conditions are
The conditions were the same as in Example 1 except that WHSV was set to 0.62 h -1 . The results are shown in Table 1.

比較例1 実施例1と同一条件でサポナイトの代りにモンモリロ
ナイト を用いてイオン交換(以下Al3+−Mと略す)した。実施
例1と同一条件で焼成した後、実施例1と同一の反応条
件に付した。結果を表1に示す。m−ジイソプロピルベ
ンゼンの転化率およびクメンの選択率は低いものであっ
た。
Comparative Example 1 Under the same conditions as in Example 1, instead of saponite, montmorillonite Was used for ion exchange (hereinafter abbreviated as Al 3+ -M). After firing under the same conditions as in Example 1, the same reaction conditions as in Example 1 were applied. The results are shown in Table 1. The conversion of m-diisopropylbenzene and the selectivity of cumene were low.

比較例2 Al(NO3の0.2mol/水溶液500mlを撹拌しながら6
0℃においてNaOHの0.5mol/の水溶液をゆっくり滴下
し、滴下終了後も48時間撹拌、熟成を行ってAlの多核水
酸化物錯体を調製した。この溶液に室温においてモンモ
リロナイト12gを加えて24時間撹拌し、イオン交換を行
った。濾過した後、十分に水洗し、イオン交換モンモリ
ロナイトを110℃において12時間乾燥した。次いで電気
炉を用いて空気中で400℃において4時間焼成しAl架橋
モンモリロナイト(以下Al−PMと略す)を得た。
Comparative Example 2 6 mol of Al (NO 3 ) 3 0.2 mol / water solution (500 ml) was stirred.
A 0.5 mol / aqueous solution of NaOH was slowly added dropwise at 0 ° C, and stirring and aging were carried out for 48 hours after completion of the addition to prepare a polynuclear hydroxide complex of Al. At room temperature, 12 g of montmorillonite was added to this solution and stirred for 24 hours to carry out ion exchange. After filtration, it was washed thoroughly with water and the ion-exchanged montmorillonite was dried at 110 ° C. for 12 hours. Then, it was fired in air at 400 ° C. for 4 hours using an electric furnace to obtain Al crosslinked montmorillonite (hereinafter abbreviated as Al-PM).

このAl−PMを用いて実施例1と同一の反応条件でm−
ジイソプロピルベンゼンとベンゼンとの反応を行った。
結果を表1に示す。Al−PMを用いる反応では本発明の方
法による結果とほゞ同等ではあったが、触媒である層状
粘土鉱物の調製には多大の時間を要する欠点を有してい
た。
Using this Al-PM under the same reaction conditions as in Example 1, m-
The reaction of diisopropylbenzene and benzene was performed.
The results are shown in Table 1. The reaction using Al-PM was almost the same as the result of the method of the present invention, but it had a drawback that preparation of the layered clay mineral as a catalyst took a lot of time.

実施例5 ZrO(NO3の0.2mol/水溶液1に実施例1で用
いたのと同一のサポナイト24gを分散し、室温で12時間
ゆるやかに撹拌しイオン交換をした。イオン交換したサ
ポナイトを濾別して、洗液中にZr4+が検出されなくなる
まで水洗し、次いで110℃において12時間乾燥した後、
電気炉を用いて400℃において4時間焼成した。得られ
たイオン交換サポナイト(以下Zr4+−Sと略称する)を
用いて実施例1と同一条件においてジイソプロピルベン
ゼンの転化反応を行った。結果を表1に示す。
Example 5 24 g of the same saponite as used in Example 1 was dispersed in 0.2 mol / aqueous solution 1 of ZrO (NO 3 ) 2 and ion-exchanged by gently stirring at room temperature for 12 hours. The ion-exchanged saponite was filtered off, washed with water until Zr 4+ was not detected in the washing solution, and then dried at 110 ° C for 12 hours,
It baked at 400 degreeC using the electric furnace for 4 hours. Using the obtained ion-exchange saponite (hereinafter abbreviated as Zr 4+ —S), a conversion reaction of diisopropylbenzene was performed under the same conditions as in Example 1. The results are shown in Table 1.

実施例6 TiCl3の0.2mol/水溶液を用いる以外は実施例1と同
一の条件下でサポナイトのイオン交換、水洗、乾燥、焼
成を行った。得られたTi4+(TiCl3は水溶液中ではTi4+
を生成する)交換サポナイト(以下Ti4+−S)を用いて
実施例1と同一条件においてジイソプロピルベンゼンの
転化反応を行った。結果を表1に示す。
Example 6 Saponite was ion-exchanged, washed with water, dried, and fired under the same conditions as in Example 1 except that 0.2 mol / aqueous solution of TiCl 3 was used. The resulting Ti 4+ (TiCl 3 is Ti 4+ in an aqueous solution
The conversion reaction of diisopropylbenzene was performed under the same conditions as in Example 1 using exchanged saponite (hereinafter, Ti 4+ —S). The results are shown in Table 1.

実施例7 Fe(NO3をイオン交換剤として用いる以外は実施
例1と同一条件下でサポナイトのイオン交換を行い、水
洗、乾燥、焼成をした。得られたFe3+交換サポナイト
(以下Fe3+−S)を用いて実施例4と同一条件において
ジイソプロピルベンゼンの転化反応を行った。結果を表
1に示す。
Example 7 Saponite was ion-exchanged under the same conditions as in Example 1 except that Fe (NO 3 ) 3 was used as the ion-exchange agent, followed by washing with water, drying and firing. Using the obtained Fe 3+ exchanged saponite (hereinafter Fe 3+ —S), a conversion reaction of diisopropylbenzene was performed under the same conditions as in Example 4. The results are shown in Table 1.

実施例8 Mg(NO3をイオン交換剤として用いる以外は実施
例1と同一の条件下でサポナイトのイオン交換を行い、
水洗、乾燥、焼成を行った。得られたMg2+交換サポナイ
ト(以下Mg2+−S)を用いてWHSVを0.40h-1とする以外
は実施例1と同一条件でジイソプロピルベンゼンの転化
反応を行った。結果を表1に示す。
Example 8 Ion exchange of saponite was carried out under the same conditions as in Example 1 except that Mg (NO 3 ) 2 was used as the ion exchanger,
It was washed with water, dried, and baked. The conversion reaction of diisopropylbenzene was carried out under the same conditions as in Example 1 except that WHSV was 0.40 h −1 using the obtained Mg 2+ exchanged saponite (hereinafter Mg 2+ —S). The results are shown in Table 1.

比較例3 Al2O3に対するSiO2のモル比40のプロトン型ZSM−5
(以下HZSM−5と略す)を400℃において4時間焼成
し、ジイソプロピルベンゼンの転化反応に付した。反応
条件は実施例1と同一とした。結果を表1に示す。ジイ
ソプロピルベンゼンの転化率およびクメンの選択率は実
施例1〜8に比較して著しく劣るものであった。
Comparative Example 3 Proton type ZSM-5 having a molar ratio of SiO 2 to Al 2 O 3 of 40
(Hereinafter abbreviated as HZSM-5) was calcined at 400 ° C. for 4 hours and subjected to a conversion reaction of diisopropylbenzene. The reaction conditions were the same as in Example 1. The results are shown in Table 1. The conversion of diisopropylbenzene and the selectivity of cumene were significantly inferior to those of Examples 1-8.

実施例9 実施例1に用いたAl3+−Sを実施例1と同一の反応条
件において、反応を開始してから1時間までと同4時間
から5時間のそれぞれの平均ジイソプロピルベンゼンの
転化率とクメンの選択率を測定した。結果を表2に示
す。
Example 9 Al 3+ -S used in Example 1 was subjected to the same reaction conditions as in Example 1 under the same reaction conditions as in Example 1 for 1 hour to 4 hours to 5 hours after the start of the reaction. And the cumene selectivity was measured. Table 2 shows the results.

実施例10 実施例4に用いたAl3+−Sを実施例4と同一の条件で
長時間反応を続け、実施例9と同一の方法で触媒性能の
変化を調べた。結果を表2に示す。
Example 10 The reaction of Al 3+ -S used in Example 4 was continued for a long time under the same conditions as in Example 4, and the change in catalyst performance was examined by the same method as in Example 9. Table 2 shows the results.

比較例4 比較例1に用いたAl3+−Mを、比較例と同一の反応条
件で反応を続け、実施例9と同一の方法で触媒性能の変
化を調べた。結果を表2に示す。本発明の方法に比べ
て、クメン転化率およびベンゼン選択率の低下は大であ
った。
Comparative Example 4 The reaction of Al 3+ -M used in Comparative Example 1 was continued under the same reaction conditions as in Comparative Example, and the change in catalyst performance was examined by the same method as in Example 9. Table 2 shows the results. Compared with the method of the present invention, the cumene conversion and the benzene selectivity were greatly reduced.

(発明の効果) 本発明の変性サポナイトを含むトランスアルキル化反
応用触媒は、調製に際して公知の方法のように層状粘土
鉱物に“柱”を立てる、即ち架橋の操作をする必要がな
いので、調製操作が容易である。さらに本発明の変性サ
ポナイトを含む触媒はイオン交換及び焼成することのみ
によって得られるにもかかわらず、トランスアルキル化
反応において高い転化率および選択率を有し、かつ触媒
活性の劣化も少ないものである。
(Effects of the Invention) The catalyst for transalkylation reaction containing the modified saponite of the present invention is prepared because it is not necessary to form “pillars” in the layered clay mineral in the preparation, that is, to perform the operation of crosslinking, as in the known method. Easy to operate. Further, the catalyst containing the modified saponite of the present invention has a high conversion rate and selectivity in the transalkylation reaction, and has little deterioration in catalytic activity, although it is obtained only by ion exchange and calcination. .

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】サポナイトを、Al、Zr、Ti、Fe及びMgから
選ばれる一種又は二種以上の金属元素のイオンでイオン
交換し、次いで焼成して得られる一般式 (式中、Mn+は、Al、Zr、Ti、Fe及びMgからなる群から
選ばれる金属元素のイオンであり、nは2〜4の整数で
ある)で示される変性サポナイトを含むトランスアルキ
ル化反応用触媒。
1. A general formula obtained by ion-exchanging saponite with ions of one or more metal elements selected from Al, Zr, Ti, Fe and Mg, and then calcining. (In the formula, M n + is an ion of a metal element selected from the group consisting of Al, Zr, Ti, Fe and Mg, and n is an integer of 2 to 4) Reaction catalyst.
【請求項2】トランスアルキル化反応が、ジアルキルベ
ンゼンとベンゼンとからモノアルキルベンゼンを得る反
応である特許請求の範囲第1項記載の触媒。
2. The catalyst according to claim 1, wherein the transalkylation reaction is a reaction for obtaining a monoalkylbenzene from a dialkylbenzene and benzene.
【請求項3】ジアルキルベンゼンがジイソプロピルベン
ゼンであり、モノアルキルベンゼンがモノイソプロピル
ベンゼンである特許請求の範囲第2項記載の触媒。
3. The catalyst according to claim 2, wherein the dialkylbenzene is diisopropylbenzene and the monoalkylbenzene is monoisopropylbenzene.
【請求項4】焼成を650℃以下で行う、特許請求の範囲
第1項記載の触媒。
4. The catalyst according to claim 1, which is calcined at 650 ° C. or lower.
JP62226203A 1987-09-09 1987-09-09 Catalyst for transalkylation reaction Expired - Lifetime JP2550602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62226203A JP2550602B2 (en) 1987-09-09 1987-09-09 Catalyst for transalkylation reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62226203A JP2550602B2 (en) 1987-09-09 1987-09-09 Catalyst for transalkylation reaction

Publications (2)

Publication Number Publication Date
JPS6470142A JPS6470142A (en) 1989-03-15
JP2550602B2 true JP2550602B2 (en) 1996-11-06

Family

ID=16841507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62226203A Expired - Lifetime JP2550602B2 (en) 1987-09-09 1987-09-09 Catalyst for transalkylation reaction

Country Status (1)

Country Link
JP (1) JP2550602B2 (en)

Also Published As

Publication number Publication date
JPS6470142A (en) 1989-03-15

Similar Documents

Publication Publication Date Title
TWI492928B (en) Use of zeolite for preparing catalyst for the preparation of alkylated aromatic hydrocarbons, and process for preparing the zeolite
EP0024930B1 (en) A method of preparing active ion-exchanged zeolite catalysts
US5672799A (en) Process for the preparation of cumene
US4753909A (en) Bridged clays of improved thermal stability process for their preparation and utilization as catalysts
US5266541A (en) Crystalline oxide material
JP2550602B2 (en) Catalyst for transalkylation reaction
JP2508124B2 (en) Modified saponite
JP2550603B2 (en) Dealkylation reaction catalyst
US5389593A (en) Pillared clay containing fluorided pillars
JP2696889B2 (en) Modified hectorite
JP2596048B2 (en) Catalyst for dehydrogenation reaction
JPH0336814B2 (en)
EP1552883B1 (en) Alkylation of benzene with propylene using a zeolite catalyst
US5409597A (en) Hydrocarbon conversion process using a pillared clay containing fluorided pillars
JP3427507B2 (en) Catalyst for producing paradialkylbenzene, method for producing the same, and method for producing para-xylene
JP3451731B2 (en) Xylene isomerization catalyst and xylene isomerization method
JPS59163328A (en) Conversion of trimethylbenzene
JPH0788316B2 (en) Hydrocarbon oil manufacturing method
JPH045246A (en) Production of alkylbiphenyls
CA1096406A (en) On-stream maintenance of fluidized solid solution catalysts
WO1995014530A1 (en) Catalytic materials
JPH08245454A (en) Production of cyclic alcohol
JPH01228923A (en) Method for isomerizing paraffin
JPS59164732A (en) Production of aromatic hydrocarbon mixture
JPH0827040A (en) Catalyst for isomerizing xylenes and method for isomerizing xylenes