JP2550502B2 - Method for manufacturing single wavelength semiconductor laser - Google Patents

Method for manufacturing single wavelength semiconductor laser

Info

Publication number
JP2550502B2
JP2550502B2 JP1284493A JP28449389A JP2550502B2 JP 2550502 B2 JP2550502 B2 JP 2550502B2 JP 1284493 A JP1284493 A JP 1284493A JP 28449389 A JP28449389 A JP 28449389A JP 2550502 B2 JP2550502 B2 JP 2550502B2
Authority
JP
Japan
Prior art keywords
layer
optical waveguide
waveguide layer
semiconductor laser
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1284493A
Other languages
Japanese (ja)
Other versions
JPH03145786A (en
Inventor
裕二 大倉
吉竜 川間
彰 武本
昇一 柿本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1284493A priority Critical patent/JP2550502B2/en
Publication of JPH03145786A publication Critical patent/JPH03145786A/en
Application granted granted Critical
Publication of JP2550502B2 publication Critical patent/JP2550502B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1228DFB lasers with a complex coupled grating, e.g. gain or loss coupling

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は単一波長で発振する半導体レーザに関する
ものである。
The present invention relates to a semiconductor laser that oscillates at a single wavelength.

〔従来の技術〕[Conventional technology]

第2図は例えばElect.Lett.25,1989.の220頁から221
頁に示された従来の単一波長半導体レーザの構造を示す
断面側面図である。
FIG. 2 is, for example, Elect. Lett. 25 , 1989. pp. 220-221.
It is a cross-sectional side view which shows the structure of the conventional single wavelength semiconductor laser shown by page.

図において、(1)はP型のInP基板、(2)はアン
ドープのInGaAsP活性層、(3)はn型のInPクラツド
層、(4)は周囲をInPで埋め込まれた島状のn型InGaA
sP光導波層である。
In the figure, (1) is a P-type InP substrate, (2) is an undoped InGaAsP active layer, (3) is an n-type InP cladding layer, and (4) is an island-shaped n-type with the periphery filled with InP. InGaA
It is an sP optical waveguide layer.

第2図に示された従来の単一波長半導体レーザは、P
型InP基板(1)上にInGaAsP活性層(2),n型InPクラ
ツド層(3),n型InGaAsP光導波層(4)を順次形成し
た後、周期約2000Å間隔でInGaAsP光導波層(4)が島
状に残るようにInGaAsP光導波層(4)をn型InPクラツ
ド層(3)まで化学的にエツチングし、その後、InGaAs
Pを埋め込む形でn型InPクラツド層(3)を形成するこ
とにより製造される。
The conventional single wavelength semiconductor laser shown in FIG.
After sequentially forming an InGaAsP active layer (2), an n-type InP cladding layer (3), and an n-type InGaAsP optical waveguide layer (4) on an InP substrate (1), the InGaAsP optical waveguide layer (4) is formed at intervals of about 2000 Å. ) Are left as islands, the InGaAsP optical waveguide layer (4) is chemically etched to the n-type InP cladding layer (3), and then InGaAsP
It is manufactured by forming an n-type InP cladding layer (3) with P embedded therein.

次に動作について説明する。 Next, the operation will be described.

この半導体素子の上下に電圧を掛け電子およびホール
を活性層(2)に注入すると、活性層(2)内で発光再
結合が生じて発光する。この光は活性層(2)近辺にIn
Pで埋め込まれた形で周期的に存在する島状のInGaAsP光
導波層(4)による等価屈折率の周期的変動により、帰
還が掛けられレーザ発振に至る。この等価屈折率の周期
的変動は特定の波長の光の帰還量を大きくし、単一の波
長で発振させる機能すなわち波長選択性を持つ。この波
長選択性の強度は屈折率の周期的変動の強度、すなわち
周期的に形成されたInGaAsP光導波層(4)の組成,厚
さ,および幅に依存するため、高い確率で単一波長で発
振する半導体レーザ素子を得るためにはそれらを制御す
る必要がある。
When a voltage is applied to the upper and lower sides of this semiconductor element to inject electrons and holes into the active layer (2), radiative recombination occurs in the active layer (2) to emit light. This light is emitted near the active layer (2)
The island-shaped InGaAsP optical waveguide layer (4) embedded with P periodically presents feedback due to the periodic fluctuation of the equivalent refractive index due to the InGaAsP optical waveguide layer (4). This periodic variation of the equivalent refractive index has a function of increasing the amount of feedback of light of a specific wavelength and oscillating at a single wavelength, that is, wavelength selectivity. The intensity of this wavelength selectivity depends on the intensity of the periodic fluctuation of the refractive index, that is, the composition, thickness, and width of the periodically formed InGaAsP optical waveguide layer (4). In order to obtain an oscillating semiconductor laser device, it is necessary to control them.

このような従来の半導体レーザではInGaAsP光導波層
(4)を周期的に島状に形成するために、化学的なエツ
チングを用いるため、InGaAsP光導波層(4)形状の制
御性が悪く、さらに、InGaAsP光導波層(4)が単一組
成のInGaAsPで形成され、また厚さ約500Å,幅約1000Å
と微細なため、エツチングによりInGaAsP光導波層
(4)を周期的に形成した後、光導波層の形状をモニタ
ーし、形状に応じてエツチングを追加して光導波層の形
状を調整することはエツチング速度が速すぎるため困難
であり、その結果、屈折率の周期的変動の強度、すなわ
ち波長選択性の強度を制御できず、高い確率で単一波長
で発振する半導体レーザを得ることが出来ないという問
題点があつた。
In such a conventional semiconductor laser, chemical etching is used to periodically form the InGaAsP optical waveguide layer (4) in an island shape, so that the controllability of the shape of the InGaAsP optical waveguide layer (4) is poor and , InGaAsP optical waveguide layer (4) is made of a single composition of InGaAsP, and has a thickness of about 500Å and a width of about 1000Å
Therefore, it is not possible to adjust the shape of the optical waveguide layer by monitoring the shape of the optical waveguide layer after periodically forming the InGaAsP optical waveguide layer (4) by etching and adding etching according to the shape. It is difficult because the etching speed is too fast, and as a result, the intensity of periodic fluctuation of the refractive index, that is, the intensity of wavelength selectivity cannot be controlled, and a semiconductor laser that oscillates at a single wavelength cannot be obtained with high probability. There was a problem.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来の単一波長半導体レーザ装置は以上のように構成
されていたので、光導波層の形状が制御できず、そのた
め、高い確率で単一波長で発振する半導体素子が得られ
ないという問題点があつた。
Since the conventional single-wavelength semiconductor laser device is configured as described above, the shape of the optical waveguide layer cannot be controlled, and therefore, there is a problem that a semiconductor element that oscillates at a single wavelength with high probability cannot be obtained. Atsuta

この発明は上記のような問題点を解消するためになさ
れたもので、光導波層の形状を制御できるとともに、高
い確率で単一波長で発振する半導体レーザ素子を得るこ
とを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to obtain a semiconductor laser device that can control the shape of an optical waveguide layer and oscillates at a single wavelength with high probability.

〔課題を解決するための手段〕[Means for solving the problem]

この発明に係る単一波長半導体レーザの製造方法は、
第1導電型の半導体基板の一主面上に活性層を形成する
第1の工程と、活性層上に第2導電型のクラッド層を形
成する第2の工程と、クラッド層上に、実質的にそれぞ
れ互いにエッチングレートの異なるエッチング剤のある
複数の半導体層を半導体基板の一主面と並行に交互に積
層しクラッチ層を異なる屈折率を有する光導波路層を形
成する第3の工程と、光導波路層が半導体基板の一主面
に沿う方向に周期的に残るように光導波路層をその露出
面からクラッド層に向かって所定の深さになるまで各半
導体層に対応したエッチング剤を用いて各層ごとにエッ
チングする第4の工程と、エッチングされた光導波路層
を介して、クラッド層をさらに積層し光導波路層を埋設
する第5の工程と、を備えたものである。
A method of manufacturing a single wavelength semiconductor laser according to the present invention,
A first step of forming an active layer on one main surface of a semiconductor substrate of the first conductivity type, a second step of forming a clad layer of the second conductivity type on the active layer, and a substantial step on the clad layer. A plurality of semiconductor layers each having an etching agent different in etching rate from each other in parallel alternately with one main surface of the semiconductor substrate to form a clutch layer to form an optical waveguide layer having a different refractive index, Using an etching agent corresponding to each semiconductor layer until the optical waveguide layer reaches a predetermined depth from the exposed surface toward the clad layer so that the optical waveguide layer periodically remains in the direction along the main surface of the semiconductor substrate. And a fourth step of etching each of the layers, and a fifth step of further laminating a clad layer and embedding the optical waveguide layer with the etched optical waveguide layer interposed therebetween.

[作用] この発明における単一波長半導体レーザの製造方法
は、互いにエッチングレートの異なるエッチング剤のあ
る複数の半導体層を半導体基板に交互に積層して光導波
路層を形成し、この光導波路層が半導体基板の一主面に
沿う方向に周期的に残るように光導波路層をその露出面
からクラッド層に向かって所定の深さになるまで各半導
体層に対応したエッチング剤を用いて各層ごとにエッチ
ングするので、エッチングの際に周期的に残される光導
波路層間の距離が正確になるように制御することを可能
とする。
[Operation] In the method for manufacturing a single-wavelength semiconductor laser according to the present invention, a plurality of semiconductor layers having etching agents having different etching rates are alternately laminated on a semiconductor substrate to form an optical waveguide layer. Each layer of the optical waveguide layer is formed by using an etching agent corresponding to each semiconductor layer until it reaches a predetermined depth from the exposed surface toward the cladding layer so that the optical waveguide layer is periodically left in the direction along one main surface of the semiconductor substrate. Since etching is performed, it is possible to control the distance between the optical waveguide layers that is periodically left during etching to be accurate.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例による単一波長半導体レ
ーザの断面側面図を示す。図において、(1)はP型In
P基板、(2)はInGaAsP活性層、(3)はn型InPクラ
ツド層、(5)は約25Åのn型InGaAsPと約25Åのn型I
nPが交互に形成された厚さ約500ÅのInGaAsP/InP光導波
層である。
FIG. 1 is a sectional side view of a single wavelength semiconductor laser according to an embodiment of the present invention. In the figure, (1) is P-type In
P substrate, (2) InGaAsP active layer, (3) n-type InP cladding layer, (5) about 25Å n-type InGaAsP and about 25Å n-type I
It is an InGaAsP / InP optical waveguide layer with a thickness of about 500Å in which nPs are alternately formed.

InGaAsPとInPは化学的性質が異なり、例えばInGaAsP
は、HNO3ではエツチングされるがHClでされず、InPはIn
GaAsPの逆の性質を持つ。したがつて、この実施例に示
すように、約25ÅのInGaAsPとInPが交互に積層されたIn
GaAsP/InP光導波層(5)を導入することにより、光導
波層(5)を周期的に形成した後、形状をモニターし、
形状に応じて屈折率の周期的変動の強度が適当となるよ
うに選択エツチングにより、光導波層(5)の厚さを50
Åきざみ(全体の10%)で調整することができ、その結
果、高い確率で単一波長で発振する半導体素子を得るこ
とが可能となる。
InGaAsP and InP have different chemical properties, such as InGaAsP
Is etched by HNO 3 but not by HCl, and InP is In
It has the opposite property of GaAsP. Therefore, as shown in this embodiment, an In layer in which about 25 Å InGaAsP and InP are alternately laminated is used.
By introducing the GaAsP / InP optical waveguide layer (5), the optical waveguide layer (5) is periodically formed, and then the shape is monitored.
The thickness of the optical waveguide layer (5) is set to 50 by selective etching so that the strength of the periodic fluctuation of the refractive index is appropriate according to the shape.
Å It can be adjusted in steps (10% of the whole), and as a result, it is possible to obtain a semiconductor element that oscillates at a single wavelength with high probability.

〔発明の効果〕〔The invention's effect〕

以上のようにこの発明によれば、互いにエッチングレ
ートの異なるエッチング剤のある複数の半導体層を半導
体基板に交互に積層し光導波路層を形成し、この光導波
路層が半導体基板の一主面に沿う方向に周期的に残るよ
うに光導波路層をその露出面からクラッド層に向かって
所定の深さになるまで各半導体層に対応したエッチング
剤を用いて各層ごとにエッチングするので、エッチング
の際に周期的に残される光導波路層間の距離が正確にな
るように制御でき、波長選択性の強度の高い単一波長半
導体レーザを形成することができるという効果を有す
る。
As described above, according to the present invention, a plurality of semiconductor layers having etching agents having different etching rates from each other are alternately laminated on a semiconductor substrate to form an optical waveguide layer, and the optical waveguide layer is formed on one main surface of the semiconductor substrate. When etching the optical waveguide layer, each layer is etched with an etchant corresponding to each semiconductor layer until it reaches a predetermined depth from the exposed surface toward the clad layer so that it remains periodically along the direction. The distance between the optical waveguide layers left periodically can be controlled to be accurate, and a single-wavelength semiconductor laser with high wavelength selectivity can be formed.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例による単一波長半導体レー
ザの断面側面図、第2図は従来の単一波長半導体レーザ
の断面側面図である。 図において、(1)はP型InP基板、(2)はInGaAsP活
性層、(3)はn型のInPクラツド層、(5)はn型のI
nGaAsPとn型のInPが交互に多層形成されてなる島状の
n型InGaAsP/InP光導波層である。 なお、図中、同一符号は同一、または相当部分を示す。
FIG. 1 is a sectional side view of a single wavelength semiconductor laser according to an embodiment of the present invention, and FIG. 2 is a sectional side view of a conventional single wavelength semiconductor laser. In the figure, (1) is a P-type InP substrate, (2) is an InGaAsP active layer, (3) is an n-type InP cladding layer, and (5) is an n-type IP layer.
This is an island-shaped n-type InGaAsP / InP optical waveguide layer in which nGaAsP and n-type InP are alternately formed in multiple layers. In the drawings, the same reference numerals indicate the same or corresponding parts.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武本 彰 兵庫県伊丹市瑞原4丁目1番地 三菱電 機株式会社光・マイクロ波デバイス研究 所内 (72)発明者 柿本 昇一 兵庫県伊丹市瑞原4丁目1番地 三菱電 機株式会社光・マイクロ波デバイス研究 所内 (56)参考文献 特開 昭63−263788(JP,A) 特開 昭63−136587(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Akira Takemoto 4-1-1 Mizuhara, Itami City, Hyogo Prefecture Mitsubishi Electric Corp. Optical / Microwave Device Research Center (72) Inventor Shoichi Kakimoto 4-chome Mizuhara, Itami City, Hyogo Prefecture No. 1 Mitsubishi Electric Corp. Optical / Microwave Device Research Center (56) References JP 63-263788 (JP, A) JP 63-136587 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1導電型の半導体基板の一主面上に活性
層を形成する第1の工程と、 活性層上に第2導電型のクラッド層を形成する第2の工
程と、 上記クラッド層上に、実質的にそれぞれ互いにエッチン
グレートの異なるエッチング剤のある複数の半導体層を
上記主面と並行に交互に積層し上記クラッド層と異なる
屈折率を有する光導波路層を形成する第3の工程と、 光導波路層が上記主面に沿う方向に周期的に残るように
前記光導波路層をその露出面から上記クラッド層に向か
って所定の深さになるまで上記各半導体層に対応した上
記エッチング剤を用いて各層ごとにエッチングする第4
の工程と、 エッチングされた光導波路層を介して、上記クラッド層
をさらに積層し前記光導波路層を埋設する第5の工程
と、 を備えた単一波長半導体レーザの製造方法。
1. A first step of forming an active layer on one main surface of a semiconductor substrate of a first conductivity type, a second step of forming a clad layer of a second conductivity type on the active layer, Third, a plurality of semiconductor layers each having an etching agent having a substantially different etching rate from each other are alternately laminated on the clad layer in parallel with the main surface to form an optical waveguide layer having a refractive index different from that of the clad layer. And the steps corresponding to each of the semiconductor layers until the optical waveguide layer has a predetermined depth from the exposed surface toward the cladding layer so that the optical waveguide layer periodically remains in the direction along the main surface. Fourth etching for each layer using the above etching agent
And a fifth step of further laminating the clad layer and burying the optical waveguide layer via the etched optical waveguide layer, the method of manufacturing a single wavelength semiconductor laser.
JP1284493A 1989-10-31 1989-10-31 Method for manufacturing single wavelength semiconductor laser Expired - Lifetime JP2550502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1284493A JP2550502B2 (en) 1989-10-31 1989-10-31 Method for manufacturing single wavelength semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1284493A JP2550502B2 (en) 1989-10-31 1989-10-31 Method for manufacturing single wavelength semiconductor laser

Publications (2)

Publication Number Publication Date
JPH03145786A JPH03145786A (en) 1991-06-20
JP2550502B2 true JP2550502B2 (en) 1996-11-06

Family

ID=17679233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1284493A Expired - Lifetime JP2550502B2 (en) 1989-10-31 1989-10-31 Method for manufacturing single wavelength semiconductor laser

Country Status (1)

Country Link
JP (1) JP2550502B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738204A (en) * 1993-07-20 1995-02-07 Mitsubishi Electric Corp Semiconductor optical device and manufacture thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63136587A (en) * 1986-11-27 1988-06-08 Sony Corp Distributed feedback type laser
JPS63263788A (en) * 1987-04-22 1988-10-31 Mitsubishi Electric Corp Semiconductor laser

Also Published As

Publication number Publication date
JPH03145786A (en) 1991-06-20

Similar Documents

Publication Publication Date Title
JPS61160987A (en) Integrated semiconductor photo element and manufacture thereof
JP2718342B2 (en) Semiconductor laser and method of manufacturing the same
JP2550502B2 (en) Method for manufacturing single wavelength semiconductor laser
US4791647A (en) Semiconductor laser
JPH02156692A (en) Semiconductor laser and manufacture thereof
JP2656248B2 (en) Semiconductor laser
JPH03151684A (en) Manufacture of multi-wavelength integrated semiconductor laser
JP3186645B2 (en) Semiconductor laser and method of manufacturing the same
US5360763A (en) Method for fabricating an optical semiconductor device
JP2550721B2 (en) Single wavelength semiconductor laser and manufacturing method thereof
JPH02260636A (en) Etching of algainp crystal
JPH05190977A (en) Semiconductor laser
US6528337B1 (en) Process of producing semiconductor layer structure
JP2001111169A (en) Semiconductor laser element
JPH04305991A (en) Semiconductor laser element
JPH06112592A (en) Fabrication of semiconductor laser element
JPS60126880A (en) Semiconductor laser device
JP2000091313A (en) Semiconductor element and its manufacture
KR100372768B1 (en) Method for fabricating laser diode
JPH03173487A (en) Manufacture of semiconductor light emitting element
JPH10186121A (en) Formation of absorption type diffraction grating and manufacture of gain coupling type dfb laser formed by utilizing this diffraction grating
JPS61125099A (en) Semiconductor laser and manufacture thereof
JP3001390B2 (en) Semiconductor laser and manufacturing method thereof
JP4024319B2 (en) Semiconductor light emitting device
JPH06350188A (en) Semiconductor laser element