JP2549661Y2 - Charging circuit - Google Patents

Charging circuit

Info

Publication number
JP2549661Y2
JP2549661Y2 JP1990067380U JP6738090U JP2549661Y2 JP 2549661 Y2 JP2549661 Y2 JP 2549661Y2 JP 1990067380 U JP1990067380 U JP 1990067380U JP 6738090 U JP6738090 U JP 6738090U JP 2549661 Y2 JP2549661 Y2 JP 2549661Y2
Authority
JP
Japan
Prior art keywords
charging
capacity
charging current
battery
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1990067380U
Other languages
Japanese (ja)
Other versions
JPH0425441U (en
Inventor
幹弘 山下
薫 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1990067380U priority Critical patent/JP2549661Y2/en
Publication of JPH0425441U publication Critical patent/JPH0425441U/ja
Application granted granted Critical
Publication of JP2549661Y2 publication Critical patent/JP2549661Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、蓄電池を充電する充電回路に係り、特
に、好適な充電効率で充電が行えるように充電電流を制
御する充電回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a charging circuit for charging a storage battery, and more particularly to a charging circuit for controlling a charging current so as to perform charging with a suitable charging efficiency.

〔従来の技術〕[Conventional technology]

従来、蓄電池への急速充電を行った場合の充電末期の
ガス発生を押えつつ充電電気量を確保するため、第11図
に示すように、充電電圧がある一定値に達したときに予
め決められた減衰率を従って段階状に充電電流を減少さ
せる充電回路が提案されている(特開平1-144330号公
報)。
Conventionally, in order to secure the amount of charged electricity while suppressing gas generation at the end of charging when the storage battery is rapidly charged, as shown in FIG. 11, when the charging voltage reaches a certain value, it is determined in advance. A charging circuit that reduces the charging current in a stepwise manner according to the reduced attenuation rate has been proposed (Japanese Patent Application Laid-Open No. 1-144330).

〔考案が解決しようとする課題〕[Problems to be solved by the invention]

ところが、上記充電回路にあっては、10C以上の充電
電流が蓄電池を急速充電した場合、階段状に充電電流を
減少するため、満充電になるまでに時間がかかるととも
に、減衰率の設定が困難であるといった問題がある。
However, in the above charging circuit, when the charging current of 10 C or more rapidly charges the storage battery, the charging current decreases stepwise, so that it takes time until the battery is fully charged, and it is difficult to set the attenuation rate. There is a problem that is.

この考案は、上記問題を解消するもので、充電電流と
充電効率との関係から最適な充電電流を設定することで
蓄電池を短時間で安全に充電する充電回路を提供するこ
とを目的とする。
An object of the present invention is to solve the above-described problem and to provide a charging circuit for charging a storage battery safely in a short time by setting an optimum charging current from a relationship between a charging current and a charging efficiency.

(課題を解決するための手段) 上記目的を達成するために、この考案は、充電容量と充
電電流値とが比例する充電効率の関係を、充電容量に対
応する充電電流値として記憶する記憶手段と、蓄電池の
残容量を検知する充電容量検知手段と、検知される充電
容量に応じた充電電流値を上記記憶手段から読み出し、
この読み出された値の充電電流を上記蓄電池に供給する
充電制御手段とを備えたものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a storage means for storing a relationship between charging efficiency in which a charging capacity and a charging current value are proportional as a charging current value corresponding to the charging capacity. And charging capacity detecting means for detecting the remaining capacity of the storage battery, and reading a charging current value according to the detected charging capacity from the storage means,
Charge control means for supplying the charge current having the read value to the storage battery.

また、請求項2では、充電電流値と電池容量との関係
から、充電効率が高い状態で充電できる最大の充電電流
を選択するべく充電容量の増加に応じて充電電流値を徐
々に小さくする相関曲線を設定する設定手段と、設定さ
れた充電電流値の相関曲線を記憶する記憶手段と、蓄電
池の残容量を検知する充電容量検知手段と、検知される
充電容量に応じた充電電流値を上記記憶手段の相関曲線
から読み出し、この読み出された値の充電電流を上記蓄
電池に供給する充電制御手段とを備えたものである。
According to a second aspect of the present invention, in order to select a maximum charging current that can be charged in a state of high charging efficiency, the charging current value is gradually reduced in accordance with an increase in the charging capacity based on a relationship between the charging current value and the battery capacity. Setting means for setting a curve, storage means for storing a correlation curve of the set charging current value, charging capacity detecting means for detecting the remaining capacity of the storage battery, and charging current value according to the detected charging capacity. Charge control means for reading from the correlation curve of the storage means and supplying the charge current of the read value to the storage battery.

(作用) 上記構成の充電回路によれば、充電容量と充電電流値
とが比例する充電効率の関係を、充電容量に対応する充
電電流値が設定されて記憶手段に記憶されている。充電
に際しては、蓄電池の残容量が充電容量検知手段で逐次
検知され、検知された充電容量に対応した充電電流値が
記憶手段から読み出される。充電制御手段は読み出され
た値の充電電流を生成して蓄電池に供給する。充電容量
と充電電流値とが比例することにより、蓄電池は高い充
電効率で充電されることとなる。
(Operation) According to the charging circuit having the above-described configuration, the relationship between the charging efficiency and the charging efficiency in which the charging capacity is proportional to the charging current value is stored in the storage unit with the charging current value corresponding to the charging capacity set. At the time of charging, the remaining capacity of the storage battery is sequentially detected by the charging capacity detection means, and a charging current value corresponding to the detected charging capacity is read from the storage means. The charge control means generates a charge current having the read value and supplies the charge current to the storage battery. Since the charging capacity and the charging current value are proportional, the storage battery is charged with high charging efficiency.

また、充電電流値と電池容量との関係から、充電効率
が高い状態で充電できる最大の充電電流を選択するべく
充電容量の増加に応じて充電電流値を徐々に小さくする
相関曲線が設定され、この設定された相関曲線が記憶手
段に記憶される。充電に際しては、蓄電池の残容量が充
電容量検知手段で逐次検知され、検知された充電容量に
対応した充電電流値が記憶手段の相関曲線から読み出さ
れる。充電制御手段は読み出された値の充電電流を生成
して蓄電池に供給する。このように、充電容量の増加に
応じて充電電流値を徐々に小さくすることで、充電効率
が高い状態で充電できる最大の充電電流が供給されるこ
ととなるので、蓄電池は高い充電効率で充電される。
Further, from the relationship between the charging current value and the battery capacity, a correlation curve is set to gradually reduce the charging current value as the charging capacity increases, in order to select the maximum charging current that can be charged with high charging efficiency, The set correlation curve is stored in the storage means. At the time of charging, the remaining capacity of the storage battery is sequentially detected by the charging capacity detection means, and a charging current value corresponding to the detected charging capacity is read from the correlation curve of the storage means. The charge control means generates a charge current having the read value and supplies the charge current to the storage battery. As described above, by gradually decreasing the charging current value in accordance with the increase in the charging capacity, the maximum charging current that can be charged in a state of high charging efficiency is supplied, so that the storage battery is charged with high charging efficiency. Is done.

(実施例) 第1図はこの考案に係る充電回路のブロック図を示す
ものである。
(Embodiment) FIG. 1 shows a block diagram of a charging circuit according to the present invention.

充電器1は交流電源や直流電源からの入力を受けて残
容量検知回路2を通して蓄電池3に充電するものであ
る。残容量検知回路2は蓄電池3の電池容量を検知して
検知信号を制御回路4に出力するものである。制御回路
4はマイコン等からなり、充電電流と充電効率との関係
を記憶している他、充電条件に応じた充電電流の相関曲
線を設定する機能、タイマ機能および好適な充電効率に
なるように上記検知信号および記憶内容に基づいて充電
電流の切り換えを行うべく充電器1を制御する機能を有
するものである。また、制御回路4は、電池電圧、電池
温度もしくは周囲温度等を検知するセンサからの検知信
号を入力するようにしている。
The charger 1 receives an input from an AC power supply or a DC power supply and charges the storage battery 3 through the remaining capacity detection circuit 2. The remaining capacity detection circuit 2 detects the battery capacity of the storage battery 3 and outputs a detection signal to the control circuit 4. The control circuit 4 includes a microcomputer or the like, and stores a relationship between the charging current and the charging efficiency. In addition, the control circuit 4 has a function of setting a correlation curve of the charging current according to the charging condition, a timer function, and a suitable charging efficiency. It has a function of controlling the charger 1 to switch the charging current based on the detection signal and the stored contents. The control circuit 4 receives a detection signal from a sensor that detects a battery voltage, a battery temperature, an ambient temperature, or the like.

スイッチ5は蓄電池3からの電流をモータ等の負荷6
へ供給、停止させるものである。
The switch 5 converts the current from the storage battery 3 into a load 6 such as a motor.
And stop it.

次に、上記充電回路の動作の一例について第2図のフ
ローチャートを用いて説明する。なお、タイマは蓄電池
3の使用状態に応じてカウントされるもので、そのカウ
ント値は電池容量に対応している。そして、このタイマ
は、例えば、カウントアップすると電池容量は100%に
なり、カウントが零になると電池容量は0%になるよう
に設定されている。また、充電電流1Cとは1時間で公称
容量まで充電できる電流をいう。
Next, an example of the operation of the charging circuit will be described with reference to the flowchart of FIG. The timer is counted according to the usage state of the storage battery 3, and the count value corresponds to the battery capacity. The timer is set, for example, so that the battery capacity becomes 100% when counting up, and the battery capacity becomes 0% when the count becomes zero. The charging current 1C refers to a current that can be charged to a nominal capacity in one hour.

ステップS1ではタイマ等が初期設定され、ステップ
2で充電、放電または放置のいずれかの状態であるか
が判断される。そして、充電器1から蓄電池3への充電
が行なわれるとステップS3に移行してタイマのカウン
ト動作が開始され、ステップS4では周囲温度を検知し
て上記カウント値に温度補正が施される。続いて、好適
な充電効率、すなわち充電効率が高い状態(略100%)
で急速充電されるように制御回路4に記憶されている充
電電流と充電効率との関係に基づいて充電電流が選択さ
れる。
Step S 1 the timer or the like is initialized, the charging in step S 2, whether it is one of the state of discharge or left is determined. Then, charging from the charger 1 to the storage battery 3 is the count operation of the timer shifts are initiated to step S 3 takes place, the temperature correction is performed on the count value by detecting the ambient temperature at step S 4 . Next, a favorable charging efficiency, that is, a state where the charging efficiency is high (about 100%)
The charging current is selected based on the relationship between the charging current and the charging efficiency stored in the control circuit 4 so that the charging current is rapidly charged.

すなわち、ステップS5で上記カウント値に基づいて
電池容量が判断され、周囲温度が、例えば30℃の場合、
電池容量が80%まではステップS6で10Cの充電電流で充
電が行われ、ステップS7で上記タイマのカウント値が
上記10Cの充電電流に応じて加算される。
That is, the battery capacity based on the count value is determined in the step S 5, when the ambient temperature is, for example 30 ° C.,
Until the battery capacity is 80% done charging at a charging current of 10C in step S 6, the count value of the timer is added in accordance with the charging current of the 10C at step S 7.

この後、ステップS12で充電、放電または放置のいず
れかの状態であるかが判断され、充電が引続き行なわれ
ていると、ステップS5に戻って電池容量が再び判断さ
れる。このとき、電池容量が80%以上で97%以下であれ
ば、ステップS8で充電電流が10Cから2Cに切り換わり、
2Cの充電電流で充電が行われ、ステップS9で上記タイ
マのカウント値が上記2Cの充電電流に応じて加算され
る。この後、ステップS12で充電が引続き行なわれてい
るとステップS5で電池容量が再び判断され、電池容量
が97%以上であれば、ステップS10で充電電流が2Cから
0.2Cに切り換わり、0.2Cの充電電流で充電が行われ、ス
テップS9で上記タイマのカウント値が上記0.2Cの充電
電流に応じて加算される。そして、充電が引続き行なわ
れて上記タイマがカウントアップ、すなわち満充電にな
るまで、ステップS5,S10,S11,S12のループが繰り返さ
れる。
Thereafter, the charging in step S 12, discharge or it is determined whether any of the states of standing is, when the charging is continued performed, the battery capacity is determined again returns to step S 5. In this case, not more than 97% in battery capacity is 80% or more switches to 2C from the charging current is 10C in step S 8,
Charged at 2C charging current is performed, the count value of the timer is added in accordance with the charging current of the 2C in step S 9. Thereafter, the charging in step S 12 is subsequently performed is determined in the step S 5 the battery capacity again, if the battery capacity is 97% or more, from the charging current is 2C in Step S 10
Switches to 0.2C, is performed charged at 0.2C charging current, the count value of the timer is added in accordance with the charging current of the 0.2C at step S 9. Then, the loop of steps S 5 , S 10 , S 11 , and S 12 is repeated until charging is continued and the timer counts up, that is, is fully charged.

一方、ステップS12で充電が完了した後、蓄電池3が
放電されることなく放置されると、ステップS13に移行
し、タイマのカウント動作が停止された後、再びステッ
プS2に戻り、充電、放電または放置のいずれかの状態
であるかが判断される。そして、スイッチ5がオンされ
て蓄電池3から負荷6へ放電されると、ステップS14
タイマのカウント値が減算された後、再びステップS2
に戻る。一方、ステップS12でスイッチ5がオンされた
場合も、上記ステップS2と同様に、ステップS14に移
行してタイマのカウント値が減算される。
Meanwhile, after the charging is completed in step S 12, the storage battery 3 is left without being discharged, the process proceeds to step S 13, after the count operation of the timer is stopped, the process returns to step S 2 again, charging , Discharge or standing. When the switch 5 is turned on is discharged from the storage battery 3 to the load 6, after the count value of the timer is subtracted in step S 14, again Step S 2
Return to On the other hand, when the switch 5 is turned on in step S 12, similarly to the step S 2, the count value of the timer and proceeds to step S 14 is subtracted.

次に、上述した充電電流と充電効率との関係にについ
て第3図および第4図を用いて説明する。
Next, the relationship between the above-described charging current and charging efficiency will be described with reference to FIGS. 3 and 4. FIG.

まず、周囲温度が、例えば30℃の場合、電池容量が0
%の状態から10Cの充電電流で充電を開始すると、80%
になるまでは充電効率が高く、充電器1から蓄電池3へ
の充電電気量と蓄電池3の電池容量とは比例して増加す
る。一方、電池容量が80%以上になると、第3図の実線
1に示すように、充電効率は低下して電池容量はほぼ
飽和する。また、電池容量が80%以上では、第4図の実
線A2に示すように、蓄電池3の内圧が次第に高くな
る。そして、ガス発生内圧W1以上になると、蓄電池3
内にガスが発生して蓄電池3の劣化を招くことになる。
First, when the ambient temperature is, for example, 30 ° C., the battery capacity becomes zero.
When charging is started with a charging current of 10C from the state of%, 80%
Until, the charging efficiency is high, and the amount of electricity charged from the charger 1 to the storage battery 3 and the battery capacity of the storage battery 3 increase in proportion. On the other hand, when the battery capacity is 80% or more, as shown by the solid line A 1 of FIG. 3, the charging efficiency is the battery capacity drops to nearly saturated. Further, the battery capacity is 80% or more, as shown by the solid line A 2 of FIG. 4, the internal pressure of the storage battery 3 is gradually increased. When the gas generation internal pressure W 1 or more, the storage battery 3
Gas is generated inside the battery, which causes deterioration of the storage battery 3.

一方、2Cの充電電流で充電を開始すると、97%になる
までは充電効率が高く、充電電気量と電池容量とは比例
して増加する。一方、電池容量が97%以上になると、第
3図の実線B1に示すように、充電効率が低下して電池
容量がほぼ飽和する。また、第4図の実線B2に示すよ
うに、蓄電池3の内圧も高くなりガス発生内圧W1以上
になる。一方、0.2Cの充電電流で充電を開始すると、第
3図の実線C1に示すように、100%になるまで充電効率
が高く、充電電気量と電池容量とは比例して増加し、10
0%で飽和することになる。なお、第4図の実線C2に示
すように、0.2Cの充電電流では100%になるまで蓄電池
3の内圧がガス発生内圧W1以上になることはない。
On the other hand, when charging is started with a charging current of 2C, charging efficiency is high until the charging current reaches 97%, and the amount of charge and the battery capacity increase in proportion. On the other hand, when the battery capacity is 97% or more, as shown by the solid line B 1 in FIG. 3, the battery capacity is nearly saturated charging efficiency decreases. Further, as shown by the solid line B 2 of FIG. 4, the internal pressure of the battery 3 becomes it becomes gas generating internal pressure W 1 or higher. On the other hand, when charging is started with a charging current of 0.2 C, as shown by a solid line C 1 in FIG. 3, the charging efficiency is high until it reaches 100%, and the amount of charge and the battery capacity increase in proportion to 10%.
It will saturate at 0%. Incidentally, as shown by the solid line C 2 of FIG. 4, not the internal pressure of the battery 3 becomes a gas generating internal pressure W 1 or up to 100% in 0.2C charging current.

すなわち、第5図(a),(b)の実線G1,G2に示す
ように、10Cの充電電流で充電を行い、充電効率が低下
する直前の電池容量80%で充電電流を2Cに切り換え、更
に充電効率が低下する直前の電池容量97%で充電電流を
0.2Cに切り換えることにより、最も効率よく急速充電を
行うことができる。また、上記充電電流を切り換えるこ
とにより、第5図(c)の実線G3に示すように、蓄電
池3の内圧を低く押えることができる。
That is, as shown by solid lines G 1 and G 2 in FIGS. 5 (a) and 5 (b), charging is performed at a charging current of 10C, and the charging current is reduced to 2C at a battery capacity of 80% immediately before the charging efficiency decreases. Switch, and charge current at 97% battery capacity immediately before the charging efficiency drops.
By switching to 0.2C, quick charging can be performed most efficiently. Further, by switching the charging current, as shown by the solid line G 3 of FIG. 5 (c), it is possible to suppress lowering the internal pressure of the storage battery 3.

また、周囲温度が、例えば0℃の場合は、第3図の破
線D1,E1,F1および第4図の破線D2,E2,F2に示すよう
に、10Cの充電電流で充電を開始すると、電池容量が70
%になるまでは充電電気量と電池容量とは比例して増加
し、電池容量が70%以上になると、充電効率が低下して
電池容量はほぼ飽和するとともに、蓄電池3の内圧が高
くなる。一方、2Cの充電電流で充電を開始すると、94%
になるまでは充電電気量と電池容量とは比例して増加
し、電池容量が94%以上になると、充電効率は低下して
電池容量がほぼ飽和し、蓄電池3の内圧も高くなる。一
方、0.2Cの充電電流で充電を開始すると、ほぼ100%に
なるまで充電電気量と電池容量とは比例して増加するこ
とになる。なお、0.2Cの充電電流では100%になるまで
蓄電池3の内圧が高くなることはない。
When the ambient temperature is 0 ° C., for example, as shown by broken lines D 1 , E 1 , F 1 in FIG. 3 and broken lines D 2 , E 2 , F 2 in FIG. When charging is started, the battery capacity is 70
%, The charged electricity amount and the battery capacity increase in proportion to each other. When the battery capacity becomes 70% or more, the charging efficiency decreases, the battery capacity is almost saturated, and the internal pressure of the storage battery 3 increases. On the other hand, when charging is started with 2C charging current, 94%
Until, the charged amount of electricity and the battery capacity increase in proportion, and when the battery capacity becomes 94% or more, the charging efficiency is reduced, the battery capacity is almost saturated, and the internal pressure of the storage battery 3 is also increased. On the other hand, when charging is started with a charging current of 0.2 C, the amount of charge and the battery capacity increase in proportion to almost 100%. Note that the internal pressure of the storage battery 3 does not increase until the charging current reaches 100% with a charging current of 0.2C.

すなわち、第5図(a),(b)の破線H1,H2に示す
ように、周囲温度が0℃の場合は、10Cの充電電流で充
電を行い、充電効率が低下する直前の電池容量70%で充
電電流を2Cに切り換え、更に充電効率が低下する直前の
電池容量94%で充電電流を0.2Cに切り換えることによ
り、最も効率よく急速充電を行うことができる。また、
上記充電電流を切り換えることにより、第5図(c)の
破線H3に示すように、蓄電池3の内圧を低く押えるこ
とができる。
That is, as shown by broken lines H 1 and H 2 in FIGS. 5A and 5B, when the ambient temperature is 0 ° C., the battery is charged with a charging current of 10 C, and the battery immediately before the charging efficiency is reduced. By switching the charging current to 2C at a capacity of 70% and further switching the charging current to 0.2C at a battery capacity of 94% immediately before the charging efficiency drops, rapid charging can be performed most efficiently. Also,
By switching the charging current, as indicated by a broken line H 3 of FIG. 5 (c), it is possible to suppress lowering the internal pressure of the storage battery 3.

次に、上述したタイマ以外で電池容量を検出する場合
について第6図を用いて説明する。
Next, a case where the battery capacity is detected by means other than the above-described timer will be described with reference to FIG.

すなわち、周囲温度が、例えば0℃の場合、10Cの充
電電流で充電を行って電池容量が70%を越えると、第6
図(b)に示すように、電池電圧はV1になり、同様に2
Cの充電電流では電池容量が94%になると電池電圧はV2
になる。従って、係る関係を予め記憶しておき、電池電
圧を検知することで、各充電電流での電池容量を検知す
ることができる。
That is, when the ambient temperature is, for example, 0 ° C., charging is performed with a charging current of 10 C, and when the battery capacity exceeds 70%,
As shown in FIG. (B), the battery voltage becomes V 1, likewise 2
At the charging current of C, when the battery capacity becomes 94%, the battery voltage becomes V 2
become. Therefore, by storing such a relationship in advance and detecting the battery voltage, the battery capacity at each charging current can be detected.

また、10Cの充電電流で充電を行って電池容量が70%
になると、第6図(c)に示すように、電池温度はT1
になり、同様に2Cの充電電流では電池容量が94%になる
と電池温度はT2になる。従って、係る関係を予め記憶
しておき、電池温度を検知することで、各充電電流での
電池容量を検知することができる。
Also, the battery capacity is 70% by charging with 10C charging current.
Then, as shown in FIG. 6 (c), the battery temperature becomes T 1.
To become the battery temperature becomes T 2 when the battery capacity is 94% in the charging current similarly 2C. Therefore, by storing such a relationship in advance and detecting the battery temperature, the battery capacity at each charging current can be detected.

次に、充電条件に応じた充電電流の相関曲線を設定
し、この相関曲線に応じて充電電流を選択する場合につ
いて第7図〜第10図を用いて説明する。
Next, a case where a charging current correlation curve is set according to charging conditions and a charging current is selected according to the correlation curve will be described with reference to FIGS. 7 to 10. FIG.

まず、第7図に示す種々の充電電流による充電電気量
と電池容量との関係から、充電効率が高い状態で充電で
きる最大の充電電流を選択する。すなわち、電池容量が
10%までは充電電流25Cが、電池容量が10%から40%ま
では充電電流20Cが、電池容量が40%から70%までは充
電電流15Cが、電池容量が70%から80%までは充電電流1
0Cが、電池容量が80%から90%までは充電電流2Cが、電
池容量が90%以上では充電電流0.2Cが上記最大の充電電
流として選択される。この選択結果から、第8図に示す
ように、電池容量が10%で充電電流25C、電池容量が40
%で充電電流20C、電池容量が70%で充電電流15C、電池
容量が80%で充電電流10C、電池容量が90%で充電電流2
C、電池容量が90%で充電電流0.2Cになるように連続的
に結んだ相関曲線を設定する。
First, the maximum charging current that can be charged in a state of high charging efficiency is selected from the relationship between the amount of charge by various charging currents and the battery capacity shown in FIG. That is, the battery capacity
Charging current 25C up to 10%, charging current 20C from 10% to 40% battery capacity, 15C charging current from 40% to 70% battery capacity, charging from 70% to 80% battery capacity Current 1
When the battery capacity is 80% to 90%, the charging current 2C is selected as the maximum charging current, and when the battery capacity is 90% or more, the charging current 0.2C is selected as the maximum charging current. From this selection result, as shown in FIG. 8, the battery capacity is 10%, the charging current is 25C, and the battery capacity is 40%.
% Charging current 20C, battery capacity 70%, charging current 15C, battery capacity 80%, charging current 10C, battery capacity 90%, charging current 2
C, Set a continuous correlation curve so that the battery capacity is 90% and the charging current is 0.2C.

そして、この相関曲線に応じるように充電電流を選択
して充電することにより、より効率よく急速充電を行う
ことができる。
Then, by selecting and charging the charging current according to the correlation curve, it is possible to perform the rapid charging more efficiently.

この場合、第9図に示すように、充電電流25Cでは充
電電気量が40%以下で、充電電流20Cでは充電電気量が7
0%以下で、充電電流15Cでは充電電気量が90%以下で、
充電電流10C以下では充電電気量が100%以下で蓄電池3
の内圧がガス発生内圧W1以下になる。従って、上記相
関曲線に応じるように充電電流を切り換えると、第10図
に示すように、蓄電池3の内圧が全期間に亘って低くで
き、蓄電池3内のガス発生を防止することができる。
In this case, as shown in FIG. 9, when the charging current is 25C, the charging amount is 40% or less, and when the charging current is 20C, the charging amount is 7%.
0% or less, the charge electricity amount is 90% or less at a charging current of 15C,
When the charging current is 10C or less, the amount of charged electricity is 100% or less and the storage battery 3
Pressure falls below the gas generating pressure W 1 of. Therefore, when the charging current is switched according to the correlation curve, the internal pressure of the storage battery 3 can be reduced over the entire period as shown in FIG. 10, and gas generation in the storage battery 3 can be prevented.

〔考案の効果〕[Effect of the invention]

この考案は、充電容量に対応させて常に高い充電効率
で充電を行うことが可能となるので急速充電を行うこと
ができる。また、過充電による蓄電池の内圧上昇を防止
でき、ガス発生、漏液ひいては蓄電池の劣化を防止する
ことができる。
According to the present invention, it is possible to perform charging with high charging efficiency at all times in accordance with the charging capacity, so that rapid charging can be performed. Further, it is possible to prevent the internal pressure of the storage battery from rising due to overcharging, and to prevent gas generation, liquid leakage, and deterioration of the storage battery.

また、所定の充電効率、好ましくは高レベルの充電効
率で充電可能であって、充電容量の増加に応じて充電電
流値を徐々に小さくする相関曲線を用いることで、常に
高い充電効率の下で蓄電池を急速充電することが可能と
なり、かつ蓄電池の内圧上昇も防止できる。
In addition, by using a correlation curve that can be charged at a predetermined charging efficiency, preferably at a high level of charging efficiency, and gradually reduces the charging current value according to an increase in the charging capacity, it is always possible to perform charging under a high charging efficiency. The storage battery can be quickly charged, and the internal pressure of the storage battery can be prevented from rising.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの考案に係る充電回路を示すブロック図、第
2図はこの考案に係る充電回路の動作を示すフローチャ
ート、第3図は各充電電流における充電電気量と電池容
量との関係を示す図、第4図は各充電電流における充電
電気量と内圧との関係を示す図、第5図はこの考案に係
る充電回路の動作を説明するための図、第6図は充電電
気量と電池電圧あるいは電池温度との関係を示す図、第
7図〜第10図は充電条件に応じた充電電流と電池容量と
の相関曲線を予め設定する手段を説明する図、第11図は
従来の充電回路の動作を示す図である。 1……充電器、2……残容量検知回路、3……蓄電池、
4……制御回路、5……スイッチ、6……負荷。
FIG. 1 is a block diagram showing the charging circuit according to the present invention, FIG. 2 is a flowchart showing the operation of the charging circuit according to the present invention, and FIG. 3 shows the relationship between the amount of charged electricity and the battery capacity at each charging current. FIG. 4, FIG. 4 is a diagram showing the relationship between the amount of charge and the internal pressure at each charging current, FIG. 5 is a diagram for explaining the operation of the charging circuit according to the present invention, and FIG. FIGS. 7 to 10 show the relationship between the voltage and the battery temperature, FIGS. 7 to 10 are diagrams for explaining means for presetting a correlation curve between the charging current and the battery capacity according to the charging conditions, and FIG. FIG. 4 is a diagram illustrating the operation of the circuit. 1 ... charger, 2 ... remaining capacity detection circuit, 3 ... storage battery,
4 ... Control circuit, 5 ... Switch, 6 ... Load.

Claims (2)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】充電容量と充電電流値とが比例する充電効
率の関係を、充電容量に対応する充電電流値として記憶
する記憶手段と、蓄電池の残容量を検知する充電容量検
知手段と、検知される充電容量に応じた充電電流値を上
記記憶手段から読み出し、この読み出された値の充電電
流を上記蓄電池に供給する充電制御手段とを備えたこと
を特徴とする充電回路。
1. A storage means for storing a relationship between charging efficiency and a charging efficiency in which a charging capacity is proportional to a charging current value as a charging current value corresponding to the charging capacity; a charging capacity detecting means for detecting a remaining capacity of the storage battery; And a charge control unit for reading a charge current value corresponding to the charge capacity to be read from the storage unit and supplying the read charge current to the storage battery.
【請求項2】充電電流値と電池容量との関係から、充電
効率が高い状態で充電できる最大の充電電流を選択する
べく充電容量の増加に応じて充電電流値を徐々に小さく
する相関曲線を設定する設定手段と、設定された充電電
流値の相関曲線を記憶する記憶手段と、蓄電池の残容量
を検知する充電容量検知手段と、検知される充電容量に
応じた充電電流値を上記記憶手段の相関曲線から読み出
し、この読み出された値の充電電流を上記蓄電池に供給
する充電制御手段とを備えたことを特徴とする充電回
路。
2. A correlation curve for gradually decreasing the charge current value as the charge capacity increases in order to select the maximum charge current that can be charged in a state of high charge efficiency from the relationship between the charge current value and the battery capacity. Setting means for setting, storage means for storing a correlation curve of the set charging current value, charging capacity detecting means for detecting the remaining capacity of the storage battery, and storing the charging current value according to the detected charging capacity. And charging control means for supplying a charge current of the read value to the storage battery.
JP1990067380U 1990-06-25 1990-06-25 Charging circuit Expired - Lifetime JP2549661Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1990067380U JP2549661Y2 (en) 1990-06-25 1990-06-25 Charging circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1990067380U JP2549661Y2 (en) 1990-06-25 1990-06-25 Charging circuit

Publications (2)

Publication Number Publication Date
JPH0425441U JPH0425441U (en) 1992-02-28
JP2549661Y2 true JP2549661Y2 (en) 1997-09-30

Family

ID=31600905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1990067380U Expired - Lifetime JP2549661Y2 (en) 1990-06-25 1990-06-25 Charging circuit

Country Status (1)

Country Link
JP (1) JP2549661Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2794003B2 (en) * 1992-07-23 1998-09-03 4シー テクノロジーズ インコーポレイティド Display device for residual capacity of nickel-cadmium battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630551B2 (en) * 1985-12-25 1994-04-20 新神戸電機株式会社 Charger

Also Published As

Publication number Publication date
JPH0425441U (en) 1992-02-28

Similar Documents

Publication Publication Date Title
JP3157369B2 (en) Protection method and protection device for secondary battery
JP3232912B2 (en) Charging device
JP2549661Y2 (en) Charging circuit
JPH07105981A (en) Charging method for secondary battery
JPH0956080A (en) Battery charger
JP3292489B2 (en) Power supply control system for consumers
JP4560657B2 (en) Uninterruptible power system
JPH05199674A (en) Method for charging battery
JP4565771B2 (en) Battery charge control device
JP3785671B2 (en) Charging method and charging device
JP3510773B2 (en) Charging device
JP3421404B2 (en) Rechargeable battery charging method
JP3208786B2 (en) Battery charger
JP2862179B2 (en) Charging circuit
JP3238938B2 (en) Battery charger
JP3034924B2 (en) Charging device
JP2001286076A (en) Control method of system stabilization device
JP2679392B2 (en) Secondary battery charge control circuit
JPH0753387Y2 (en) Sealed lead acid battery charger
JPH0778637A (en) Charging method for lead-acid battery
JP3858673B2 (en) Load leveling system and control method thereof
JP2569795B2 (en) Battery charge control device
JPH07227046A (en) Electronic equipment
JP2684970B2 (en) Charger with discharge function
JP3219443B2 (en) Battery charger

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term