JP2548733Y2 - Optical power measurement device - Google Patents

Optical power measurement device

Info

Publication number
JP2548733Y2
JP2548733Y2 JP4578691U JP4578691U JP2548733Y2 JP 2548733 Y2 JP2548733 Y2 JP 2548733Y2 JP 4578691 U JP4578691 U JP 4578691U JP 4578691 U JP4578691 U JP 4578691U JP 2548733 Y2 JP2548733 Y2 JP 2548733Y2
Authority
JP
Japan
Prior art keywords
absorber
temperature
photoreceptor
compensating
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4578691U
Other languages
Japanese (ja)
Other versions
JPH04138245U (en
Inventor
泰幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP4578691U priority Critical patent/JP2548733Y2/en
Publication of JPH04138245U publication Critical patent/JPH04138245U/en
Application granted granted Critical
Publication of JP2548733Y2 publication Critical patent/JP2548733Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、レーザ光等の光パワー
を測定する光パワー測定装置に関し,更に詳述すると、
数10μW程度のレ―ザパワ―を測定する際の大気の圧力
変動に起因する出力変動の防止をはかった光パワー測定
装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to an optical power measuring device for measuring optical power of laser light or the like.
The present invention relates to an optical power measuring apparatus for preventing output fluctuation caused by atmospheric pressure fluctuation when measuring laser power of about several tens of μW.

【0002】[0002]

【従来の技術】この種の光パワー測定装置としては図7
に示す構成のものが知られている。図において,1は受
光体であり,内面に光吸収塗料2が塗布された筒体3
と,ヒ―タ4が埋設された伝熱板1aで構成されている。
5,5aは温度差検出素子,7は熱電冷却素子で,これら
の素子は同等な性能を有するペルチェ素子で形成され,
伝熱板1aと温度基準ジャケット10に挾まれた状態で固定
されている。8は温度差検出素子5,5aおよびヒ―タ4
に接続されたフィ―ドバックアンプであり,プリアンプ
11およびPID制御機能を有するメインアンプ12からな
っている。9は熱電冷却素子に接続された定電流源であ
る。
2. Description of the Related Art FIG.
Is known. In the drawing, reference numeral 1 denotes a photoreceptor, and a cylindrical body 3 having an inner surface coated with a light absorbing paint 2.
And a heat transfer plate 1a in which a heater 4 is embedded.
5, 5a are temperature difference detecting elements, 7 is a thermoelectric cooling element, and these elements are formed by Peltier elements having equivalent performance.
It is fixed while being sandwiched between the heat transfer plate 1a and the temperature reference jacket 10. 8 is a temperature difference detecting element 5, 5a and heater 4
Feedback amplifier connected to the
11 and a main amplifier 12 having a PID control function. 9 is a constant current source connected to the thermoelectric cooling element.

【0003】図8は図7に示す光パワー測定装置15を収
納するジャケットの断面図で,第1のジャケット21の中
に第2のジャケット22および温度基準ジャケット10が空
気層を介して配置されている。なお,筒体3を含む伝熱
板1aの熱容量と温度基準ジャケット10の熱容量は例えば
1:1000程度で温度基準ジャケットの方が大きくなって
いる。23は外部からのレ―ザ光Laを光パワー測定装置の
受光体1に導く光導通路である。
FIG. 8 is a sectional view of a jacket for accommodating the optical power measuring device 15 shown in FIG. 7, in which a second jacket 22 and a temperature reference jacket 10 are arranged inside a first jacket 21 via an air layer. ing. The heat capacity of the heat transfer plate 1a including the cylindrical body 3 and the heat capacity of the temperature reference jacket 10 are, for example, about 1: 1000, and are larger in the temperature reference jacket. Reference numeral 23 denotes an optical path for guiding the laser light La from the outside to the photoreceptor 1 of the optical power measuring device.

【0004】上記構成において温度基準ジャケット10は
室温とされ,熱電冷却素子7は定電流源9からの出力に
より伝熱板1a側を冷却している。この場合,温度基準ジ
ャケット10側は加熱されることになるが,この温度基準
ジャケット10の熱容量は大きく,熱伝冷却素子7の加熱
量は僅かであるため温度基準ジャケット10の温度を上昇
させるまでには至らない。従ってこの状態では温度基準
ジャケット10側の温度が高く受光体1側の温度は低くな
る。温度差検出素子5,5aはこの温度差を検出し,フィ
―ドバックアンプ8を介してヒ―タ4を加熱する。その
結果,受光体1の温度は常に温度基準ジャケット10の温
度に維持され,フィ―ドバックアンプ8からは常に所定
の電気信号(PHi)が出力される。
In the above configuration, the temperature reference jacket 10 is at room temperature, and the thermoelectric cooling element 7 cools the heat transfer plate 1a side by the output from the constant current source 9. In this case, the temperature reference jacket 10 is heated, but the heat capacity of the temperature reference jacket 10 is large, and the heating amount of the heat transfer cooling element 7 is small, so that the temperature of the temperature reference jacket 10 is increased. Does not reach. Therefore, in this state, the temperature on the temperature reference jacket 10 side is high and the temperature on the light receiving body 1 side is low. The temperature difference detecting elements 5 and 5a detect this temperature difference and heat the heater 4 via the feedback amplifier 8. As a result, the temperature of the photoreceptor 1 is always maintained at the temperature of the temperature reference jacket 10, and the feedback amplifier 8 always outputs a predetermined electric signal (PHi).

【0005】次に,測定すべきレ―ザ光Laが筒体3の上
部から入射すると受光体1が光を吸収し,その光パワ―
に応じて温度が上昇する。その熱は伝熱板1aに伝導し,
この伝熱板1aと温度基準ジャケット10間に温度差が発生
する。この温度差を温度差検出素子5,5aが検出し,フ
ィ―ドバックアンプ8はヒ―タに送出していた電気信号
を負の方向に制御してヒ―タの温度を降下させ,伝熱板
1aと温度基準ジャケット10の温度を一定に制御する。こ
の時の電気信号をPHfとすると、光を照射する前後のフ
ィ―ドバックアンプ8の出力の変化分は、(PHi−PH
f) となり,レ―ザ光のパワ―と前記変化分の置換比
をEとすればレ―ザ光の光パワ―Paは、 Pa=E(PHi
−PHf) で表わすことができる。
Next, when the laser beam La to be measured enters from the upper part of the cylinder 3, the photoreceptor 1 absorbs the light, and its light power
The temperature rises accordingly. The heat is conducted to the heat transfer plate 1a,
A temperature difference occurs between the heat transfer plate 1a and the temperature reference jacket 10. The temperature difference is detected by the temperature difference detecting elements 5 and 5a, and the feedback amplifier 8 controls the electric signal sent to the heater in the negative direction to lower the temperature of the heater and to conduct heat transfer. Board
1a and the temperature of the temperature reference jacket 10 are controlled to be constant. Assuming that the electric signal at this time is PHf, the change in the output of the feedback amplifier 8 before and after the light irradiation is (PHi−PH
f) When the laser light power and the replacement ratio of the change are E, the laser light optical power Pa becomes Pa = E (PHi
−PHf).

【0006】ここで上記光パワー測定装置において,大
気の圧力変動があった場合,光導通路23を介して温度基
準ジャケット10内の圧力も変動する。その結果,基準ジ
ャケット内の空気が圧縮または膨脹し,この中の気温が
上昇,または下降する(大気の気圧は通常の環境で0.2
〜0.3 mm H2 O程度変化しており,この大気圧変動に
基づく温度基準ジャケット内の温度変化は 0.01 〜 0.0
01 ℃程度と考えられる)。ところで,先に述べた様に
筒体3を含む伝熱板1aの熱容量と温度基準ジャケット10
の熱容量は大きく異なっているので,この温度変化に追
従する変化度合が異なってくる。即ち,伝熱板1aの温度
変化(△T)は大きく温度基準ジャケット10の温度変化
(△t)は小さい。このことは温度バランスをとった上
でヒ―タに供給する電気信号の変化から光パワ―を測定
する光パワー測定装置においては精度低下の原因とな
る。
Here, in the above-mentioned optical power measuring device, when the pressure of the atmosphere fluctuates, the pressure in the temperature reference jacket 10 also fluctuates via the optical path 23. As a result, the air in the reference jacket is compressed or expanded, and the temperature inside it rises or falls.
To 0.3 mm H 2 has O about changes, temperature changes from 0.01 to temperature references the jacket based on the change in atmospheric pressure 0.0
It is considered to be around 01 ° C). Incidentally, as described above, the heat capacity of the heat transfer plate 1a including the cylindrical body 3 and the temperature reference jacket 10a
Has a large difference in heat capacity, the degree of change following the temperature change is different. That is, the temperature change (ΔT) of the heat transfer plate 1a is large and the temperature change (Δt) of the temperature reference jacket 10 is small. This causes a decrease in accuracy in an optical power measuring device that measures optical power from a change in an electric signal supplied to a heater after maintaining a temperature balance.

【0007】そこで、図9のような構成をとることによ
り、大気圧の変動に起因する上記課題を解決することが
考えられる。図9装置を説明する。図9において、受光
用吸収体30は、図7で説明した筒体3と、伝熱板1aと、
温度差検出素子5,5aと、熱電冷却素子7と、温度基準
ジャケット10とで構成される部分である。この受光用吸
収体30に、測定対象のレーザ光が照射される。この図9
装置は、図7,図8で説明した構成に対し、新たに補償
用吸収体31を設けたものである。この補償用吸収体31
は、上記した受光用吸収体30とその構成が同じである
が、この補償用吸収体31にはレーザ光は照射されない。
そして、この補償用吸収体31に備えた温度差検出素子5
´,5a´ の出力と、受光用吸収体30に備えた温度差検
出素子5,5aの出力を図9の如く差動で取り出し、この
差動信号に基づいて、図7と同様にフィードバックをか
けるようにしたものである。ここで大気圧が一定の状態
にあると仮定すれば温度基準ジャケット10と、受光用吸
収体30と,補償用吸収体31は、常温に維持される。
Therefore, it is conceivable to solve the above-mentioned problem caused by the fluctuation of the atmospheric pressure by adopting the configuration shown in FIG. FIG. 9 will be described. In FIG. 9, the light-receiving absorber 30 includes the cylindrical body 3 described in FIG. 7, the heat transfer plate 1a,
This is a portion composed of the temperature difference detecting elements 5 and 5a, the thermoelectric cooling element 7, and the temperature reference jacket 10. The light-receiving absorber 30 is irradiated with a laser beam to be measured. This figure 9
The device has a configuration in which a compensation absorber 31 is newly provided in addition to the configuration described with reference to FIGS. This compensating absorber 31
Has the same configuration as the above-described light-receiving absorber 30, but the compensation absorber 31 is not irradiated with laser light.
The temperature difference detecting element 5 provided in the compensating absorber 31
9 and the outputs of the temperature difference detecting elements 5 and 5a provided in the light-receiving absorber 30 are differentially extracted as shown in FIG. 9, and based on this differential signal, feedback is performed in the same manner as in FIG. It is intended to be applied. Here, assuming that the atmospheric pressure is in a constant state, the temperature reference jacket 10, the light receiving absorber 30, and the compensating absorber 31 are maintained at room temperature.

【0008】測定に先立ってレ―ザ光を入射させない状
態で受光用吸収体30の冷却素子7に定電流源から電流を
与えて伝熱板1aを冷却し,温度基準ジャケット10との温
度差がなくなる様にヒ―タに電流を流して初期バランス
状態を設定する。このとき補償用吸収体31の温度差検出
器5´,5a´からの出力は0(大気圧に変動がないと仮定
したので)である。次に,測定すべきレ―ザ光Laを受光
用吸収体30へ入射すると、既述したように伝熱板1aと温
度基準ジャケット10間に温度差が発生する。この温度差
を受光用吸収体30の温度差検出素子5,5aと、補償用吸
収体31の温度差検出素子5´,5a´が検出し,その電気
信号に基づいてフィ―ドバックアンプ8はヒ―タに送出
していた電気信号を負の方向に制御してヒ―タの温度を
降下させ,伝熱板1aと温度基準ジャケット10の温度を一
定に制御する。
Prior to the measurement, a current is applied from the constant current source to the cooling element 7 of the light-receiving absorber 30 in a state where laser light is not incident, thereby cooling the heat transfer plate 1a, and the temperature difference from the temperature reference jacket 10. Set the initial balance state by supplying current to the heater so that no error occurs. At this time, the outputs from the temperature difference detectors 5 'and 5a' of the compensating absorber 31 are 0 (because it is assumed that there is no change in the atmospheric pressure). Next, when the laser beam La to be measured is incident on the light-receiving absorber 30, a temperature difference is generated between the heat transfer plate 1a and the temperature reference jacket 10 as described above. This temperature difference is detected by the temperature difference detecting elements 5 and 5a of the light-receiving absorber 30, and the temperature difference detecting elements 5 'and 5a' of the compensating absorber 31, and based on the electric signals, the feedback amplifier 8 The electric signal sent to the heater is controlled in the negative direction to lower the heater temperature, and the temperature of the heat transfer plate 1a and the temperature reference jacket 10 is controlled to be constant.

【0009】そして気圧変動が生じると,補償用吸収体
31がない場合は、気圧変動に基づく温度基準ジャケット
10内の温度変化によりプリアンプ11の出力には、既述の
如く出力変動が生じるが、図9ではこのプリアンプ11の
出力変動は生じない。その理由を説明する。図9では、
受光用吸収体30の近傍に、この吸収体30と同等の補償用
吸収体31が設けられており,かつ,その温度差検出素子
5´,5a´の極性は、受光用吸収体30の温度差検出素子
5,5aの極性と、逆向きに直列に接続されている。補償
用吸収体31は、受光用吸収体30と同一形状であるため、
補償用吸収体31にも気圧変動に基づく受光用吸収体30と
同じ値の温度変動が発生し、温度差検出素子5´,5a´か
らは、5,5aとほぼ同じ変動値の信号が出力される。そ
して温度差検出素子5,5aと5´,5a´とは、差動的に接
続されているので、プリアンプ11は、この2つの吸収体
30,31に生じた気圧変動に起因する出力信号の変動分を
キャンセルした信号を出力する。
Then, when the pressure fluctuation occurs, the compensating absorber
If there is no 31, temperature-based jacket based on atmospheric pressure fluctuation
As described above, the output of the preamplifier 11 fluctuates due to a temperature change in the output 10, but the output of the preamplifier 11 does not fluctuate in FIG. The reason will be described. In FIG.
In the vicinity of the light receiving absorber 30, a compensating absorber 31 equivalent to the absorber 30 is provided, and the temperature difference detecting element is provided.
The polarities of 5 'and 5a' are connected in series with the polarities of the temperature difference detecting elements 5 and 5a of the light-receiving absorber 30 in the opposite direction. Since the compensating absorber 31 has the same shape as the light receiving absorber 30,
The temperature fluctuation of the same value as that of the light-receiving absorber 30 based on the atmospheric pressure fluctuation also occurs in the compensating absorber 31, and the temperature difference detecting elements 5 ′, 5 a ′ output signals of substantially the same fluctuation values as 5, 5 a. Is done. Since the temperature difference detecting elements 5, 5a and 5 ', 5a' are differentially connected, the preamplifier 11
A signal is output in which the fluctuation of the output signal caused by the atmospheric pressure fluctuation generated in 30 and 31 is canceled.

【0010】即ち,受光用吸収体30におけるレーザ光に
対する等温制御分の出力をVt ,気圧変動による変動分
をVd1とすると,受光用吸収体30の温度差検出素子5,
5aの出力VT1は、 VT1=Vt +Vd1 である。また、補償用吸収体31における気圧変動による
出力変動分をVd2とすると、補償用吸収体31の温度差検
出素子5´,5a´の出力VT2は、 VT2=Vd2 である。従って、プリアンプへの入力Vinは Vin=VT1―VT2=Vt +( Vd1―Vd2) となる。ここで補償用吸収体31は、受光用吸収体30と同
一形状であるため、Vd1―Vd2=0とみなすことが出来
るので Vin=Vt となり,気圧変動による出力変動
を防止することができる。
That is, assuming that the output of the isothermal control for the laser beam in the light-receiving absorber 30 is Vt and the fluctuation due to the atmospheric pressure fluctuation is Vd1, the temperature difference detecting element 5 of the light-receiving absorber 30
The output VT1 of 5a is VT1 = Vt + Vd1. Further, assuming that the output fluctuation due to the atmospheric pressure fluctuation in the compensating absorber 31 is Vd2, the output VT2 of the temperature difference detecting elements 5 ', 5a' of the compensating absorber 31 is VT2 = Vd2. Therefore, the input V in to the pre-amplifier is the V in = VT1-VT2 = Vt + (Vd1-Vd2). Here compensating absorber 31 are the same shape as the light receiving absorber 30, it is possible to prevent V in = Vt becomes so can be regarded as Vd1-Vd2 = 0, the output variation due to pressure variation.

【0011】[0011]

【考案が解決しようとする課題】しかし図9の装置で
は、受光用吸収体30と補償用吸収体31の構造を同一の形
状にしていたので、次の問題がある。 大気圧に変動があった場合、補償用吸収体31の圧力
変動の感度を受光用吸収体30のそれと同一にするため、
両者を同一形状にしている。つまり補償用吸収体31にも
熱電冷却素子を設けている。しかし、補償用吸収体31に
設けられた熱電冷却素子は、本来の冷却作用をなんら果
たしておらず、単に設けられているのみなので、製品と
しての価格効率を低下させる。 パワーの大きなレーザ光に対応するための受光用吸
収体30の形状は、大きいものが必要である。従って、こ
の場合、補償用吸収体31の形状も大きなものになる。し
かし、大きな吸収体を2個温度基準ジャケット10内(図
8参照)に収納するのは困難である。
However, in the apparatus shown in FIG. 9, the structures of the light-receiving absorber 30 and the compensating absorber 31 are the same, so that the following problem arises. If there is a fluctuation in the atmospheric pressure, in order to make the sensitivity of the pressure fluctuation of the compensation absorber 31 the same as that of the light absorber 30,
Both have the same shape. In other words, the compensating absorber 31 is also provided with a thermoelectric cooling element. However, the thermoelectric cooling element provided in the compensating absorber 31 does not perform the original cooling function at all, and is merely provided, thereby lowering the price efficiency as a product. The light-receiving absorber 30 must have a large shape to cope with a laser beam having a large power. Therefore, in this case, the shape of the compensating absorber 31 also becomes large. However, it is difficult to store two large absorbers in the temperature reference jacket 10 (see FIG. 8).

【0012】本考案の目的は、補償用吸収体を受光用吸
収体より小さい形状にしても、図9装置と同等の補償効
果(気圧変動の影響を受けない)が得られる光パワー測
定装置を提供することである。
An object of the present invention is to provide an optical power measuring apparatus which can obtain a compensating effect (not affected by atmospheric pressure fluctuation) equivalent to that of the apparatus in FIG. 9 even if the compensating absorber is made smaller than the light receiving absorber. To provide.

【0013】[0013]

【課題を解決するための手段】本考案は,断熱装置の内
部に配置された温度基準ジャケットへ、冷却素子と第1
温度差検出素子を間に挾んで取り付けられ、測定光を受
光する第1受光体,この受光体を加熱する加熱素子,か
らなる受光用吸収体と,前記温度基準ジャケットへ第2
温度差検出素子を間に挾んで第2受光体が取り付けられ
た補償用吸収体と、を備え,第1温度差検出素子の出力
信号と、第2温度差検出素子の出力信号の差信号を用い
ることで気圧変動による影響を除去する装置において、
前記補償用吸収体が受光用吸収体の形状より小さい部材
であって、第2受光体の熱容量と第2温度差検出素子の
熱抵抗とで決定される補償用吸収体の熱時定数と、第1
受光体の熱容量と冷却素子と第1温度差検出素子の熱抵
抗とで決定される受光用吸収体の熱時定数とを同一に構
成し、かつ (PB /PA )・(VB /VA )=1 に設定するようにしたものである。 なお、PA は受光用吸収体の電力感度、PB は補償用吸収体の電力感度 VA は第1受光体の内容積、 VB は第2受光体の内容積
SUMMARY OF THE INVENTION According to the present invention, a cooling element and a first cooling element are connected to a temperature reference jacket disposed inside a heat insulating device.
A light-receiving absorber, which is mounted with a temperature difference detecting element interposed therebetween and receives the measuring light, a heating element for heating the light-receiving body, and a second light-receiving absorber to the temperature reference jacket;
A compensating absorber having a second photoreceptor mounted with the temperature difference detecting element interposed therebetween, wherein a difference signal between an output signal of the first temperature difference detecting element and an output signal of the second temperature difference detecting element is provided. In equipment that removes the effects of atmospheric pressure fluctuations by using
The compensation absorber is a member smaller than the shape of the light-receiving absorber, and a thermal time constant of the compensation absorber determined by a heat capacity of the second light-receiving body and a thermal resistance of the second temperature difference detection element; First
The thermal time constant of the light-receiving absorber, which is determined by the heat capacity of the light-receiving element and the thermal resistance of the cooling element and the first temperature difference detecting element, is the same, and (PB / PA). (VB / VA) = 1 is set. Where PA is the power sensitivity of the light receiving absorber, PB is the power sensitivity of the compensating absorber, VA is the internal volume of the first photoreceptor, and VB is the internal volume of the second photoreceptor.

【0014】[0014]

【作用】補償用吸収体の熱時定数と、受光用吸収体の熱
時定数が同じであるから、大気圧の変動により断熱装置
内に熱変動が生じても、補償用吸収体の温度変化の割合
と、受光用吸収体の温度変化の割合は同一である。また
出願人は、実験データより、(PB /PA )・(VB /
VA )=1 の関係に設定すると、2つの吸収体(受光
用吸収体と補償用吸収体)の圧力変動感度が等しくなる
ことを確かめた。従って、補償用吸収体の形状を受光用
吸収体の形状より小さくしても、差動動作させることで
圧力変動による影響をキャンセルすることができる。
Since the thermal time constant of the absorber for absorption and the thermal time constant of the absorber for light reception are the same, even if the thermal fluctuation occurs in the heat insulating device due to the fluctuation of the atmospheric pressure, the temperature change of the absorber for compensation. And the rate of temperature change of the light-receiving absorber are the same. In addition, the applicant has determined from the experimental data that (PB / PA). (VB /
It was confirmed that when the relationship of VA) = 1 was set, the pressure fluctuation sensitivity of the two absorbers (the light receiving absorber and the compensating absorber) became equal. Therefore, even if the shape of the compensating absorber is smaller than the shape of the light receiving absorber, the differential operation can cancel the influence of the pressure fluctuation.

【0015】[0015]

【実施例】以下、図面を参照して本願を説明する。図1
は本考案の要部構成例を示す図、図2と図4は受光体の
寸法例を示す図、図3は図2の受光体の場合の測定デー
タ、図5と図6は図4の受光体の場合の測定データであ
る。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. FIG.
FIGS. 2 and 4 show examples of dimensions of the photoreceptor, FIGS. 3 and 4 show measurement data in the case of the photoreceptor of FIG. 2, and FIGS. It is measurement data in the case of a photoreceptor.

【0016】図1の装置が図9の装置と異なる点は、補
償用吸収体33部分の構成である(その他の構成は同
じ)。即ち、 補償用吸収体33の形状を受光用吸収体30より小さく
構成した点にある。そして単に形状を小さくするのでな
く、補償用吸収体33の受光体(筒体41と伝熱板40)の熱
容量と温度差検出素子42の熱抵抗とで決定される熱時定
数と、受光用吸収体30の受光体(筒体と伝熱板)の熱容
量と冷却素子7と温度差検出素子5,5aの熱抵抗とで決
定される熱時定数とを同一に構成し、かつ (PB /PA )・(VB /VA )=1 に設定するようにしている。この様に構成・設定する
と、2つの吸収体(受光用吸収体と補償用吸収体)の圧
力変動感度が等しくなることを出願人は実験的に確かめ
た。従って、補償用吸収体の形状を受光用吸収体の形状
より小さくしても、差動動作させることで圧力変動によ
る影響をキャンセルすることができる。 また、図9における熱電冷却素子7´を除去し、サ
ーモモジュール部を小さくした。以下、図9と異なる点
に焦点を当てて詳しく本願を説明する。
The device of FIG. 1 differs from the device of FIG. 9 in the structure of the compensating absorber 33 (other structures are the same). That is, the point is that the shape of the compensating absorber 33 is smaller than that of the light receiving absorber 30. Then, instead of simply reducing the shape, the thermal time constant determined by the heat capacity of the light receiving body (the cylinder 41 and the heat transfer plate 40) of the compensating absorber 33 and the thermal resistance of the temperature difference detecting element 42, The heat capacity of the light receiving body (the cylinder and the heat transfer plate) of the absorber 30 and the thermal time constant determined by the thermal resistance of the cooling element 7 and the thermal resistance of the temperature difference detecting elements 5 and 5a are the same, and (PB / PA) · (VB / VA) = 1. The applicant has experimentally confirmed that the pressure fluctuation sensitivity of the two absorbers (the light-receiving absorber and the compensating absorber) becomes equal when configured and set in this manner. Therefore, even if the shape of the compensating absorber is smaller than the shape of the light receiving absorber, the differential operation can cancel the influence of the pressure fluctuation. In addition, the thermoelectric cooling element 7 'in FIG. 9 was removed, and the size of the thermo module was reduced. Hereinafter, the present application will be described in detail focusing on points different from FIG.

【0017】(A) まず形状が単に相似的に異なる場合
(本考案ではない)の、2つの吸収体の圧力特性を図
2,図3の実験データに基づいて説明する。図2におい
て、(a)は筒体の長さが15 mm 、直径が5φの吸収体で
あり、(b) は筒体の長さが22.5 mm 、直径が7.5 φの吸
収体である。即ち、寸法比が2:3の関係にある。
(A) First, the pressure characteristics of the two absorbers when the shapes are merely similar (not the present invention) will be described based on the experimental data in FIGS. In FIG. 2, (a) is an absorber having a cylinder length of 15 mm and a diameter of 5φ, and (b) is an absorber having a cylinder length of 22.5 mm and a diameter of 7.5φ. That is, the dimensional ratios are in a relationship of 2: 3.

【0018】図2では図示していないが、(a) ,(b) 図
の吸収体には、サーモモジュール(図9で示す熱電冷却
素子7や温度差検出素子5,5aを構成する多数のペルチ
ェ素子からなるモジュールのこと)が付加されている。
そして(a) 図の吸収体においては、付加された全サーモ
モジュール素子数は48であり、この内、温度差検出素子
用に用いられるモジュール数は32である。この比を一般
に対数比と言う。従って、(a) 図の吸収体の対数比は、
32/48=2/3 である。対数比は、温度検出感度、つ
まり、光パワー検出感度を意味する数値である。一方、
(b) 図の吸収体の全サーモモジュール素子数は96であ
り、このうち、温度差検出素子用に用いられるモジュー
ル数は64である。即ち、(b) 図の吸収体の対数比は、64
/96=2/3 であり、(a) の吸収体と同一に選んであ
る。
Although not shown in FIG. 2, the absorber shown in FIGS. 2A and 2B is provided with a thermo module (a large number of thermoelectric cooling elements 7 and temperature difference detecting elements 5 and 5a shown in FIG. 9). Peltier element).
(A) In the absorber shown in the figure, the total number of thermo-module elements added is 48, and among them, the number of modules used for the temperature difference detecting element is 32. This ratio is commonly referred to as the log ratio. Therefore, the logarithmic ratio of the absorber in FIG.
32/48 = 2/3. The logarithmic ratio is a numerical value indicating the temperature detection sensitivity, that is, the optical power detection sensitivity. on the other hand,
(b) The total number of thermomodule elements of the absorber in the figure is 96, of which 64 modules are used for the temperature difference detection element. In other words, the logarithmic ratio of the absorber shown in FIG.
/ 96 = 2/3, and was selected in the same manner as the absorber of (a).

【0019】このように対数比が決定されると、上述し
たように電力感度(光パワーの検出感度)が定まる。即
ち、(a) 図の吸収体の電力感度は、0.26 V/w であ
る。つまり、1ワットの光パワーを照射すると、サーモ
カップルから0.26 Vの電圧が出力される。一方、(b) 図
の吸収体の電力感度は、0.28 V/w である。即ち、対
数比が等しいので(a) 図の吸収体の電力感度とほぼ等し
い。
When the logarithmic ratio is determined in this manner, the power sensitivity (detection sensitivity of optical power) is determined as described above. In other words, the power sensitivity of the absorber shown in (a) is 0.26 V / w. That is, when a light power of 1 watt is irradiated, a voltage of 0.26 V is output from the thermocouple. On the other hand, the power sensitivity of the absorber shown in Fig. (B) is 0.28 V / w. That is, since the logarithmic ratios are equal, the power sensitivity of the absorber in FIG.

【0020】次に熱時定数について説明する。吸収体部
の熱時定数は、筒体と伝熱板の熱容量と、これに接続さ
れる温度差検出素子の熱抵抗との掛算で決定される。図
2の例では、(a) 図の吸収体の熱時定数が25 sec、(b)
図の吸収体の熱時定数が22 secであり、この熱時定数の
値も、ほぼ等しい値に設定してある。従って、断熱装置
内に熱変動が生じても、(a) 図と(b) 図の2つの吸収体
の温度変化の割合は同一である。
Next, the thermal time constant will be described. The thermal time constant of the absorber is determined by multiplying the heat capacity of the cylinder and the heat transfer plate by the thermal resistance of the temperature difference detecting element connected thereto. In the example of FIG. 2, the thermal time constant of the absorber shown in FIG.
The thermal time constant of the absorber in the figure is 22 sec, and the value of this thermal time constant is also set to a substantially equal value. Therefore, even if heat fluctuation occurs in the heat insulating device, the rate of temperature change of the two absorbers in FIGS. (A) and (b) is the same.

【0021】このように、対数比、電力感度、熱時定数
の特性が等しく、かつ、形状が図2の如く相似の状態で
異なる2つの吸収体に圧力変動を加え、その時のサーモ
カップルの出力(即ち、温度差検出素子の出力)を測定
したのが図3のデータである。図3において、横軸は時
(sec )である。この図3の上のデータ(イ)は、加え
た圧力変動値(1目盛りは 2 Pa /1V)を示し、下のデ
ータは、サーモカップルの出力である。なお、実線は図
2(a) の吸収体(5φ)のデータであり左側の縦軸(1
目盛り250 nV)で読み、点線は(b) の吸収体(7.5 φ)
のデータであり、右側の縦軸(1目盛り500 nV)で読
む。この図3のデータから分かるように、 図2(a) の吸収体の圧力変動値は、およそ 33 nV /Pa 図2(b) の吸収体の圧力変動値は、およそ 120 nV/Pa である。即ち、図2(a) と(b) で取り上げた構成例の場
合、この圧力変動値の比率は、33/120 =0.275 であ
る。
As described above, pressure fluctuations are applied to two different absorbers having the same characteristics of logarithmic ratio, power sensitivity, and thermal time constant and having similar shapes as shown in FIG. 2, and the output of the thermocouple at that time is applied. 3 (that is, the output of the temperature difference detecting element) is the data shown in FIG. In FIG. 3, the horizontal axis is time (sec). The upper data (a) in FIG. 3 shows the applied pressure fluctuation value (one scale is 2 Pa / 1 V), and the lower data is the output of the thermocouple. The solid line is the data of the absorber (5φ) in FIG.
The scale is read at 250 nV) and the dotted line is the absorber (7.5 φ) of (b)
And read on the right vertical axis (500 nV per division). As can be seen from the data in FIG. 3, the pressure fluctuation value of the absorber in FIG. 2 (a) is about 33 nV / Pa, and the pressure fluctuation value of the absorber in FIG. 2 (b) is about 120 nV / Pa. . That is, in the case of the configuration examples shown in FIGS. 2A and 2B, the ratio of the pressure fluctuation value is 33/120 = 0.275.

【0022】このように図2(a) と(b) の吸収体の圧力
感度は、大きく異なるが、この比率(0.275)は、2つの
吸収体の内容積(直径の3乗)の比にほぼ等しい。即
ち、 53 / 7.53 =0.275 これは、圧力変動に起因する仕事量、若しくは温度差を
吸収体が検出することから、その感度は、吸収体の表面
積(吸収体の径の2乗で決まる)、または、内容積(3
乗)に依存すると考えられる。
Although the pressure sensitivities of the absorbers shown in FIGS. 2A and 2B are greatly different from each other, this ratio (0.275) is equal to the ratio of the inner volumes (the cube of the diameter) of the two absorbers. Almost equal. That is, 5 3 /7.5 3 = 0.275 This is because the absorber detects the work amount or the temperature difference caused by the pressure fluctuation, and the sensitivity is determined by the surface area of the absorber (the square of the diameter of the absorber). ) Or internal volume (3
Power).

【0023】(B) 本考案にかかる構成の吸収体 図4〜図6を参照して本考案にかかる2つの吸収体の関
係を説明する。図4において、(a) 図は受光用吸収体30
であり、例えば、筒体の長さが15 mm 、直径が7.5 φで
ある。また(b) 図は補償用吸収体33であり、例えば筒体
の長さが12 mm、直径が6φである。なお、この数値は
寸法例でありこの数値に本考案を限定するわけではな
い。
(B) Absorber Having Configuration According to the Present Invention The relationship between the two absorbers according to the present invention will be described with reference to FIGS. In FIG. 4, (a) is a light-receiving absorber 30.
For example, the length of the cylindrical body is 15 mm, and the diameter is 7.5 φ. (B) shows a compensating absorber 33, for example, having a cylindrical body length of 12 mm and a diameter of 6φ. This numerical value is an example of a dimension, and the present invention is not limited to this numerical value.

【0024】同一材料のサーモモジュールを用いる場
合、電力感度は、対数比で決定される。そこで本考案で
は、図4(a) の受光用吸収体の対数比を32/64=1/2
とし、図4(b) の補償用吸収体のそれを32/32=1/1
とした。従って、受光用吸収体の電力感度PA は PA
=0.2 V/w,補償用吸収体の電力感度PB は PB =0.
4 V/w(◆0.26×3/2 )である(◆はnearly equalの意
味)。また、2つの吸収体の熱レスポンスが同一でない
と、トランジェント状態で温度差が発生するので、2つ
の吸収体の熱時定数を同じにする必要がある。そのため
にはサーモモジュールでの熱抵抗比が (1/2)/(1/1) =
1/2であることから、受光用吸収体の受光体の熱容量
と、補償用吸収体の受光体の熱容量の比を2/1にすれ
ばよい。なお、熱容量は、吸収体の構成材料と寸法を選
ぶことにより、容易に決定することができる。
In the case of using a thermo module of the same material, the power sensitivity is determined by a logarithmic ratio. Therefore, in the present invention, the logarithmic ratio of the light-receiving absorber in FIG. 4 (a) is set to 32/64 = 1/2.
And that of the compensating absorber of FIG. 4 (b) is 32/32 = 1/1.
And Therefore, the power sensitivity PA of the light-receiving absorber is PA
= 0.2 V / w, the power sensitivity PB of the compensating absorber is PB = 0.
4 V / w (◆ 0.26 × 3/2) (◆ means near equal). In addition, if the thermal response of the two absorbers is not the same, a temperature difference occurs in the transient state, so the two absorbers need to have the same thermal time constant. For that purpose, the thermal resistance ratio in the thermo module is (1/2) / (1/1) =
Since the ratio is 1/2, the ratio of the heat capacity of the photoreceptor of the absorber for light reception to the heat capacity of the photoreceptor of the absorber for compensation may be set to 2/1. The heat capacity can be easily determined by selecting the constituent materials and dimensions of the absorber.

【0025】そして、圧力変動による吸収体の感度は、
上述(A) 項で説明した測定データより内容積で決まる推
測した。即ち、受光用吸収体の受光体(図4(a) )の内
容積をVA 、補償用吸収体の受光体(図4(b) )の内容
積をVB とすると、 (PB /PA )・(VB /VA )=1 となるようにすれば、2つの吸収体における圧力感度が
同一になると期待できる。 そこで、図4(a),(b) に示
す寸法にすると、VA = 7.53 、VB =63 である。そ
して、上述のようにPA =0.2 V/w、PB =0.4 V/w、
であるから、上式の左辺に代入すると、(0.4 /0.2)・
(63 / 7.53 )の値は、約1となる。
The sensitivity of the absorber due to pressure fluctuation is
Based on the measurement data described in the above section (A), it was estimated that it was determined by the internal volume. That is, assuming that the inner volume of the photoreceptor (FIG. 4 (a)) of the light receiving absorber is VA and the inner volume of the photoreceptor (FIG. 4 (b)) of the compensating absorber is VB, (PB / PA). If (VB / VA) = 1, it can be expected that the pressure sensitivity of the two absorbers will be the same. Accordingly, FIG. 4 (a), when dimensioned shown in (b), a VA = 7.5 3, VB = 6 3. Then, as described above, PA = 0.2 V / w, PB = 0.4 V / w,
Therefore, substituting into the left side of the above equation gives (0.4 / 0.2)
The value of (6 3 / 7.5 3) is about 1.

【0026】既述した図4の2つの吸収体を用いた場合
の測定データを図5と図6に示す。図5は同図の(イ)
のような圧力変動を加えた場合の、受光用吸収体(実線
データ)と、補償用吸収体(点線データ)からそれぞれ
得られる出力特性を示している。図6は、図5の(イ)
と同様な圧力変動を加えた時の受光用吸収体の出力と補
償用吸収体の出力の差動出力をとったデータ(ロ)を示
している。図6と図5のデータを比較すると分かるよう
に、単体の出力に対し、差動接続すると圧力変動は1/
3になる。
FIGS. 5 and 6 show measurement data when the two absorbers shown in FIG. 4 are used. FIG. 5 is (a) of FIG.
The output characteristics obtained from the light-receiving absorber (solid line data) and the compensation absorber (dotted line data) when such pressure fluctuations are applied are shown. FIG. 6 is (a) of FIG.
The data (b) shows the differential output between the output of the absorber for light reception and the output of the absorber for compensation when the same pressure fluctuation is applied. As can be seen by comparing the data of FIGS. 6 and 5, when a differential connection is made to a single output, the pressure fluctuation is reduced by 1 /
It becomes 3.

【0027】また、図9における熱電冷却素子7´を除
去し、サーモモジュール部を小さくしたので、図9の構
成と比較して光パワー測定装置を低価格で製作できる。
なお、図9における熱電冷却素子7´は、もともと本来
の冷却動作を行っているわけではないので、これを除去
しても性能が低下することはない。
Further, since the thermoelectric cooling element 7 'in FIG. 9 is removed and the thermo-module portion is made smaller, the optical power measuring device can be manufactured at a lower cost as compared with the configuration of FIG.
Since the thermoelectric cooling element 7 'in FIG. 9 does not originally perform the original cooling operation, its performance does not decrease even if it is removed.

【0028】[0028]

【考案の効果】以上説明したように、本願によれば、従
来ではほとんど機能していなかった補償用吸収体の熱電
冷却素子を省略でき、また、補償用吸収体を小形化でき
るので、小型・低価格の光パワー測定装置を実現でき
る。
As described above, according to the present invention, the thermoelectric cooling element of the compensating absorber, which has hardly functioned in the past, can be omitted, and the compensating absorber can be downsized. A low-cost optical power measuring device can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本考案の要部構成例を示す図FIG. 1 is a diagram showing a configuration example of a main part of the present invention.

【図2】受光体の寸法例を示す図FIG. 2 is a diagram showing an example of dimensions of a photoreceptor;

【図3】図2の受光体の場合の測定データFIG. 3 shows measurement data for the photoreceptor of FIG.

【図4】本考案に係る受光体の寸法例を示す図FIG. 4 is a diagram showing an example of dimensions of the photoreceptor according to the present invention;

【図5】図4の受光体の場合の測定データFIG. 5 shows measurement data for the photoreceptor of FIG.

【図6】図4の受光体の場合の測定データFIG. 6 shows measurement data for the photoreceptor of FIG.

【図7】従来の光パワー測定装置の構成例を示す図FIG. 7 is a diagram showing a configuration example of a conventional optical power measurement device.

【図8】従来の光パワー測定装置の構成例を示す図FIG. 8 is a diagram showing a configuration example of a conventional optical power measurement device.

【図9】従来の光パワー測定装置の構成例を示す図FIG. 9 is a diagram showing a configuration example of a conventional optical power measurement device.

【符号の説明】[Explanation of symbols]

1a,40 伝熱板 41 筒体 42 温度差検出素子 30 受光用吸収体 33 補償用吸収体 1a, 40 Heat transfer plate 41 Cylinder 42 Temperature difference detecting element 30 Absorber for light reception 33 Absorber for compensation

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】断熱装置の内部に配置された温度基準ジャ
ケットへ、冷却素子と第1温度差検出素子を間に挾んで
取り付けられ、測定光を受光する第1受光体,この受光
体を加熱する加熱素子,からなる受光用吸収体と,前記
温度基準ジャケットへ第2温度差検出素子を間に挾んで
第2受光体が取り付けられた補償用吸収体と、を備え,
第1温度差検出素子の出力信号と、第2温度差検出素子
の出力信号の差信号を用いることで気圧変動による影響
を除去する装置において、前記補償用吸収体が受光用吸
収体の形状より小さい部材であって、第2受光体の熱容
量と第2温度差検出素子の熱抵抗とで決定される補償用
吸収体の熱時定数と、第1受光体の熱容量と冷却素子と
第1温度差検出素子の熱抵抗とで決定される受光用吸収
体の熱時定数とを同一に構成し、かつ (PB /PA )・(VB /VA )=1 に設定したことを特徴とする光パワー測定装置。なお、
PA は受光用吸収体の電力感度、PB は補償用吸収体の
電力感度 VA は第1受光体の内容積、 VB は第2受光体の内
容積
1. A first photoreceptor which is attached to a temperature reference jacket disposed inside a heat insulating device with a cooling element and a first temperature difference detecting element interposed therebetween and receives measurement light, and heats the photoreceptor. And a compensating absorber having a second photoreceptor attached to the temperature reference jacket with a second temperature difference detecting element interposed therebetween.
In an apparatus for removing the influence of atmospheric pressure fluctuation by using a difference signal between an output signal of a first temperature difference detection element and an output signal of a second temperature difference detection element, the compensating absorber has a shape smaller than that of a light receiving absorber. A small member, the thermal time constant of the compensating absorber determined by the heat capacity of the second photoreceptor and the thermal resistance of the second temperature difference detecting element, the heat capacity of the first photoreceptor, the cooling element, and the first temperature The optical power, wherein the thermal time constant of the light-receiving absorber determined by the thermal resistance of the difference detection element is the same, and (PB / PA). (VB / VA) = 1. measuring device. In addition,
PA is the power sensitivity of the light receiving absorber, PB is the power sensitivity of the compensating absorber, VA is the internal volume of the first photoreceptor, and VB is the internal volume of the second photoreceptor.
JP4578691U 1991-06-18 1991-06-18 Optical power measurement device Expired - Fee Related JP2548733Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4578691U JP2548733Y2 (en) 1991-06-18 1991-06-18 Optical power measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4578691U JP2548733Y2 (en) 1991-06-18 1991-06-18 Optical power measurement device

Publications (2)

Publication Number Publication Date
JPH04138245U JPH04138245U (en) 1992-12-24
JP2548733Y2 true JP2548733Y2 (en) 1997-09-24

Family

ID=31925560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4578691U Expired - Fee Related JP2548733Y2 (en) 1991-06-18 1991-06-18 Optical power measurement device

Country Status (1)

Country Link
JP (1) JP2548733Y2 (en)

Also Published As

Publication number Publication date
JPH04138245U (en) 1992-12-24

Similar Documents

Publication Publication Date Title
US6133572A (en) Infrared detector system with controlled thermal conductance
JP3137605B2 (en) Heat flux type differential scanning calorimeter
US5860741A (en) Absolute radiation thermometer
JP4415045B2 (en) Non-contact temperature sensor
US5957582A (en) Thermal sensor assembly
JPH01316641A (en) Infrared gas densitometer
CN1985158B (en) Sensor element
JP2548733Y2 (en) Optical power measurement device
JPH11223555A (en) Non-contacting temperature sensor and detection circuit therefor
Jansson et al. Theoretical analysis of pulse bias heating of resistance bolometer infrared detectors and effectiveness of bias compensation
US10041837B2 (en) Radiation imaging sensor
US4159422A (en) Temperature stable displacement sensor with fine resolution
JP3208320B2 (en) Non-contact temperature sensor
RU2456559C1 (en) Thermal radiation receiver
JP2745684B2 (en) Isothermal control calorimeter
US6408651B1 (en) Method of manufacturing optical fibers using thermopiles to measure fiber energy
JPH05240707A (en) Light power measuring device
JPS6171326A (en) Photodetector
Iuchi et al. New radiation thermometer for near room temperature
JPH04301728A (en) Isothermal control type calorimeter
JPH0454422Y2 (en)
JPS642884B2 (en)
JPS63159740A (en) Heat constant measuring instrument by laser flash method
JP2008026179A (en) Radiant heat sensor and method of measuring radiant heat
JPH0481133B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees