JP2547824B2 - Induction motor controller - Google Patents

Induction motor controller

Info

Publication number
JP2547824B2
JP2547824B2 JP63261390A JP26139088A JP2547824B2 JP 2547824 B2 JP2547824 B2 JP 2547824B2 JP 63261390 A JP63261390 A JP 63261390A JP 26139088 A JP26139088 A JP 26139088A JP 2547824 B2 JP2547824 B2 JP 2547824B2
Authority
JP
Japan
Prior art keywords
value
current
torque
torque current
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63261390A
Other languages
Japanese (ja)
Other versions
JPH02111282A (en
Inventor
裕司 鉄谷
光悦 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63261390A priority Critical patent/JP2547824B2/en
Publication of JPH02111282A publication Critical patent/JPH02111282A/en
Application granted granted Critical
Publication of JP2547824B2 publication Critical patent/JP2547824B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、インバータを介して駆動される誘導電動機
の制御装置に関する。
Description: TECHNICAL FIELD The present invention relates to a control device for an induction motor driven via an inverter.

〔従来の技術〕[Conventional technology]

第3図はかかる制御装置の従来例を示すブロック図で
ある。同図において、1は三相交流電源、2はコンバー
タ、3はコンデンサ、4はインバータ、5は比較器、6
は搬送波信号発生回路、7は誘導電動機(以下、単にモ
ータともいう。)8は変流路(電流検出器)、9A,9Bは
座標変換器、10Aはトルク電流調節器(ACR)、10Bは励
磁電流調節器(ACR)、11A,11Bは出力制限回路(リミッ
タ)、12は割算器、13は演算回路である。
FIG. 3 is a block diagram showing a conventional example of such a control device. In the figure, 1 is a three-phase AC power source, 2 is a converter, 3 is a capacitor, 4 is an inverter, 5 is a comparator, and 6
Is a carrier wave signal generation circuit, 7 is an induction motor (hereinafter also simply referred to as a motor), 8 is a variable flow path (current detector), 9A and 9B are coordinate converters, 10A is a torque current regulator (ACR), and 10B is Exciting current regulator (ACR), 11A and 11B are output limiting circuits (limiters), 12 is a divider, and 13 is an arithmetic circuit.

これはモータの電流,電圧等をベクトル量とみなし、
固定子巻線上から観測すると交流量になっているこれら
の量を、電動機の回転磁界上から観測して直流量に変換
し、これを磁束に平行な成分とこれに直交する成分とに
分離してそれぞれ独立に制御するもので、いわゆるベク
トル制御方式として良く知られているものである。
This regards the motor current, voltage, etc. as vector quantities,
These quantities, which are AC quantities when observed from the stator winding, are converted to DC quantities by observing from the rotating magnetic field of the motor and separated into a component parallel to the magnetic flux and a component orthogonal to this. Control independently of each other, which is well known as a so-called vector control method.

いま、トルク指令値をτ,二次磁束指令値をφ
とすると、磁束に平行な電流成分(励磁電流)の指令値
iM は、 p:d/dt(微分演算子)、T2:モータ二次時定数、M:相互
インダクタンス で与えられ、励磁電流と直交する成分(トルク電流)の
指令値iT は、 iT =τ/φ ……(2) として与えられる。
Now, the torque command value τ *, a secondary magnetic flux command value φ 2 *
Then, the command value of the current component (excitation current) parallel to the magnetic flux
i M * is p: d / dt (differential operator), T 2 : Motor secondary time constant, M: Mutual inductance, and the command value i T * of the component (torque current) orthogonal to the exciting current is i T * = It is given as τ * / φ 2 * ... (2).

そこで、演算回路13により(1)式を演算し、割算器
12により(2)式の割り算を実行する。座標変換器9Aは
電流検出器8により検出された固定子座標系の諸量
(iu,iv,iw)を二次磁束座標系の諸量(iT,iM)に変換
するもので、固定子の例えばa相巻線とモータ内二次磁
束とのなす角度をφとすると、次の(3)式による変
換を行う。
Therefore, the arithmetic circuit 13 calculates the equation (1), and the divider
The division of formula (2) is executed by 12. The coordinate converter 9A converts the quantities (i u , i v , i w ) of the stator coordinate system detected by the current detector 8 into the quantities (i T , i M ) of the secondary magnetic flux coordinate system. Then, assuming that the angle formed by, for example, the a-phase winding of the stator and the secondary magnetic flux in the motor is φ 2 , conversion is performed by the following equation (3).

以上により求められたトルク電流指令値iT とトルク
電流検出値iT,励磁電流指令値iM と励磁電流検出値iM
をそれぞれつき合わせ、その偏差をトルク電流調節器10
A,励磁電流調節器10Bにそれぞれ入力する。トルク電流
調節器10A,励磁電流調節器10Bは比例動作項と積分動作
項を有するいわゆるPI調節器であり、トルク電流指令値
iT とトルク電流検出値iTとの偏差をトルク電流調節器
10Aに入力することでトルク電圧指令値VT を、また励
磁電流指令値iM と励磁電流検出値iMとの偏差を励磁電
流調節器10Bに入力することで励磁電圧指令値VM を得
る。また、上記電流調節器10A,10Bには調節器の飽和時
に調節器の出力を制限して飽和からの回復特性を良くす
るために出力制限回路(リミッタ)11A,11Bが附加して
ある。座標変換器9Bは、電流調節器10A,10Bにより出力
された二次磁束座標系の諸量(VT ,VM )を、固定子
座標系の諸量(Vu ,Vv ,Vw )に変換するもので、そ
の変換式は次式で示される。
Torque current command value i T * and torque current detection value i T , exciting current command value i M * and exciting current detection value i M obtained as above
The torque current regulator 10
Input to A and exciting current controller 10B. The torque current controller 10A and the excitation current controller 10B are so-called PI controllers having a proportional operation term and an integral operation term, and the torque current command value
The deviation between i T * and the detected torque current value i T is calculated by the torque current controller.
Input the torque voltage command value V T * to 10 A and input the deviation between the excitation current command value i M * and the excitation current detection value i M to the excitation current controller 10 B to input the excitation voltage command value V M Get * Further, the current regulators 10A, 10B are provided with output limiting circuits (limiters) 11A, 11B for limiting the output of the regulator when the regulator is saturated and improving the recovery characteristic from the saturation. Coordinate converter 9B, the current regulator 10A, quantities of secondary flux coordinate system output by 10B (V T *, V M *) and quantities of the stator coordinate system (V u *, V v * , V w * ), and the conversion formula is shown by the following formula.

(4)式に従って変換された三相電圧指令値(Vu ,V
v ,Vw )と、搬送波信号発生回路6から出力される三
相波形の信号とを比較器5にて比較することにより、イ
ンバータ4を制御するためのパルス幅変調(PWM)信号
が得られる。インバータ4には、交流電源1より与えら
れる交流電圧をコンバータ2で直流に変換し、コンデン
サ3で平滑された直流中間電圧Vdcが入力される。イン
バータ4は直流中間電圧Vdcを先に述べたPWM信号に従っ
てパルス幅変調し、モータ7へ供給する。
Three-phase voltage command value (V u * , V converted according to equation (4)
By comparing v * , Vw * ) and the three-phase waveform signal output from the carrier signal generation circuit 6 by the comparator 5, the pulse width modulation (PWM) signal for controlling the inverter 4 can be obtained. can get. The inverter 4 receives the DC intermediate voltage V dc which is converted by the converter 2 from the AC voltage supplied from the AC power supply 1 and smoothed by the capacitor 3. The inverter 4 pulse-width modulates the DC intermediate voltage V dc in accordance with the PWM signal described above, and supplies it to the motor 7.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来技術では、瞬停等による直流中間電圧変動時に、
電流にオーバーシュートを生じるという問題がある。以
下このことについて説明する。
In the conventional technology, when the DC intermediate voltage fluctuates due to a momentary power failure,
There is a problem that the current overshoots. This will be described below.

第4図は第3図のトルク電流制御系のブロック図を示
し、第5図は第3図の動作波形図を示す。
FIG. 4 shows a block diagram of the torque current control system of FIG. 3, and FIG. 5 shows an operation waveform diagram of FIG.

モータ内部の電圧・電流方程式は次の(5)式で与え
られる。
The voltage / current equation inside the motor is given by the following equation (5).

r1:一次抵抗、Lσ:総合洩れインダクタンス、ω1:一
次角周波数 (5)式の右辺第2,3項をモータ逆起電圧すなわち外
乱(第4図に符号dで示す)と考えると、こ系の外乱に
は前記dと乗算器20の入力である直流中間電圧Vdcがあ
る。制御装置は制御量であるトルク電流値ITを検出フィ
ルタ21で検出し、トルク電流検出値iTとトルク電流指令
値iT とを比較して偏差ΔiTをトルク電流調節器10Aへ
入力する。トルク電流調節器10AはPI(比例・積分)演
算を実行し、その結果トルク電圧指令値VT を出力す
る。PWMインバータでは電流調節器の飽和時に調節器の
出力を制限するとともに、飽和してからの回復特性を良
くする目的で出力リミッタが使用される。本制御系にお
いても同様の目的で、トルク電流調節器10Aの出力であ
るトルク電流指令値VT は出力制限回路11Aで制限値VL1
にリミットされる。ここで、制限値VL1の値は直流中間
電圧Vdc低下時にも、定常的に電動機が最大性能を発揮
できる値にセットさている。調節器出力が制限値VL1
リミットされると調節器は比例演算を優先し、積分項は
制限値VL1から比例項の出力値を引いた値で制限され
る。乗算器20はトルク電流指令値VT と直流中間電圧V
dcの乗算を実行し、その結果であるVTと外乱dを加算
し、モータ7へ入力する。
r 1 : primary resistance, L σ: total leakage inductance, ω 1 : primary angular frequency Considering the second and third terms on the right side of equation (5) as motor back electromotive force, that is, disturbance (indicated by symbol d in FIG. 4), The disturbance of this system includes d and the DC intermediate voltage V dc which is the input of the multiplier 20. The controller detects a torque current value I T is a control amount by the detection filter 21, the input is compared with the torque current detection value i T and the torque current command value i T * deviation .DELTA.i T to the torque current regulator 10A To do. The torque current controller 10A executes PI (proportional / integral) calculation, and outputs a torque voltage command value V T * as a result. In the PWM inverter, an output limiter is used for the purpose of limiting the output of the regulator when the current regulator is saturated and improving recovery characteristics after saturation. For the same purpose in this control system, the torque current command value V T *, which is the output of the torque current regulator 10A, is limited by the output limit circuit 11A at the limit value V L1.
Is limited to. Here, the value of the limit value V L1 is set to a value that allows the electric motor to constantly exhibit maximum performance even when the DC intermediate voltage V dc decreases. When the regulator output is limited to the limit value V L1 , the regulator gives priority to the proportional calculation, and the integral term is limited by the limit value V L1 minus the output value of the proportional term. The multiplier 20 calculates the torque current command value V T * and the DC intermediate voltage V
The multiplication of dc is executed, the resulting V T and the disturbance d are added, and the result is input to the motor 7.

ここで、ある定常状態において時刻t1で瞬停等が生じ
たためある傾きで直流中間電圧Vdcが減少し、時刻t5
再び直流中間電圧Vdcがt1以前の値にある傾きで戻る場
合の各部の動作を、第5図により説明する。
Here, decreasing the DC intermediate voltage V dc at some inclination for instantaneous stop and the like at time t 1 is generated in one steady state, again the DC intermediate voltage V dc at the time t 5 is returned with a slope in the t 1 previous value The operation of each part in the case will be described with reference to FIG.

第5図(ニ)の点線はトルク電流指令値iT を示し、
常に一定である。同図(イ)は直流中間電圧Vdcを示
し、時間t1→t3でVd1→Vd2へと減少し、時刻t3→t5でV
d2→Vd1へと復帰する。時刻t1で直流中間電圧Vdcが減少
し始めると、それに応じてVTを一定にしようと、同図
(ハ)に示すトルク電流指令値VT は増加し始めるが、
時刻t2にて制限値VL1に到達し、それ以降はVL1にリミッ
トされる。その結果、同図(ロ)のVTはt2から減少し始
める。このため、同図(ニ)の制御量ITもt2より減少し
始める。同図(ホ)は調節器内積分項Ciを示し、t1
り、トルク電流指令値VT と同様に増加し始めるが制限
値VL1に到達すると、積分項Ciは制限値VL1から比例項差
し引いた値に制限されるため、図示のように減少し始め
る。
The dotted line in Fig. 5 (d) shows the torque current command value i T * ,
It is always constant. The figure (a) shows the DC intermediate voltage V dc , which decreases from V d1 → V d2 at time t 1 → t 3 and V at time t 3 → t 5 .
Return from d2 to V d1 . When the DC intermediate voltage V dc begins to decrease at time t 1 , the torque current command value V T * shown in (c) of the figure begins to increase in order to keep V T constant accordingly.
Reaches the limit V L1 at time t 2, the subsequent is a limit to the V L1. As a result, V T in the figure (b) begins to decrease from t 2 . Therefore, the controlled variable I T in FIG. 9D also starts to decrease from t 2 . The same figure (e) shows the integral term C i in the controller, which starts to increase from t 1 similarly to the torque current command value V T * , but when the limit value V L1 is reached, the integral term C i is changed to the limit value V i. Since it is limited to the value obtained by subtracting the proportional term from L1, it begins to decrease as shown.

次に、時刻t3より直流中間電圧VdcがVd1へ復帰し始め
ると、制御量ITは増加し始め、同様に積分項Ciも増加し
始める。ここで定常状態での積分項Ciの値は、第4図よ
り次の(6)式の如く表すことができる。
Next, when the DC intermediate voltage V dc starts to return to V d1 from time t 3 , the controlled variable I T begins to increase, and the integral term C i also starts to increase. Here, the value of the integral term C i in the steady state can be expressed by the following equation (6) from FIG.

(ただし、iT =ITとする。) これに対し、調節器飽和時のCiの値は(7)式とな
る。
(However, i T * = I T. ) On the other hand, the value of C i when the controller is saturated is given by the equation (7).

Ci=VL−Kp(iT −iT) ……(7) (Kp:比例定数) ここで論じている電流制御系では、一般的に調節器の
比例定数Kpは小さな値となり、一方電流調節器の制御値
VLは定常的に直流中間電圧Vdcが低下してもモータが最
大性能を発揮できるよう、Vdcが低下した場合に合わせ
てセットしているため大きな値となっている。このため
iT =ITとなる時刻t4では(7)式で決定されるCiの値
C1と、定常状態でのCiの値C0との関係はC1>C0となる可
能性がある。その結果、積分項に蓄積された余分なC1
C0分を調節器がはき出さなければならないので、制御量
ITにオーバーシュートが発生することになる。
C i = V L −K p (i T * −i T ) (7) (K p : proportional constant) In the current control system discussed here, the proportional constant K p of the regulator is generally small. Value, while the control value of the current regulator
V L is set to a large value so that the motor can exhibit its maximum performance even when the DC intermediate voltage V dc constantly decreases, because it is set according to when V dc decreases. For this reason
The value of C i determined by equation (7) at time t 4 when i T * = I T
And C 1, the relationship between the value C 0 of C i in the steady state is likely to be a C 1> C 0. As a result, the extra C 1 − accumulated in the integral term
Since the controller has to output C 0 minutes, the controlled variable
Overshoot will occur at I T.

したがって、本発明は瞬停等の電源変動時にも電流に
オーバーシュートが生じないようにすることを目的とし
ている。
Therefore, it is an object of the present invention to prevent current overshooting even when the power supply fluctuates due to a momentary power failure or the like.

〔課題を解決するための手段〕[Means for solving the problem]

インバータを介して駆動され得る誘導電動機の一次電
流を二次磁束に平行な励磁電流成分とこれと直交するト
ルク電流成分とに分離してそれぞれ独立に制御する誘導
電動機の制御装置において、トルク電流指令値とトルク
電流検出値との偏差を入力してトルク電圧指令値を出力
するトルク電流調節手段と、励磁電流指令値と励磁電流
検出値との偏差を入力して励磁電圧指令値を出力する励
磁電流調節手段と、前記トルク電流調節手段の出力を少
なくとも第1,第2の制御値に制限する出力制御手段と、
前記インバータの直流中間電圧値を予め設定された設定
値と比較する比較手段と、該比較手段からの比較結果に
応じて前記制限値を選択する選択手段とを設ける。
In an induction motor control device that separates a primary current of an induction motor that can be driven through an inverter into an excitation current component parallel to a secondary magnetic flux and a torque current component orthogonal to the excitation current component, and controls them independently, a torque current command Torque current adjusting means for inputting the deviation between the detected value and the detected torque current value, and torque current adjusting means for inputting the deviation between the exciting current command value and the detected exciting current value, and for outputting the exciting voltage command value Current adjusting means, output control means for limiting the output of the torque current adjusting means to at least first and second control values,
Comparing means for comparing the DC intermediate voltage value of the inverter with a preset setting value, and selecting means for selecting the limit value according to the comparison result from the comparing means are provided.

〔作用〕[Action]

電流制御系の出力制限値を、直流中間電圧Vdcが予め
定めた値以上のときは小さくし、逆に予め定めた値以下
のときは大きくすることにより、瞬停等の電源変動時に
も電流にオーバーシュートが生じないようにし、モータ
の安定な運転を図る。
The output limit value of the current control system is reduced when the DC intermediate voltage V dc is a predetermined value or more, and conversely is increased when the DC intermediate voltage V dc is a predetermined value or less, so that the current does not change even during power fluctuations such as momentary power failure. Prevents overshoot from occurring and ensures stable motor operation.

〔実施例〕〔Example〕

第1図に本発明の実施例を示す。同図からも明らかな
ように、この実施例は第3図の従来例に対し、設定器1
4,比較器15および電流調節器の出力制限値を切り換える
(選択する)ためのスイッチ16を追加した点が特徴であ
る。この切り換えスイッチ16は、設定器14により予め定
めた値Vd1と直流中間電圧Vdcとを比較器15にて比較した
結果により、Vdc<Vd1の場合にはVL1側に、またVdc≧V
d1の場合にはVL2側に切り換える。
FIG. 1 shows an embodiment of the present invention. As is clear from the figure, this embodiment is different from the conventional example of FIG.
4, The feature is that a switch 16 for switching (selecting) the output limit value of the comparator 15 and the current regulator is added. This change-over switch 16 is set to the V L1 side when V dc <V d1 or to the V L1 side when V dc <V d1 according to the result of the comparison between the predetermined value V d1 set by the setter 14 and the DC intermediate voltage V dc. dc ≥ V
In the case of d1 is switched to the V L2 side.

第2図にその動作波形を示す。 FIG. 2 shows the operation waveform.

第2図(イ)〜(ホ)は従来例の第5図と同じく直流
中間電圧Vdc,トルク電圧指令値VT ,乗算器出力VT,制
御量であるトルク電流値IT,目標値であるトルク電流指
令値iT ,トルク電流検出値iT,電流調節器積分項Ci
を示している。また同図(ヘ)は電流調節器の制限値VL
を示す波形であり、電源低下時に制限値VLの切り換えが
行われる。ここで、制限値VLの値は切換えスイッチ16に
よりVdc<Vd1の場合には電源低下時にも電動機が最大性
能を発揮できるような値VL1にセットされ、またVdc≧V
d1の場合には第2図の時刻t4においてCiが(6)式にて
求められる値と同等になるような値VL2にそれぞれセッ
トされている。
Figure 2 (a) to (e) are also DC intermediate voltage V dc and Figure 5 prior art, the torque voltage command value V T *, the multiplier output V T, which is the control amount of torque current value I T, the target The torque current command value i T * , the detected torque current value i T , the current regulator integral term C i, etc. are shown. The figure (f) shows the limit value V L of the current regulator.
The limit value V L is switched when the power supply is lowered. Here, the value of the limit value V L is set to a value V L1 which allows the motor to exhibit its maximum performance even when the power supply is reduced, when V dc <V d1 by the changeover switch 16, and V dc ≧ V
In the case of d1 , at time t 4 in FIG. 2, C i is set to a value V L2 that is equal to the value obtained by the equation (6).

このように制限値VLの値を切り換えることにより、電
源復帰時iT =ITとなる時刻t4においてCiは定常的に必
要な値と同等となるので、オーバーシュートをほぼ零に
することができる。
By switching the value of the limit value V L in this way, at time t 4 when the power is restored i T * = I T , C i is steadily equal to the required value, so that the overshoot is almost zero. can do.

なお、制限値VLの値をここではVL1,VL2の2つにした
が、場合によっては3つまたはそれ以上にすることもで
きる。
Although the limit value V L has two values V L1 and V L2 here, it may be three or more depending on the case.

〔発明の効果〕〔The invention's effect〕

本発明によれば、直流中間電圧の大きさに応じて電流
制御系の出力制限値を切り換えることにより、定常的な
電源低下時には最大性能を発揮できるだけでなく、瞬停
等の電源変動時にも電動機を安定に駆動し得るという効
果が得られる。
According to the present invention, by switching the output limit value of the current control system according to the magnitude of the DC intermediate voltage, not only the maximum performance can be exerted when the power supply is constantly lowered, but also the electric motor can be operated when the power supply fluctuates such as an instantaneous power failure. Can be stably driven.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を示すブロック図、第2図はそ
の動作を説明するためのタイムチャート、第3図は制御
装置の従来例を示すブロック図、第4図は第3図のトル
ク電流制御系を示すブロック図、第5図は第3図の動作
を説明するためのタイムチャートである。 1……三相交流電源、2……コンバータ、3……コンデ
ンサ、4……インバータ、5,15……比較器、6……搬送
波信号発生回路、7……誘導電動機、8……変流器、9
A,9B……座標変換器、10A……トルク電流調節器,10B…
…励磁電流調節器、11A,11B……電流制限回路、12……
割算器、13……演算回路、14……設定器、16……切換え
スイッチ、20……乗算器、21……電流検出フィルタ。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a time chart for explaining the operation, FIG. 3 is a block diagram showing a conventional example of a control device, and FIG. FIG. 5 is a block diagram showing the torque current control system, and FIG. 5 is a time chart for explaining the operation of FIG. 1 ... Three-phase AC power supply, 2 ... Converter, 3 ... Capacitor, 4 ... Inverter, 5,15 ... Comparator, 6 ... Carrier signal generation circuit, 7 ... Induction motor, 8 ... Current transformation Bowl, 9
A, 9B ... Coordinate converter, 10A ... Torque current controller, 10B ...
… Excitation current regulator, 11A, 11B …… Current limit circuit, 12 ……
Divider, 13 ... Arithmetic circuit, 14 ... Setting device, 16 ... Changeover switch, 20 ... Multiplier, 21 ... Current detection filter.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】インバータを介して駆動される誘導電動機
の一次電流を二次磁束に平行な励磁電流成分とこれと直
交するトルク電流成分とに分離してそれぞれ独立に制御
する誘導電動機の制御装置において、 トルク電流指令値とトルク電流検出値との偏差を入力し
てトルク電圧指令値を出力するトルク電流調節手段と、 励磁電流指令値と励磁電流検出値との偏差を入力して励
磁電圧指令値を出力する励磁電流調節手段と、 前記トルク電流調節手段の出力を少なくとも第1,第2の
制限値に制限する出力制限手段と、 前記インバータの直流中間電圧値を予め設定された設定
値と比較する比較手段と、 該比較手段からの比較結果に応じて前記制限値を選択す
る選択手段と、 を備えてなることを特徴とする誘導電動機の制御装置。
1. A control device for an induction motor, which separates a primary current of an induction motor driven through an inverter into an exciting current component parallel to a secondary magnetic flux and a torque current component orthogonal to the exciting current component and independently controls them. , The torque current adjustment means that inputs the deviation between the torque current command value and the detected torque current value and outputs the torque voltage command value, and the deviation between the excitation current command value and the excitation current detection value An exciting current adjusting means for outputting a value, an output limiting means for limiting the output of the torque current adjusting means to at least first and second limiting values, and a preset value of a DC intermediate voltage value of the inverter. A control device for an induction motor, comprising: comparing means for comparing; and selecting means for selecting the limit value according to a comparison result from the comparing means.
JP63261390A 1988-10-19 1988-10-19 Induction motor controller Expired - Lifetime JP2547824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63261390A JP2547824B2 (en) 1988-10-19 1988-10-19 Induction motor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63261390A JP2547824B2 (en) 1988-10-19 1988-10-19 Induction motor controller

Publications (2)

Publication Number Publication Date
JPH02111282A JPH02111282A (en) 1990-04-24
JP2547824B2 true JP2547824B2 (en) 1996-10-23

Family

ID=17361194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63261390A Expired - Lifetime JP2547824B2 (en) 1988-10-19 1988-10-19 Induction motor controller

Country Status (1)

Country Link
JP (1) JP2547824B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4973136B2 (en) * 2006-11-09 2012-07-11 株式会社明電舎 Power converter
JP6334017B1 (en) 2017-01-25 2018-05-30 ファナック株式会社 Induction motor control device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315698A (en) * 1986-07-04 1988-01-22 Shinko Electric Co Ltd Operation of inverter

Also Published As

Publication number Publication date
JPH02111282A (en) 1990-04-24

Similar Documents

Publication Publication Date Title
EP0165020B1 (en) Power converter for ac load
JP3716670B2 (en) Induction motor control device
RU2193814C2 (en) Control gear and method for controlling induction motor
JPH0344508B2 (en)
WO2006017026A1 (en) Motor controller
US7218074B2 (en) Method and system for limiting the current output by a speed controller operating according to a U/F control law
JP2547824B2 (en) Induction motor controller
JPS6120236B2 (en)
JPS6038960B2 (en) Inverter voltage control device
JP3635887B2 (en) Torque boost method for inverter device
JPH07177783A (en) Method for controlling voltage-type inverter device
JP3944659B2 (en) Induction motor control device
JP3770286B2 (en) Vector control method for induction motor
JP4147970B2 (en) Induction motor control method
JP4706716B2 (en) Induction motor control method
CN106208861A (en) Control the system of induction machine
JP3323900B2 (en) Control device for linear motor electric vehicle
JP3397769B2 (en) Inverter control device
JPH02276494A (en) Controller for synchronous motor
JPH0213555B2 (en)
JP3476176B2 (en) Induction motor vector control device
JP2559197B2 (en) AC motor controller
JP2544972B2 (en) AC motor controller
JPH0731192A (en) Controller and control method for variable speed drive system
JPH0724480B2 (en) Vector control method of induction motor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 13