JP2545787B2 - Multidirectional wireless communication system - Google Patents

Multidirectional wireless communication system

Info

Publication number
JP2545787B2
JP2545787B2 JP3004486A JP3004486A JP2545787B2 JP 2545787 B2 JP2545787 B2 JP 2545787B2 JP 3004486 A JP3004486 A JP 3004486A JP 3004486 A JP3004486 A JP 3004486A JP 2545787 B2 JP2545787 B2 JP 2545787B2
Authority
JP
Japan
Prior art keywords
signal
base station
subscriber station
station
clock signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3004486A
Other languages
Japanese (ja)
Other versions
JPS62188441A (en
Inventor
樹欣 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3004486A priority Critical patent/JP2545787B2/en
Publication of JPS62188441A publication Critical patent/JPS62188441A/en
Application granted granted Critical
Publication of JP2545787B2 publication Critical patent/JP2545787B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Time-Division Multiplex Systems (AREA)
  • Small-Scale Networks (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多方向多重無線通信方式に関し、特に基地局
と複数の加入者局との間で時分割多重・時分割多元接続
(TDM-TDMA)方式で高速度のディジタル通信を行う多方
向多重無線通信方式に関する。
The present invention relates to a multi-directional multiplex wireless communication system, and more particularly to time division multiplex / time division multiple access (TDM-TDMA) between a base station and a plurality of subscriber stations. The present invention relates to a multi-directional multiplex wireless communication system for performing high-speed digital communication by the () system.

〔従来の技術〕[Conventional technology]

TDM-TDMA方式による多方向多重無線通信方式において
は、基地局から各加入者局に対する通信は、TDM方式に
よりそれぞれ特定のタイムスロットを指定して行われ
る。一方、各加入者局から基地局への通信はTDMA方式に
より行われ、各加入者局は他の加入者局が送出する電波
と重複しないよう、それぞれ基地局から送信されるタイ
ミング基準信号を基準として、自局に割当てられたタイ
ムスロットにバースト信号を送出する。
In the multi-directional multiplex wireless communication system based on the TDM-TDMA system, communication from a base station to each subscriber station is performed by designating a specific time slot by the TDM system. On the other hand, communication from each subscriber station to the base station is performed by the TDMA method, and each subscriber station uses the timing reference signal transmitted from each base station as a reference so that it does not overlap with the radio waves transmitted by other subscriber stations. As a result, the burst signal is transmitted to the time slot assigned to the own station.

これを基地局側からみると、基地局と各加入者局との
間の距離差に基づく固定的な伝ぱん時間差は初期建設時
の調整により除去したとしても、室温、電源電圧等の環
境条件による加入者局の機器特性の変動や、外気温度、
湿度の変化や降雨による伝ぱん時間の変動などにより、
各加入者局からのバースト信号の受信タイミングは僅か
ではあるが変動する。これらの変動に対する対策として
は、従来、各加入者局からのバースト信号間に若干のガ
ードタイムを設け、機器特性に基づく変動量を極力限少
させることにより対処されている。
From the perspective of the base station, the fixed propagation time difference based on the distance difference between the base station and each subscriber station is eliminated even by adjustment at the time of initial construction, but environmental conditions such as room temperature, power supply voltage, etc. Fluctuations in equipment characteristics of subscriber stations due to
Due to changes in humidity and changes in propagation time due to rainfall,
The reception timing of the burst signal from each subscriber station varies, although slightly. As a countermeasure against these fluctuations, conventionally, a small guard time is provided between burst signals from each subscriber station to minimize the fluctuation amount based on the device characteristics.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上述した変動対策により、データ伝送速度が比較的遅
い(伝送容量が小さい)従来の多方向多重無線通信方式
においては、格別の問題は発生しなかった。しかしなが
ら、大容量,高能率伝送の要求に対応するためにデータ
伝送速度を速くした場合、バースト信号の受信タイミン
グ変動がデータ信号のビット長(1ビットの時間)に対
して相対的に大きくなるため、前述した従来の対策では
限界があって符号誤りを発生するという問題があり、有
効な手段の開発が待望されている。
Due to the above-described countermeasure against fluctuations, no particular problem has occurred in the conventional multi-directional multiplex wireless communication system having a relatively low data transmission speed (small transmission capacity). However, when the data transmission speed is increased to meet the demand for large capacity and high efficiency transmission, the reception timing fluctuation of the burst signal becomes relatively large with respect to the bit length (1 bit time) of the data signal. However, there is a problem that the above-mentioned conventional measures have a limit and a code error is generated, and development of effective means is desired.

本発明の目的は、各加入者局の構成を複雑化すること
なく、基地局において上述の受信タイミングの変動を吸
収し、大容量,高能率伝送を可能とする多方向多重無線
通信方式を提供することである。
An object of the present invention is to provide a multi-directional multiplex wireless communication system capable of absorbing the above-mentioned fluctuations in the reception timing in the base station and enabling large capacity and high efficiency transmission without complicating the configuration of each subscriber station. It is to be.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の多方向多重無線通信方式は、基地局と複数の
加入者局との間でTDM-TDMA方式でディジタル通信を行う
多方向多重無線通信方式において、前記各加入者局がク
ロック成分の抽出に適した交互に1及び0となる捕捉用
信号を前記基地局からの指令またはあらかじめ定められ
た順序に従って共通タイムスロットに順次送出し、前記
基地局は、受信した前記捕捉用信号から前記各加入者局
が送信するデータ信号のクロック成分を抽出し、抽出し
たクロック成分と前記基地局で発生した多相クロック信
号とを位相比較し、多相クロック信号の中で抽出したク
ロック成分に最も近い位相を有する最適クロック信号を
前記各加入者局別に定め、それぞれの最適クロック信号
で識別再生された各加入者局タイムスロットの再生デー
タ信号を出力するように構成されている。
The multidirectional multiplex wireless communication system of the present invention is a multidirectional multiplex wireless communication system in which digital communication is performed between a base station and a plurality of subscriber stations by a TDM-TDMA system, in which each subscriber station extracts a clock component. Suitable for each of the acquisition signals, which are alternately 1 and 0, are sequentially transmitted to a common time slot according to a command from the base station or a predetermined order, and the base station receives each of the subscription signals from the received acquisition signals. The clock component of the data signal transmitted by the mobile station is extracted, the extracted clock component and the multiphase clock signal generated in the base station are compared in phase, and the phase closest to the extracted clock component in the multiphase clock signal To determine the optimum clock signal for each subscriber station, and output the reproduced data signal of each subscriber station time slot identified and reproduced by each optimum clock signal. It is configured.

〔実施例〕〔Example〕

次に実施例により図面を参照して本発明を詳細にす
る。
The invention will now be described in greater detail by way of example with reference to the drawings.

第1図は本発明の一実施例のシステム構成を示すブロ
ック図、第2図はその動作を説明するためのタイミング
チャートである。
FIG. 1 is a block diagram showing the system configuration of an embodiment of the present invention, and FIG. 2 is a timing chart for explaining its operation.

第1図の基地局1は複数の加入者局2-i(i=1〜
n)に対して第2図(A)に示すTDM信号を送信する。T
DM信号の1フレームには、タイミング基準信号R,共通制
御信号Cに続いて各加入者局に対する情報信号Diが時分
割で割当てられており、各加入者局2-iはそれぞれタイ
ミング基準信号R,共通制御信号C及び自局に割当てられ
た情報信号Diを常時受信している。一方、各加入者2-i
からは第2図(B)に示すようにバースト信号Biが各加
入者局別に設定されたタイムスロットTiに送出される。
このバースト信号Biは、基地局からのタイミング基準信
号Rを基準として各加入者局で発生し送出されるため、
各加入者局の装置の特性変動や、温度、湿度、降雨など
の気象条件による伝ぱん時間の変動により、基地局にお
けるバースト信号の受信タイミングには若干の変動が生
ずる。従って、各加入者局からのバースト信号が互いに
重複しないように、各タイムスロットTiの間にはガード
タイムToが設けられている。
The base station 1 shown in FIG. 1 is composed of a plurality of subscriber stations 2-i (i = 1 to 1).
The TDM signal shown in FIG. 2 (A) is transmitted to (n). T
In one frame of the DM signal, the timing reference signal R, the common control signal C, and subsequently the information signal Di for each subscriber station are allocated in a time division manner, and each subscriber station 2-i has its own timing reference signal R. Therefore, the common control signal C and the information signal Di assigned to the own station are always received. Meanwhile, each subscriber 2-i
Then, as shown in FIG. 2 (B), the burst signal Bi is transmitted to the time slot Ti set for each subscriber station.
This burst signal Bi is generated and transmitted at each subscriber station with reference to the timing reference signal R from the base station,
A slight variation occurs in the burst signal reception timing at the base station due to variations in the characteristics of the equipment at each subscriber station and variations in the propagation time due to weather conditions such as temperature, humidity, and rainfall. Therefore, a guard time To is provided between each time slot Ti so that the burst signals from each subscriber station do not overlap each other.

しかしながら、データ伝送速度が速くなると、この受
信タイミングの変動がデータ信号のビット長に対して無
視できない大きさとなるため、基地局1で単一のクロッ
ク信号により各加入者局から送られるデータ信号をすべ
て誤りなく識別再生することが難しくなり、符号誤りが
増加する。これを防止するためには各加入者局からのバ
ースト信号の受信タイミングに対応して、基地局で識別
再生用のクロック信号の位相を各加入者局ごとに制御す
ることが必要となる。本発明においては、この制御に必
要な情報を確実に伝送するため、各加入者局から情報伝
送用のバースト信号Biとは別にクロック成分の抽出に適
した捕捉用信号Aiを、共通タイムスロットTcにあらかじ
め定められた順序で各フレームに1局ずつ順番に送出す
るよう構成されている。第2図(B)には加入者局2-1
が捕捉用信号A1を送出する状態が実線で示されている
が、次のフレームでは加入者局2-2が破線で示した捕捉
用信号A2を共通タイムスロットTcに送出する。以下、同
様にして加入者局2-nが捕捉用信号Anを送出すると、そ
の次のフレームで再び加入者局2-1に戻り、上述の動作
が繰り返される。
However, when the data transmission speed becomes faster, the variation of the reception timing becomes a size that cannot be ignored with respect to the bit length of the data signal, so that the base station 1 transmits the data signal sent from each subscriber station by a single clock signal. It becomes difficult to perform identification and reproduction without any error, and code errors increase. In order to prevent this, it is necessary for the base station to control the phase of the clock signal for identification and reproduction for each subscriber station in accordance with the reception timing of the burst signal from each subscriber station. In the present invention, in order to reliably transmit the information necessary for this control, in addition to the burst signal Bi for information transmission from each subscriber station, the acquisition signal Ai suitable for extracting the clock component is provided in the common time slot Tc. It is configured to sequentially send one station to each frame in a predetermined order. The subscriber station 2-1 is shown in FIG. 2 (B).
The solid line indicates the state of transmitting the acquisition signal A 1 by the subscriber station 2-2, but in the next frame, the subscriber station 2-2 transmits the acquisition signal A 2 indicated by the broken line to the common time slot Tc. Thereafter, when the subscriber station 2-n similarly transmits the acquisition signal An, the subscriber station 2-n returns to the subscriber station 2-1 again in the next frame, and the above operation is repeated.

基地局はこの捕捉用信号Aiを受信して各加入者局から
のバースト信号Biの受信タイミング情報(クロック成
分)を抽出し、これを用いて自局に設けられた多相クロ
ック信号発生器の出力信号のうち、最も近い位相関係に
ある信号を最適クロック信号とし、この最適クロック信
号で識別再生された信号を選択出力することにより、符
号誤りのない再生データ信号を得ることができる。捕捉
用信号はクロック成分の抽出に適した信号であるため短
時間で確実に受信タイミング情報を抽出できる上、従来
から初期建設時の調整用には使用されているため、加入
者局装置にはほとんど変更を加えることなく容易に送出
することができる。前述した受信タイミングの変動は、
各加入者局から送出される捕捉用信号の繰返し周期(n
フレームに1回)に対して緩慢であり、捕捉用信号を用
いても充分変動に追従することができる。
The base station receives the acquisition signal Ai, extracts the reception timing information (clock component) of the burst signal Bi from each subscriber station, and uses this to extract the multiphase clock signal generator provided in the own station. Among the output signals, the signal having the closest phase relationship is set as the optimum clock signal, and the signal discriminated and reproduced by this optimum clock signal is selectively output, whereby a reproduced data signal having no code error can be obtained. Since the capture signal is a signal suitable for extracting the clock component, it is possible to reliably extract the reception timing information in a short time, and since it has been conventionally used for adjustment at the time of initial construction, It can be easily delivered with almost no changes. The fluctuation of the reception timing described above
Repetition period (n of the acquisition signal transmitted from each subscriber station
It is slow (once a frame) and can sufficiently follow fluctuations even if a capture signal is used.

第3図は基地局1の受信装置の識別再生部の一実施例
の構成を示すブロック図である。受信装置の復調器3に
より復調された各タイムスロットTiのベースバンド信号
は、多相クロック信号発生器5で発生されたm個の位相
の異なるクロック信号φ1〜φmを用いてm個の識別器4
-1〜4-mにより識別され、各識別器の出力は更に読出し
位相一致回路6において共通な一つのクロック信号で読
み直されて位相の一致した信号に変換された後、一たん
データメモリ7に記憶される。一方、復調器3の出力は
分岐してタイミング抽出回路8に加えられ、ここで共通
タイムスロットTcの捕捉用信号Aiからクロック成分が抽
出され、加入者局2-iの受信タイミングを表すタイミン
グ信号101が抽出される。このタイミング信号101は多相
クロック信号発生器5からの基準クロック信号102と位
相検波器9で位相比較され、その出力はサンプルホール
ド回路10に次の捕捉用信号Aiが受信されるまで保持され
る。この出力は位相判定回路11に加えられ、ここで多相
クロック信号φ1〜φmのうち最適の位相関係にある最
適クロック信号が判定される。この判定結果によってデ
ータ選択回路12を制御する制御信号103が送出され、デ
ータメモリ7から最適クロック信号で識別された符号誤
りのない再生データ信号が選択出力される。サンプルホ
ールド回路10の制御信号104はサンプリング期間を捕捉
用信号Aiの受信期間と合致させるための制御信号であ
る。識別再生用のクロック信号の位相は連続的に調整す
る必要はなく、多相クロック信号発生器5の相数を適当
に設定しておけば符号誤りの発生防止の目的を達成で
き、基地局受信装置の構成を複雑化しないために有効で
ある。
FIG. 3 is a block diagram showing the configuration of an embodiment of the identification reproducing section of the receiving device of the base station 1. The baseband signal of each time slot Ti demodulated by the demodulator 3 of the receiving apparatus is identified by m clock signals φ 1 to φm generated by the polyphase clock signal generator 5 using m different phases. Bowl 4
-1 to 4-m, the outputs of the respective discriminators are read again by a common clock signal in the read phase matching circuit 6 and converted into a signal having a matched phase, and then the data memory 7 is used. Memorized in. On the other hand, the output of the demodulator 3 is branched and applied to the timing extraction circuit 8, where the clock component is extracted from the acquisition signal Ai of the common time slot Tc, and the timing signal representing the reception timing of the subscriber station 2-i. 101 is extracted. The timing signal 101 is phase-compared with the reference clock signal 102 from the multi-phase clock signal generator 5 by the phase detector 9, and its output is held by the sample hold circuit 10 until the next acquisition signal Ai is received. . This output is applied to the phase determination circuit 11, where the optimum clock signal having the optimum phase relationship among the multiphase clock signals φ 1 to φm is determined. A control signal 103 for controlling the data selection circuit 12 is sent out according to the result of this determination, and a reproduced data signal having no code error identified by the optimum clock signal is selectively output from the data memory 7. The control signal 104 of the sample hold circuit 10 is a control signal for matching the sampling period with the reception period of the capture signal Ai. It is not necessary to continuously adjust the phase of the clock signal for identification and reproduction. If the number of phases of the multi-phase clock signal generator 5 is set appropriately, the purpose of preventing the occurrence of code error can be achieved, and the base station reception This is effective because it does not complicate the configuration of the device.

第3図に示した実施例においては、多相クロック信号
φ1〜φmで動作するm個の識別器4-1〜4-mを設け、識
別再生したm組の再生データ信号の中からデータ選択回
路12で最適クロック信号で処理された再生データ信号を
選択出力するように構成されているが、識別器は1個と
してm個の多相クロック信号の中から選択器で最適クロ
ック信号を選択し、これを上記識別器に加えるように構
成しても同様の効果を得ることができる。又、位相検波
器9は1個であって多相クロック信号の一つと位相比較
し、その出力から最適クロック信号を判定するように構
成されているが、複数個の位相検波器を用いる等の方法
も考えられる。更に、上述の説明では各加入者局はあら
かじめ定められた順序で捕捉用信号を送出するものとし
たが、基地局からの指令によって送出するようにしても
よい。
In the embodiment shown in FIG. 3, m discriminators 4-1 to 4-m operating with multiphase clock signals φ 1 to φm are provided, and data is reproduced from among m sets of reproduced data signals which have been discriminated and reproduced. Although the selector circuit 12 is configured to selectively output the reproduction data signal processed by the optimum clock signal, the discriminator selects the optimum clock signal from the m multiphase clock signals as one discriminator. However, the same effect can be obtained even if it is configured to be added to the discriminator. Also, the phase detector 9 is configured to compare the phase with one of the multi-phase clock signals and determine the optimum clock signal from its output. However, a plurality of phase detectors may be used. A method is also possible. Further, in the above description, each subscriber station is assumed to transmit the acquisition signal in a predetermined order, but it may be transmitted according to a command from the base station.

〔発明の効果〕〔The invention's effect〕

以上詳細に説明したように、本発明の多方向多重無線
通信方式によれば、加入者局装置にほとんど変更を加え
ずに捕捉用信号を送出することができ、基地局側では捕
捉用信号からタイミング情報を簡単な回路で確実に抽出
し、多相クロック信号の中から最適クロック信号を選択
することにより受信タイミングの変動を吸収できるた
め、高速度,高能率の多方向多重無線通信方式を容易に
構成できる効果がある。
As described in detail above, according to the multi-directional multiplex wireless communication system of the present invention, the acquisition signal can be transmitted with almost no change to the subscriber station device, and the acquisition signal is transmitted from the acquisition signal on the base station side. The timing information can be reliably extracted with a simple circuit, and fluctuations in the reception timing can be absorbed by selecting the optimum clock signal from the multi-phase clock signals. There is an effect that can be configured.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例のシステム構成を示すブロッ
ク図、第2図(A)および(B)は第1図の動作を説明
するためのタイミングチャート、第3図は基地局受信装
置の識別再生部の一実施例を示すブロック図である。 1……基地局、2-i(i=1〜n)……加入者局、3…
…復調器、4-j(j=1〜m)……識別器、5……多相
クロック信号発生器、6……読出し位相一致回路、7…
…データメモリ、8……タイミング抽出回路、9……位
相検波器、10……サンプルホールド回路、11……位相判
定回路、12……データ選択回路。
FIG. 1 is a block diagram showing the system configuration of an embodiment of the present invention, FIGS. 2A and 2B are timing charts for explaining the operation of FIG. 1, and FIG. 3 is a base station receiver. FIG. 3 is a block diagram showing an example of the identification reproduction unit of FIG. 1 ... Base station, 2-i (i = 1 to n) ... Subscriber station, 3 ...
... demodulator, 4-j (j = 1 to m) ... discriminator, 5 ... multi-phase clock signal generator, 6 ... read phase matching circuit, 7 ...
... Data memory, 8 ... Timing extraction circuit, 9 ... Phase detector, 10 ... Sample hold circuit, 11 ... Phase determination circuit, 12 ... Data selection circuit.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基地局と複数の加入者局との間で時分割多
重・時分割多元接続方式でディジタル通信を行う多方向
多重無線通信方式において、前記各加入者局がクロック
成分の抽出に適した交互に1及び0となる捕捉用信号を
前記基地局からの指令またはあらかじめ定められた順序
に従って共通タイムスロットに順次送出し、前記基地局
は、受信した前記捕捉用信号から前記各加入者局が送信
するデータ信号のクロック成分を抽出し、抽出したクロ
ック成分と前記基地局で発生した多相クロック信号とを
位相比較し、多相クロック信号の中で抽出したクロック
成分に最も近い位相を有する最適クロック信号を前記各
加入者局別に定め、それぞれの最適クロック信号で識別
再生された各加入者局タイムスロットの再生データ信号
を出力することを特徴とする多方向多重無線通信方式。
1. A multidirectional multiplex wireless communication system for performing digital communication between a base station and a plurality of subscriber stations by a time division multiplex / time division multiple access system, wherein each subscriber station extracts a clock component. Appropriate alternating 1 and 0 acquisition signals are sequentially transmitted to a common time slot according to a command from the base station or a predetermined order, and the base station receives each of the subscribers from the received acquisition signals. The clock component of the data signal transmitted by the station is extracted, the extracted clock component and the multiphase clock signal generated in the base station are phase-compared, and the phase closest to the extracted clock component in the multiphase clock signal is determined. Determining the optimum clock signal for each subscriber station and outputting the reproduction data signal of each subscriber station time slot identified and reproduced by each optimum clock signal. Multidirectional multiplex radio communication system according to symptoms.
JP3004486A 1986-02-13 1986-02-13 Multidirectional wireless communication system Expired - Lifetime JP2545787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3004486A JP2545787B2 (en) 1986-02-13 1986-02-13 Multidirectional wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3004486A JP2545787B2 (en) 1986-02-13 1986-02-13 Multidirectional wireless communication system

Publications (2)

Publication Number Publication Date
JPS62188441A JPS62188441A (en) 1987-08-18
JP2545787B2 true JP2545787B2 (en) 1996-10-23

Family

ID=12292823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3004486A Expired - Lifetime JP2545787B2 (en) 1986-02-13 1986-02-13 Multidirectional wireless communication system

Country Status (1)

Country Link
JP (1) JP2545787B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2547005B2 (en) * 1987-02-18 1996-10-23 松下通信工業株式会社 Error correction method
JPH01174194A (en) * 1987-12-28 1989-07-10 Toshiba Corp Line concentration distribution system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5954343A (en) * 1982-09-22 1984-03-29 Fujitsu Ltd Time division multi-direction communication system

Also Published As

Publication number Publication date
JPS62188441A (en) 1987-08-18

Similar Documents

Publication Publication Date Title
US5537685A (en) Method of establishing inter-base-station synchronization and mobile radio communication system using the method
AU698991B2 (en) Synchronous multipoint-to-point cdma communication system
EP0229684B1 (en) Data framing system for time division multiplexing transmission
JPH0580181B2 (en)
US4262356A (en) Method and system for synchronizing a TDMA communication network comprising a satellite equipped with several directional beam antennas transmitting signals at various frequencies
GB2286949A (en) A unique word recognition system
JPH0123970B2 (en)
EP0105902B1 (en) Synchronization apparatus in transmitting information on a simplex bus
US3809820A (en) Multi-channel asynchronous to synchronous converter
JPH07231483A (en) Radio data communication system
US5412694A (en) Data demodulator
JP2545787B2 (en) Multidirectional wireless communication system
EP0163994B1 (en) Receive data processing device for tdma satellite communications network
JPH0411142B2 (en)
JP3444532B2 (en) Time division multiplex wireless communication apparatus and method
US5805644A (en) Transmission timing measuring apparatus
US20230247634A1 (en) Communication apparatus and communication method
JP2731325B2 (en) Diversity combining circuit for receiver for spread spectrum communication.
JP2978084B2 (en) Wireless communication device and base station
JPS5934738A (en) Automatic delay time controlling system of multi-direction multiplex communication system
JPH0142176B2 (en)
KR100211582B1 (en) Method and apparatus for detecting received time of paging data synchronized with gps timing in paging systems
JPS596642A (en) Synchronizing method of mobile communication satellite
JP2002237793A (en) Recovery of initial packet transmitted by transmission in packet transmission system with return channel
JP3408229B2 (en) Slot synchronization acquisition method and apparatus