JP2545079B2 - Equipment for vapor grown carbon fiber - Google Patents

Equipment for vapor grown carbon fiber

Info

Publication number
JP2545079B2
JP2545079B2 JP62086684A JP8668487A JP2545079B2 JP 2545079 B2 JP2545079 B2 JP 2545079B2 JP 62086684 A JP62086684 A JP 62086684A JP 8668487 A JP8668487 A JP 8668487A JP 2545079 B2 JP2545079 B2 JP 2545079B2
Authority
JP
Japan
Prior art keywords
scraping
carbon fiber
furnace
tubular reactor
vapor grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62086684A
Other languages
Japanese (ja)
Other versions
JPS63256720A (en
Inventor
信吾 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP62086684A priority Critical patent/JP2545079B2/en
Publication of JPS63256720A publication Critical patent/JPS63256720A/en
Application granted granted Critical
Publication of JP2545079B2 publication Critical patent/JP2545079B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭素繊維を効率よくつくることが出来る気相
法炭素繊維の製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to an apparatus for producing a vapor grown carbon fiber capable of efficiently producing carbon fiber.

〔従来の技術〕[Conventional technology]

気相法炭素繊維で繊維を反応空間で生成させたもの
は、直径が0.2〜0.6μm、長さが数百μmの繊維で、強
度、電気伝導性、熱伝導性などが、通常の炭素繊維と同
じであり、大量生産によって安価につくることが出来る
長所を有する。
The vapor-grown carbon fiber produced in the reaction space is a fiber having a diameter of 0.2 to 0.6 μm and a length of several hundreds of μm, and is a normal carbon fiber having strength, electrical conductivity, thermal conductivity and the like. It has the advantage that it can be manufactured inexpensively by mass production.

従来、気相法炭素繊維は、第3図に示すように、炭化
水素1にキャリアガス2を通したガス、およびシードと
なる遷移金属粉末、或は熱分解してシードを生成する遷
移金属有機化合物3にキャリアガス2を通して混合した
ガスを、ヒータ4aで加熱された管状反応炉(以下炉とい
る)4内に導入して熱分解させる方法によって製造され
ている。
Conventionally, as shown in FIG. 3, a vapor grown carbon fiber is a gas obtained by passing a carrier gas 2 through a hydrocarbon 1, a transition metal powder serving as a seed, or a transition metal organic material that is thermally decomposed to produce a seed. It is manufactured by a method in which a gas obtained by mixing a compound 3 with a carrier gas 2 is introduced into a tubular reaction furnace (hereinafter referred to as a furnace) 4 heated by a heater 4a and thermally decomposed.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところで、従来の製造法は、炉内で分解、生成し、ガ
スと共に炉を通過した気相法炭素繊維(以下繊維とい
う)5は外部に通ずるフィルター6aが設けられた捕集器
6導かれ、フィルター6aを通してガスを放出し、繊維5
を捕集している。しかし、生成した繊維が炉の内壁に付
着し炉を閉塞する。そのため、運転を停止し、炉壁に付
着した炭素類を除去しなければならず、生産性が悪いも
のとなっていた。
By the way, in the conventional manufacturing method, the vapor grown carbon fiber (hereinafter referred to as fiber) 5 which is decomposed and generated in the furnace and passed through the furnace together with the gas is guided to the collector 6 provided with the filter 6a which communicates to the outside, The gas is released through the filter 6a and the fiber 5
Have been collected. However, the generated fibers adhere to the inner wall of the furnace and block the furnace. Therefore, the operation had to be stopped and the carbons adhering to the furnace wall had to be removed, resulting in poor productivity.

上記問題点を解決するため、本発明者らは先に、炉内
に、生成した繊維5を炉の出口方向に強制的に送るが、
ガスの通過を妨げない2点鎖線で示すリング状の掻き出
し棒7を内蔵させ、これを適時上下させて、繊維5のブ
リッジングを解放し、炉の閉塞を防止して連続運転を可
能とする装置を提案した(実願昭60−186434)。この方
法によって、運転を停止せずに連続して繊維をつくる間
隔を大幅に延長することができた。
In order to solve the above problems, the present inventors first forcedly send the produced fiber 5 in the furnace in the outlet direction of the furnace.
A ring-shaped scraping rod 7 shown by a chain double-dashed line that does not hinder the passage of gas is built in, and this is vertically moved up and down to release the bridging of the fiber 5 to prevent the furnace from being blocked and enable continuous operation. We proposed a device (Japanese Utility Model Sho 60-186434). By this method, it was possible to greatly extend the interval between continuous fiber production without stopping the operation.

しかし、繊維の生成過程において、原料ガス中に含ま
れたシードがそのまま、或は熱分解によって生成したシ
ードが、炉壁、或は炉壁に生成した繊維に付着し、これ
より繊維が生長する。さらに、CVD法では炭化水素の一
部が熱分解炭素(以下PCという)となって、炉壁や、上
記炉壁に生長した繊維に付着する。
However, in the fiber production process, the seeds contained in the raw material gas remain as they are, or the seeds produced by thermal decomposition adhere to the furnace wall or the fibers formed on the furnace wall, and the fibers grow from this. . Further, in the CVD method, a part of hydrocarbons becomes pyrolytic carbon (hereinafter referred to as PC) and adheres to the furnace wall and fibers grown on the furnace wall.

上記PCが付着した層は繊維が混在しているためポーラ
スであるが比較的硬く、掻き出し棒7では除去しにく
い。そのため、第4図に示すように炉4の熱分解の激し
い所を中心として、PC析出層8が形成し、その厚さは次
第に厚くなり掻き出し機能が損われているばかりでな
く、原料ガスの通過が妨げられ、また、炉内に外熱が伝
わりにく、繊維の生成効率が低下する また上記PC析出層8が除去されたとしても、塊状とな
って炉壁より剥離して捕集器6に送られるので製品の品
質が低下する。
The layer to which the PC adheres is porous because fibers are mixed, but it is relatively hard and difficult to remove with the scraping rod 7. Therefore, as shown in FIG. 4, not only the PC deposition layer 8 is formed around the place where the thermal decomposition of the furnace 4 is severe and the thickness gradually increases and the scraping function is impaired. The passage is hindered, and the external heat is difficult to be transferred to the furnace, so that the fiber production efficiency is lowered. Even if the PC deposition layer 8 is removed, it becomes a lump and is separated from the furnace wall and collected. 6, the quality of the product is degraded.

そのため、掻き出し装置を内蔵した装置を用いる方法
においても、間隔は格段に長くなるものの、ほぼ定期的
に運転を停止し、炉を開いて、炉壁に付着成長したPC層
を除去しなければならなかった。
Therefore, even in the method using a device with a built-in scraping device, although the interval is remarkably long, it is necessary to stop the operation almost regularly, open the furnace, and remove the PC layer adhered and grown on the furnace wall. There wasn't.

本発明者らは、さらに効率の良い繊維の製造装置を得
べく鋭意研究した結果、析出したPC層の薄いうちにこれ
を除去して、捕集器に送れば、製品の品質の低下が抑制
されることを知見した。
As a result of earnest studies to obtain a more efficient fiber production apparatus, the present inventors removed the deposited PC layer while it was thin and sent it to a collector to suppress the deterioration of product quality. It was discovered that it will be done.

本発明者は上記の知見に基づいてなされたもので、効
率よく連続的に繊維が製造でき、しかも製品の品質低下
が殆どない、繊維のE製造装置を提供することを目的と
する。
The present inventor has been made on the basis of the above findings, and an object of the present invention is to provide an E manufacturing apparatus for fibers, which can efficiently and continuously manufacture fibers, and in which product quality hardly deteriorates.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の目的を達成すべくなされたものでその
要旨は、炭化水素等を含む原料ガスを管状反応炉の一方
から流し、加熱帯で熱分解して炭素繊維を生成させ、他
方から炭素繊維を取出すようにした気相法炭素繊維の製
造装置であって、該製造装置は管状反応炉を開くことな
く、その温度を保持した状態で、管状反応炉の内壁に析
出した熱分解炭素を掻取り除去する掻取機を具備し、該
掻取機は管状反応炉内に挿入、引出し自在とされるとと
もに、回転駆動される伸縮回転軸と、この伸縮回転軸の
先端周部にその基部が取り付けられ、伸縮回転軸の回転
に伴って、その先端部が遠心力により放射状に開き、管
状反応炉内壁に析出した熱分解炭素を掻取る掻取針とを
有することを特徴とする気相法炭素繊維の製造装置にあ
る。
The present invention has been made to achieve the above-mentioned object, and its gist is to flow a raw material gas containing a hydrocarbon or the like from one side of a tubular reactor, to thermally decompose it in a heating zone to generate carbon fiber, and to generate carbon fiber from the other side. A device for producing a vapor grown carbon fiber for taking out fibers, wherein the producing device removes pyrolytic carbon deposited on the inner wall of the tubular reactor while maintaining its temperature without opening the tubular reactor. A scraping machine for scraping and removing, the scraping machine can be freely inserted into and withdrawn from the tubular reactor, and also has an extensible rotary shaft that is driven to rotate and a base portion of the extensible rotary shaft at a tip peripheral portion thereof. A gas phase characterized by having a scraping needle for scraping the pyrolytic carbon deposited on the inner wall of the tubular reactor, the tip end of which is radially opened by centrifugal force with the rotation of the telescopic rotary shaft. There is a method of manufacturing carbon fiber.

第1図は本発明の装置の一例を示す縦断面図で、第3
図と同一部分には同一符号を付してその説明を省略す
る。
FIG. 1 is a longitudinal sectional view showing an example of the device of the present invention.
The same parts as those in the figure are designated by the same reference numerals and the description thereof will be omitted.

炉4の入口端には、炉4と同心状のポケット11が、上
記炉4内に開口して気密に取付けられ、このポケット11
の内部には掻取機12が収納されている。
At the inlet end of the furnace 4, a pocket 11 concentric with the furnace 4 is opened in the furnace 4 and is airtightly attached.
A scraping machine 12 is housed inside.

掻取機12はポケット11の上面を気密に貫通し、第2図
に示すように、炉4の中心軸線上を挿入、引出し自在に
取付けられ、数百回転/分の速度で回転駆動される伸縮
回転軸13、この伸縮回転軸13の先端周部に基部が、放射
状に開く方向に、回動自在に取付けられ、長さが炉4の
内直径の約3/5の、掻取針14によって構成されている。
The scraping machine 12 penetrates the upper surface of the pocket 11 in an airtight manner, and as shown in FIG. 2, is attached so that it can be inserted into and pulled out from the central axis of the furnace 4, and is rotationally driven at a speed of several hundred rotations / minute. The expansion / contraction rotary shaft 13, the base of which is attached to the distal end peripheral portion of the expansion / contraction rotary shaft 13 so as to be rotatable in the radial opening direction, and has a length of about 3/5 of the inner diameter of the furnace 4 and a scraping needle 14 It is composed by.

上記炉4を用いて繊維を製造するには、炉を所定の温
度に加熱するとともに、原料ガスを導入する。原料ガス
は、熱分解して、繊維が生成され、炉内にたまったもの
は、掻き出し棒7で定時かき落す。その間PC層が徐々に
成長してくるので、このPC析出層の層が薄いうちに、伸
縮回転軸13を回転駆動するとともに、伸長させる。掻取
針14は、遠心力によって開き、炉1の内周面を引掻なが
ら徐々に降下する。その過程においてPC析出層は掻取針
14の先端によって掻き取られて、細かい粉末となって、
除去され、下方に落下し、捕集器に入るがその量は少な
く、製品の品質は殆ど低下しない。
To produce fibers using the furnace 4, the furnace is heated to a predetermined temperature and a raw material gas is introduced. The raw material gas is thermally decomposed to generate fibers, and the accumulated material in the furnace is scraped off at regular intervals by the scraping rod 7. Since the PC layer gradually grows during that time, the expansion / contraction rotary shaft 13 is rotationally driven and extended while the layer of the PC precipitation layer is thin. The scraping needle 14 is opened by centrifugal force and gradually descends while scratching the inner peripheral surface of the furnace 1. In the process, the PC deposition layer is a scraping needle.
It is scraped off by the tip of 14 and becomes fine powder,
It is removed, falls down, and enters the collector, but its amount is small, and the quality of the product is hardly deteriorated.

また、上記掻取機12は、原料ガスの通過を妨害しない
ので、運転はそのまま継続しても差支えない。しかし、
必要に応じて、炭化水素、シードまたはシードの原料ガ
ス等の供給を停止してもよいが、炉4の温度を下げる必
要はなく、たとえガスの供給を一時停止しても、掻取り
終了後はただちに運転を開始することが出来るので、効
率の低下は極めて小さい。掻取後、上記掻取機12はポケ
ット11内に収納され、次の掻取まで待機する。
Further, since the scraping machine 12 does not interfere with the passage of the raw material gas, the operation may be continued as it is. But,
If necessary, the supply of hydrocarbons, seeds or seed material gas may be stopped, but it is not necessary to lower the temperature of the furnace 4, and even if the gas supply is temporarily stopped, after scraping is completed. Since the operation can be started immediately, the decrease in efficiency is extremely small. After scraping, the scraping machine 12 is housed in the pocket 11 and stands by until the next scraping.

このように、PC析出層の形成状態に応じて間隔をおい
て、掻取機12を作動し、PC析出層を掻取るので、炉壁は
常にPC析出層が殆どない状態に保持され、効率よく繊維
が生産される。
In this way, at intervals according to the formation state of the PC deposit layer, the scraper 12 is operated to scrape the PC deposit layer, so that the furnace wall is always kept in a state in which there is almost no PC deposit layer, and the efficiency is improved. Fiber is often produced.

〔実施例〕〔Example〕

次に実施例、比較例を示して本発明を説明する。 Next, the present invention will be described with reference to Examples and Comparative Examples.

実施例1 第1図の装置を用い、掻き出し棒7は随時駆動すると
ともに、30分毎に原料ガスの送入を停止するのみで炉の
温度を下げずに、掻取機12を300〜500rpmで駆動し、PC
析出層を除去した。この際、掻取機12の駆動中は掻き出
し棒7を最上部に引上げ、掻取の邪魔とならないように
した。その結果、掻取終了後、ただちに定常の運転を行
なうことができた。このようにして2日間連続運転を行
なったが、繊維の収率の低下は認められなかった。
Example 1 Using the apparatus shown in FIG. 1, the scraping bar 7 is driven at any time, and only the feeding of the raw material gas is stopped every 30 minutes without lowering the temperature of the furnace, and the scraping machine 12 is operated at 300 to 500 rpm. Driven by a PC
The deposited layer was removed. At this time, while the scraping machine 12 is being driven, the scraping bar 7 is pulled up to the top so as not to interfere with the scraping. As a result, steady operation could be performed immediately after the scraping was completed. In this way, continuous operation was carried out for 2 days, but no decrease in fiber yield was observed.

実施例2 原料ガスの供給を停止しなかった他は実施例1と同じ
にして、繊維の合成を行なったところ2日間の連続運転
においては実施例1と同様な結果が得られた。
Example 2 A fiber was synthesized in the same manner as in Example 1 except that the supply of the raw material gas was not stopped, and the same results as in Example 1 were obtained in the continuous operation for 2 days.

比較例1 掻取機12を用いなかった他は、実施例1と同じにして
繊維を合成した。その結果、運転開始後、12hrより収率
の低下が認められた。これを回復するため、酸化による
PC析出層の除去を行なったが、運転停止から、運転開始
まで約2時間を要し、運転効率が大幅に低下した。
Comparative Example 1 A fiber was synthesized in the same manner as in Example 1 except that the scraper 12 was not used. As a result, a decrease in yield was observed 12 hours after the start of operation. In order to recover this,
Although the PC deposition layer was removed, it took about 2 hours from the stop of operation to the start of operation, and the operation efficiency dropped significantly.

〔発明の効果〕 以上述べたように本発明の装置は、形成されるPC析出
層が、薄いうちに、炉を開いたり、降温させずに完全に
除去されるので、収率、生産効率が低下することがな
く、繊維が安価に生産されるので、炭素繊維の利用分野
が大幅に拡張出来る優れた装置である。
(Effect of the invention) As described above, the apparatus of the present invention, the PC deposition layer to be formed, while thin, the furnace is opened, or completely removed without lowering the temperature, yield, production efficiency Since it does not deteriorate and fibers are produced at low cost, it is an excellent device that can greatly expand the field of use of carbon fibers.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図は本発明の装置の一例を示すもの
で、第1図は一部分の縦断面図、第2図は掻取機の拡大
側面図、第3図は従来の炉の一例を示す縦断面図、第4
図はPC析出層の析出状態を示す縦断面図である。 1……炭化水素、2……キャリアガス、 3……シードまたはシード原料、 4……管状反応炉(炉)、4a……ヒータ、 5……気相法炭素繊維(繊維)、6……捕集器、 6a……フィルター、7……掻き出し棒、 8……PC析出層、11……ポケット、 12……掻取機、13……伸縮回転軸、 14……掻取針。
FIGS. 1 and 2 show an example of the apparatus of the present invention. FIG. 1 is a partial longitudinal sectional view, FIG. 2 is an enlarged side view of a scraper, and FIG. 3 is an example of a conventional furnace. 4 is a vertical sectional view showing
The figure is a vertical cross-sectional view showing the deposition state of the PC deposition layer. 1 ... Hydrocarbon, 2 ... Carrier gas, 3 ... Seed or seed raw material, 4 ... Tubular reactor (furnace), 4a ... Heater, 5 ... Vapor grown carbon fiber (fiber), 6 ... Collector, 6a ... filter, 7 ... scraping rod, 8 ... PC deposit layer, 11 ... pocket, 12 ... scraper, 13 ... extendable rotary shaft, 14 ... scraping needle.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭化水素等を含む原料ガスを管状反応炉の
一方から流し、加熱帯で熱分解して炭素繊維を生成さ
せ、他方から炭素繊維を取出すようにした気相法炭素繊
維の製造装置であって、 該製造装置は管状反応炉を開くことなく、その温度を保
持した状態で、管状反応炉の内壁に析出した熱分解炭素
を掻取り除去する掻取機を具備し、 該掻取機は管状反応炉内に挿入、引出し自在とされると
ともに、回転駆動される伸縮回転軸と、この伸縮回転軸
の先端周部にその基部が取り付けられ、伸縮回転軸の回
転に伴って、その先端部が遠心力により放射状に開き、
管状反応炉内壁に析出した熱分解炭素を掻取る掻取針と
を 有することを特徴とする気相法炭素繊維の製造装置。
1. Production of a vapor grown carbon fiber in which a raw material gas containing a hydrocarbon or the like is caused to flow from one side of a tubular reaction furnace, pyrolysis is carried out in a heating zone to produce carbon fiber, and the carbon fiber is taken out from the other side. An apparatus, wherein the manufacturing apparatus comprises a scraper for scraping and removing the pyrolytic carbon deposited on the inner wall of the tubular reactor while maintaining the temperature thereof without opening the tubular reactor. The machine can be inserted into and withdrawn from the tubular reactor, and the telescopic rotary shaft that is driven to rotate and its base portion are attached to the distal end peripheral portion of the telescopic rotary shaft. Its tip opens radially due to centrifugal force,
An apparatus for producing a vapor grown carbon fiber, comprising: a scraping needle for scraping pyrolytic carbon deposited on the inner wall of a tubular reactor.
JP62086684A 1987-04-08 1987-04-08 Equipment for vapor grown carbon fiber Expired - Lifetime JP2545079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62086684A JP2545079B2 (en) 1987-04-08 1987-04-08 Equipment for vapor grown carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62086684A JP2545079B2 (en) 1987-04-08 1987-04-08 Equipment for vapor grown carbon fiber

Publications (2)

Publication Number Publication Date
JPS63256720A JPS63256720A (en) 1988-10-24
JP2545079B2 true JP2545079B2 (en) 1996-10-16

Family

ID=13893831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62086684A Expired - Lifetime JP2545079B2 (en) 1987-04-08 1987-04-08 Equipment for vapor grown carbon fiber

Country Status (1)

Country Link
JP (1) JP2545079B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084370A (en) * 2005-09-21 2007-04-05 Showa Denko Kk Method for producing nitrogen trifluoride
KR101286751B1 (en) 2012-01-12 2013-07-16 주식회사 제이오 Method and apparatus for continuous manufacturing carbon fiber or carbon nanotube fused carbon fiber using injection means

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638117Y2 (en) * 1988-12-01 1994-10-05 三井造船株式会社 Carbon fiber manufacturing equipment
JP2014040330A (en) * 2010-12-22 2014-03-06 Asahi Glass Co Ltd Apparatus and method for producing silicon
CN110408883B (en) * 2019-08-30 2021-08-17 深圳市富吉真空技术有限公司 Film coating system for milling cutter and film coating method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146816A (en) * 1984-12-12 1986-07-04 Showa Denko Kk Production of vapor-phase carbon fiber
JPS6253418A (en) * 1985-09-03 1987-03-09 Asahi Chem Ind Co Ltd Continuous production of carbonaceous fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084370A (en) * 2005-09-21 2007-04-05 Showa Denko Kk Method for producing nitrogen trifluoride
KR101286751B1 (en) 2012-01-12 2013-07-16 주식회사 제이오 Method and apparatus for continuous manufacturing carbon fiber or carbon nanotube fused carbon fiber using injection means

Also Published As

Publication number Publication date
JPS63256720A (en) 1988-10-24

Similar Documents

Publication Publication Date Title
US4756791A (en) Chemical vapor deposition process for producing metal carbide or nitride whiskers
JPS62242B2 (en)
JP2545079B2 (en) Equipment for vapor grown carbon fiber
EP1151155B1 (en) Cdv method of and reactor for silicon carbide monocrystal growth
JP2973352B2 (en) How to make graphite fiber
CN102741162A (en) Apparatus for producing nanocarbon material and method for producing nanocarbon material
US6648977B2 (en) Method of producing near-net shape free standing articles by chemical vapor deposition
EP1524242A2 (en) Method and apparatus for manufacturing carbon nanotube, and material used therein for decomposing a precursor gas
KR101999537B1 (en) Reactor and method for production of silicon by chemical vapor deposition
JP3404543B1 (en) Method for producing carbon nanotube
DE60006072T2 (en) METHOD FOR PRODUCING A SHELL FROM THERMAL-RESISTANT COMPOSITE, IN PARTICULAR FOR A DEVICE FOR PRODUCING SINGLE-CRYSTAL SILICON
JP2015020938A (en) Apparatus for making silicon carbide crystal, method of manufacturing the apparatus, and method of making silicon carbide crystal using the apparatus
CN112481701B (en) Preparation method of high-quality silicon carbide single crystal and silicon carbide single crystal
JPS58110493A (en) Production of graphite whisker
JP3278883B2 (en) Fluidized vapor phase growth fine fiber production equipment
JP4065616B2 (en) Vapor growth carbon fiber production equipment
JP3673294B2 (en) Method and apparatus for producing vapor grown carbon fiber
US3635683A (en) Method of crystal growth by vapor deposition
CN218436025U (en) Single crystal furnace and growing device thereof
US2734058A (en) Process for the production of solid finely
JPS6278217A (en) Vapor-phase production of carbon fiber
JP2000272990A (en) Crucible comprising pyrolytic graphite and used for growing single crystal
JPH0638117Y2 (en) Carbon fiber manufacturing equipment
CN218969433U (en) Synthesizing device of high-purity silicon carbide synthetic powder for growing crystals
JP2531739B2 (en) Method for producing vapor grown carbon fiber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070725

Year of fee payment: 11