JP2544431B2 - Method and device for measuring the density of objects - Google Patents

Method and device for measuring the density of objects

Info

Publication number
JP2544431B2
JP2544431B2 JP63051502A JP5150288A JP2544431B2 JP 2544431 B2 JP2544431 B2 JP 2544431B2 JP 63051502 A JP63051502 A JP 63051502A JP 5150288 A JP5150288 A JP 5150288A JP 2544431 B2 JP2544431 B2 JP 2544431B2
Authority
JP
Japan
Prior art keywords
rays
primary
scattered
density
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63051502A
Other languages
Japanese (ja)
Other versions
JPH01227050A (en
Inventor
智 川崎
省司 蒲田
隆裕 金森
滋 出海
隆 矢葺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63051502A priority Critical patent/JP2544431B2/en
Publication of JPH01227050A publication Critical patent/JPH01227050A/en
Application granted granted Critical
Publication of JP2544431B2 publication Critical patent/JP2544431B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は放射線を利用し非破壊的に物体内の密度およ
び密度分布を測定する方法および装置に係り、特に厚さ
方向に密度差が存在する板状物体内の密度を測定するの
に好適な密度および密度分布測定方法に関する。
The present invention relates to a method and apparatus for non-destructively measuring the density and density distribution in an object using radiation, and in particular, there is a density difference in the thickness direction. The present invention relates to a density and density distribution measuring method suitable for measuring the density inside a plate-like object.

〔従来の技術〕[Conventional technology]

厚さ方向にのみ密度差が存在する板状物体内の密度分
布を測定するには、アイ・イー・イー・イー,トランザ
クシヨン オン ニユークリア サイエンス,エヌ エ
ス−30,2(1983年)第1680頁から第1684頁(IEEE,Tran
s.Nucl.Sci.,NS−30,No.2(1983)pp 1680−1684)に
おいて論じられているような散乱γ線を利用してコンク
リート建造物中の欠陥を検出する方法の適用が考えられ
る。
To measure the density distribution in a plate-like object in which there is a density difference only in the thickness direction, IEE, Transaction on New Clear Science, NS-30, 2 (1983) p. 1680 To page 1684 (IEEE, Tran
s.Nucl.Sci., NS-30, No.2 (1983) pp 1680-1684), the application of a method for detecting defects in concrete structures using scattered gamma rays is considered. To be

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、上記従来技術は単に欠陥の有無を検知
するものであり物体内の密度を定量的に評価する点につ
いての配慮がなされておらず、厚さ方向にのみ密度差の
存在する板状物体内の密度分布を定量的に測定する方法
に上記従来技術を適用した場合、データ処理が複雑にな
り、かつ、深い位置ほど密度の測定誤差が大きくなつて
しまうという問題点があつた。
However, the above-mentioned conventional technique does not consider the point of quantitatively evaluating the density in the object, which is simply detecting the presence or absence of a defect, and the inside of a plate-like object having a density difference only in the thickness direction. When the above-mentioned conventional technique is applied to the method of quantitatively measuring the density distribution of, the data processing becomes complicated, and the measurement error of the density becomes larger at a deeper position.

尚、散乱放射線を利用した密度分布測定装置として
は、特開昭56−74644号公報に記載のものがある。
Incidentally, as a density distribution measuring device using scattered radiation, there is one described in JP-A-56-74644.

本発明の目的は、上記問題点に鑑み、厚さ方向にのみ
密度差の存在する板状物体内の密度および密度分布を簡
単に、そして精度良く測定する方法および装置を提供す
ることにある。
In view of the above problems, an object of the present invention is to provide a method and a device for easily and accurately measuring the density and the density distribution in a plate-shaped object having a density difference only in the thickness direction.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的は、γ線源からコリメートして物体に放出し
た一次γ線の入射角の一次γ線が物体内で散乱した散乱
γ線をコリメートした放射線検出器で検出するときの検
出角を、一次γ線に対する物体の線吸収係数と散乱γ線
に対する物体の線吸収係数の比が該入射角の余弦と該検
出角の余弦の比に等しくするような体系で測定すること
により達成される。
The above-mentioned purpose is to detect the detection angle when the primary γ-rays incident on the object collimated from the γ-ray source and emitted to the object are detected by the collimated radiation detector, which is the primary γ-ray scattered in the object. This is accomplished by measuring in a system such that the ratio of the object's linear absorption coefficient to γ-rays and the scattered γ-ray's object linear absorption coefficient equals the ratio of the cosine of the incident angle to the cosine of the detected angle.

即ち、本発明は、γ線源からコリメートしたγ線(一
次γ線)を板状の被測定物体に照射し、この被測定物体
に対してγ線源が位置する側とは反対側に設けられた少
なくとも一つの放射線検出器により、被測定物体の測定
領域においてコンプトン散乱した散乱γ線と、被測定物
体の透過した一次γ線とを検出して物体内部の密度を測
定するようにするとともに、γ線の線吸収係数と、γ線
透過パスが板状の被測定物体の厚み方向となす角度の余
弦との比で定義されるγ線の実効線吸収係数を、一次γ
線と散乱γ線とで等しくなるように、γ線の照射方向と
散乱γ線の検出方向を規定することにより前記目的を達
成するものである。
That is, the present invention irradiates a plate-shaped object to be measured with γ-rays (primary γ-rays) collimated from a γ-ray source, and provides the object to be measured on the side opposite to the side where the γ-ray source is located. With at least one radiation detector, the scattered γ-rays that are Compton scattered in the measurement region of the measured object and the primary γ-rays that have been transmitted through the measured object are detected to measure the density inside the object. , The effective absorption coefficient of γ-rays, which is defined by the ratio of the linear absorption coefficient of γ-rays to the cosine of the angle formed by the γ-ray transmission path with the thickness direction of the plate-shaped object to be measured,
The above object is achieved by defining the irradiation direction of γ-rays and the detection direction of scattered γ-rays so that the rays and the scattered γ-rays are equal.

また、一次γ線の物体への入射方向と、散乱γ線の検
出方向をそれぞれ一定にするとともに、γ線源と放射線
検出器とを一定間隔を保持して上下動させることによつ
て板状物体の厚み方向の密度分布を測定することができ
る。
In addition, the direction of incidence of primary γ-rays on the object and the direction of detection of scattered γ-rays are made constant, and the γ-ray source and the radiation detector are moved up and down at a fixed interval to form a plate shape. It is possible to measure the density distribution in the thickness direction of the object.

板状物体の厚み方向の密度分布の測定する他の方法と
しては、板状物体の厚さ方向の測定領域の位置変化に応
じて、一次γ線の物体への入射方向と散乱γ線の検出方
向とをそれぞれ変化させることにより行う方法がある。
Another method for measuring the density distribution in the thickness direction of a plate-like object is to detect the incident direction of primary γ-rays to the object and scattered γ-rays according to the position change of the measurement area in the thickness direction of the plate-like object. There is a method of changing the direction and the direction.

また、内部に溶融状態の金属がある板状物体の温度分
布を上記密度測定方法を用いることによつて求めること
もできる。
Further, the temperature distribution of a plate-like object having a metal in a molten state inside can also be obtained by using the density measuring method.

また、密度測定装置としては、次のような構成とする
ことにより前記目的を達成することができる。
In addition, the above-mentioned object can be achieved by the density measuring device having the following configuration.

即ち、本発明の装置は、板状の被測定物体の一方の面
側に配置されたコリメータ付きγ線源と、被測定物体の
他方の面側に配置され、被測定物体の測定領域において
γ線源から照射されたγ線(一次γ線)により発生した
散乱γ線と、被測定物体を透過した一次γ線を検出する
少なくとも1つのコリメータ付き放射線検出器とを備え
た物体の密度測定装置であつて、γ線源か被測定物体へ
γ線(一次γ線)を入射させる方向と放射線検出器のう
ち測定領域において発生した散乱γ線を検出する方向と
を、γ線の線吸収係数と、γ線透過パスが板状の被測定
物体の厚さ方向となす角度との比で定義されるγ線の実
効線吸収係数を、被測定物体に照射する一次γ線とコン
プトン散乱した散乱γ線とで等しくなるように設定し、
放射線検出器で検出された散乱γ線の強度と、放射線検
出器で検出された透過一次γ線強度により求められる一
次γ線の物体内での減衰(一次γ線の物体の測定領域ま
での減衰と散乱γ線の物体の測定領域からの減衰として
把えた一次γ線の物体内での減衰)に基づき物体の密度
を計算する装置と、この計算した密度を出力する装置と
を備えるものである。
That is, the device of the present invention is a γ-ray source with a collimator arranged on one surface side of the plate-shaped object to be measured, and arranged on the other surface side of the object to be measured, and γ in the measurement area of the object to be measured. Object density measuring device provided with scattered γ-rays generated by γ-rays (primary γ-rays) emitted from a radiation source and at least one radiation detector with a collimator for detecting primary γ-rays transmitted through an object to be measured Therefore, the direction in which γ-rays (primary γ-rays) are incident on the γ-ray source or the object to be measured and the direction in which scattered γ-rays generated in the measurement area of the radiation detector are detected are defined by the absorption coefficient of γ-rays. And the effective absorption coefficient of γ-ray defined by the ratio of the angle of the γ-ray transmission path to the thickness direction of the plate-shaped object to be measured, and the scattering obtained by Compton scattering with the primary γ-ray irradiating the object to be measured. Set to be the same for γ-rays,
Attenuation of the primary γ-ray in the object, which is obtained from the intensity of scattered γ-ray detected by the radiation detector and the intensity of transmitted primary γ-ray detected by the radiation detector (attenuation of the primary γ-ray to the measurement area of the object And a device for calculating the density of the object based on the attenuation of the scattered γ-rays from the measurement region of the object (attenuation of the primary γ-rays within the object), and a device for outputting the calculated density. .

γ線の検出手段としては、散乱γ線と透過一次γ線を
同一のコリメータ付き放射線検出器で検出するととも
に、該散乱γ線と透過一次γ線を区別するための波高分
析装置を設けることが考えられる。また、散乱γ線と透
過一次γ線を別々のコリメータ付き放射線検出器で検出
するようにしても良い。
As the γ-ray detecting means, a scattered γ-ray and a transmitted primary γ-ray are detected by the same radiation detector with a collimator, and a wave height analyzer for distinguishing the scattered γ-ray and the transmitted primary γ-ray is provided. Conceivable. Further, scattered γ-rays and transmitted primary γ-rays may be detected by separate radiation detectors with a collimator.

また、γ線源のコリメータと放射線検出器のコリメー
タを次のように構成することが有効である。即ち、γ線
源のコリメータは、一次γ線がコーン状に放射するよう
にした部分と、一次γ線が該コーンの中心部を通り放射
するようにした部分を有するように構成し、放射線検出
器のコリメータはγ線源からのコーン状の一次γ線によ
り測定領域で発生した散乱γ線をコーン状にコリメート
して検出する部分と、γ線源のコリメータのコーン中心
部からの物体を透過した一次γ線を検出する部分を有す
るように構成する。この場合、散乱γ線と透過一次γ線
を同一の放射線検出器で検出するとともに、この散乱γ
線と透過一次γ線を区別する波高分析装置と、透過一次
γ線の検出値に基づきコーン状に放射され物体を透過し
た一次γ線の減衰を求める手段を設ける。
Further, it is effective to configure the collimator of the γ-ray source and the collimator of the radiation detector as follows. That is, the collimator of the γ-ray source is configured so as to have a portion in which the primary γ-rays are radiated in a cone shape and a portion in which the primary γ-rays are radiated through the central portion of the cone to detect radiation. The collimator of the instrument transmits the object from the cone center of the γ-ray source collimator and the part that detects the scattered γ-ray generated in the measurement area by the cone-shaped primary γ-ray from the γ-ray source. It is configured to have a portion for detecting the above-mentioned primary γ ray. In this case, the scattered γ-rays and the transmitted primary γ-rays are detected by the same radiation detector, and the scattered γ-rays are detected.
A wave height analyzer for discriminating between the transmitted primary γ-ray and the primary ray, and means for determining the attenuation of the primary γ-ray radiated in a cone shape and transmitted through the object based on the detected value of the transmitted primary γ-ray are provided.

また、上記のγ線源のコリメータは、一次γ線がコー
ン状の中心部を通るようにした部分へ遮へい体を設ける
ようにしても良い。
Further, the collimator of the above-mentioned γ-ray source may be provided with a shield at the portion where the primary γ-rays pass through the central portion of the cone shape.

また、上述の散乱γ線と透過一次γ線を同一の放射線
検出器で検出するのに代えて、コーン状にコリメートさ
れた散乱γ線を検出する円環状の放射線検出器と、該円
環状の放射線検出器の内側に遮へい体を介して設けられ
た透過一次γ線を検出する円柱状の放射線検出器とによ
り別々に検出するようにしても良い。
Further, instead of detecting the scattered γ-rays and the transmitted primary γ-rays with the same radiation detector, a circular radiation detector for detecting the scattered γ-rays collimated in a cone shape, and the circular radiation detector You may make it detect separately with the cylindrical radiation detector which detects the transmitted primary γ ray provided inside the radiation detector through the shield.

また、密度分布を求めるために、γ線源と放射線検出
器とを一定間隔で保持し、該γ線源と放射線検出器とを
前記物体の厚さ方向に移動させる装置を設けることが有
効である。
In order to obtain the density distribution, it is effective to provide a device that holds the γ-ray source and the radiation detector at a constant interval and moves the γ-ray source and the radiation detector in the thickness direction of the object. is there.

〔作用〕[Action]

本発明の原理を第1図に従つて以下に説明する。 The principle of the present invention will be described below with reference to FIG.

試料(物体)10は厚さ方向(x)にのみ密度差のある
板状とする。γ線源20から放出されたエネルギーE0の一
次γ線22は入射角23(θ)で試料10に入射する。放射
線検出器30aは一次γ線22が深さxの測定領域11でコン
プトン散乱角34()で散乱したエネルギーE1の散乱γ
線32を検出角33(θ)で検出する。このとき、放射線
検出器30aで検出するエネルギーE1の散乱γ線32の強度I
1(E1,x)は次式で表わせる。
The sample (object) 10 is a plate having a density difference only in the thickness direction (x). The primary γ-rays 22 of energy E 0 emitted from the γ-ray source 20 enter the sample 10 at an incident angle 23 (θ 0 ). The radiation detector 30a shows that the primary γ ray 22 is scattered γ of energy E 1 scattered at the Compton scattering angle 34 () in the measurement region 11 at the depth x.
The line 32 is detected at the detection angle 33 (θ 1 ). At this time, the intensity I of the scattered γ-ray 32 of the energy E 1 detected by the radiation detector 30a
1 (E 1 , x) can be expressed by the following equation.

ここに、 I0(E0,x):測定領域11におけるエネルギーE0の一次γ
線強度 μ(E,x):エネルギーEのγ線に対する深さxにおけ
る試料10の線吸収係数 f(E0,,x):エネルギーE0の一次γ線が測定領域11
内の1個の電子に衝突し散乱角でコンプトン散乱し、
放射線検出器30aを見込む立体角内に放出される確率 ρ(x):測定領域11内の電子密度 L:試料10の厚さ ここで、試料10の全領域にわたつて、 が成立するとき(尚、 を実効線吸収係数と定義する)、(1)式は次式のよう
になる。
Here, I 0 (E 0, x ): Primary energy E 0 in the measurement region 11 gamma
Line intensity μ (E, x): Line absorption coefficient of the sample 10 at the depth x with respect to the γ-ray of the energy E f (E 0 ,, x): The primary γ-ray of the energy E 0 is the measurement region 11
Collide with one electron inside and undergo Compton scattering at the scattering angle,
Probability of being emitted within a solid angle that looks into the radiation detector 30a ρ e (x): electron density in the measurement region 11 L: thickness of the sample 10 Here, over the entire region of the sample 10, When is established (note that Is defined as the effective line absorption coefficient), and the equation (1) is as follows.

(3)式において、 は、一次γ線の試料10内での減衰を示したものであり、
第1図に示す別の放射線検出器30bでエネルギーE0の一
次γ線22を検出することにより求めることができる。し
たがつて、(3)式は次のように整理できる。
In equation (3), Is the attenuation of the primary γ-ray in the sample 10,
It can be obtained by detecting the primary γ-rays 22 of energy E 0 with another radiation detector 30b shown in FIG. Therefore, equation (3) can be summarized as follows.

ここに、 (4)式において、I0(E0,x)とf(E0,,x)は試
料10の種類には依存せず、測定体系が決まれば計算で評
価可能である。電子密度ρ(x)は試料10の密度分布
ρ(x)に密接し関連しており、例えば試料10が全て同
一物質で構成されており厚さ方向にその密度だけが異な
るものである場合には、ρ(x)に原子番号に応じた
係数を掛ければρ(x)になる。すなわち、(4)式か
ら試料10の厚さ方向の密度分布を求めることができる。
here, In the equation (4), I 0 (E 0 , x) and f (E 0 ,, x) do not depend on the type of the sample 10, and can be evaluated by calculation if the measurement system is determined. The electron density ρ e (x) is closely related to the density distribution ρ (x) of the sample 10, and, for example, when the sample 10 is made of the same substance and has different densities in the thickness direction. Can be obtained by multiplying ρ e (x) by a coefficient according to the atomic number. That is, the density distribution of the sample 10 in the thickness direction can be obtained from the equation (4).

また、(4)式のJ1(E0)は深さxには依存しないの
で、密度の測定誤差は単に放射線検出器30aの測定値I1
(E1,x)の統計誤差に依存するだけであり、深さxに直
接に依存するという不都合は生じない。
Also, since J 1 (E 0 ) in the equation (4) does not depend on the depth x, the measurement error of the density is simply the measurement value I 1 of the radiation detector 30a.
It does not depend on the statistical error of (E 1 , x) but directly on the depth x.

次に、(2)式に表す条件について述べる。線吸収係
数は、あるエネルギー以上のγ線に対しては近似的に次
式で表わすことができる。
Next, the condition expressed by the equation (2) will be described. The linear absorption coefficient can be approximately expressed by the following equation for γ-rays having a certain energy or more.

μ(E,x)≒σ(E)ρ(x) …(5) ここに、σ(E)はエネルギーEのγ線に対する単
位電子密度当りのコンプトン散乱断面積であり、物質の
種類には依存しない。したがつて、(5)式の関係を用
いると(2)式は次のように書き換えることができる。
μ (E, x) ≈σ T (E) ρ e (x) (5) where σ T (E) is the Compton scattering cross-section per unit electron density for γ-rays of energy E, It does not depend on the type. Therefore, using the relation of the equation (5), the equation (2) can be rewritten as follows.

また、コンプトン散乱の法則と幾何学的な条件より、 θ=+θ …(8) が成立する。ここに、m0は電子の静止質量である。
(6)式は深さxに依存しないので、(7),(8)式
から(6)を満足するθとθすなわちを容易に求
めることができる。第2図は、例として、60C0の放出す
る1.33MeVのγ線を一次γ線としたときの(すなわち
θ)とθの関係を求めたものである。
Also, from Compton scattering law and geometrical conditions, θ 0 = + θ 1 (8) holds. Where m 0 is the rest mass of the electron.
Since the expression (6) does not depend on the depth x, θ 0 and θ 1 that satisfy the expression (6) can be easily obtained from the expressions (7) and (8). FIG. 2 shows, as an example, the relationship between θ 0 and the case where the 1.33 MeV γ-rays emitted by 60 C 0 are primary γ-rays (that is, θ 1 ).

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 Hereinafter, an embodiment of the present invention will be described with reference to FIG.

20と21はγ線源(例えば60C0)とそのコリメータ(例
えば鉛)であり、γ線源20から放出されるエネルギーE0
の一次γ線22が試料10(厚さ方向にのみ密度差の存在す
る板状であり、その厚さはLである)に入射角23
(θ)で入射するように設置されている。30aと31aは
放射線検出器(例えばNaI(Tl)シンチレータと図示さ
れていないが光電子増倍管よりなる)とそのコリメータ
であり、一次γ線22が試料10中の測定しようとする特定
の深さxの測定領域11において散乱角34()でコンプ
トン散乱したエネルギーE1の散乱γ線32だけを検出でき
るように設置されている。33は散乱γ線32の検出角θ
である。このとき、一次γ線22の入射角23(θ)と散
乱γ線の検出角33(θ)は(6)式の関係を満足する
ように設置されている。また、30bと31bは30a,31bと同
様に放射線検出器とコリメータであり、γ線源20から放
出され試料10を透過してきたエネルギーE0の一次γ線の
みを検出できるように設置されている。
Reference numerals 20 and 21 denote a γ-ray source (for example, 60 C 0 ) and its collimator (for example, lead), and energy E 0 emitted from the γ-ray source 20.
The incident angle 23 of the primary γ-rays 22 on the sample 10 (a plate having a density difference only in the thickness direction, and the thickness is L)
It is installed so as to be incident at (θ 0 ). Reference numerals 30a and 31a are a radiation detector (for example, a NaI (Tl) scintillator and a photomultiplier tube (not shown)) and its collimator, and the primary γ-ray 22 has a specific depth in the sample 10 to be measured. It is installed so that only the scattered γ-rays 32 of energy E 1 that are Compton scattered at the scattering angle 34 () in the measurement region 11 of x can be detected. 33 is the detection angle θ 1 of scattered γ rays 32
Is. At this time, the incident angle 23 (θ 0 ) of the primary γ-ray 22 and the detection angle 33 (θ 1 ) of the scattered γ-ray are set so as to satisfy the relationship of the expression (6). Further, 30b and 31b are radiation detectors and collimators similar to 30a and 31b, and are installed so that only primary γ-rays of energy E 0 emitted from the γ-ray source 20 and transmitted through the sample 10 can be detected. .

散乱γ線用放射線検出器30aの出力は40aの散乱γ線計
数装置で予め設定された一定時間エネルギーE1の散乱γ
線を計数し、これは、測定領域11の位置xの強度
((4)式に示すI1(E1,x))として記憶装置50に蓄え
られる。一方、一次γ線用放射線検出器の出力は40bの
一次γ線計数装置において放射線検出器30aで散乱γ線
を測定している時間、エネルギーE0の一次γ線を計数
し、(4)式に示すJ1(E0)の値として密度演算装置60
に送られる。密度演算装置60では、記憶装置50に蓄えて
ある散乱γ線強度I1(E1,x)と一次γ線の透過強度J
1(E0)の値から、(4)式に基づいて密度を演算す
る。(4)式におけるI0(E0,x)とf(E0,,x)は予
め評価され密度演算装置60に組み込まれている。70は密
度演算装置60の結果を出力する出力装置であり、例えば
CRTあるいは印字装置である。
The output of the scattered γ-ray radiation detector 30a is the scattered γ of energy E 1 set in advance by the scattered γ-ray counter 40a.
The lines are counted and stored in the storage device 50 as the intensity at the position x of the measurement region 11 (I 1 (E 1 , x) shown in the equation (4)). On the other hand, the output of the primary γ-ray radiation detector is the time when the scattered γ-rays are measured by the radiation detector 30a in the primary γ-ray counter 40b, the primary γ-rays of energy E 0 are counted, and the equation (4) is used. As the value of J 1 (E 0 ) shown in
Sent to In the density calculation device 60, the scattered γ-ray intensity I 1 (E 1 , x) stored in the storage device 50 and the transmission intensity J of the primary γ-ray are stored.
The density is calculated from the value of 1 (E 0 ) based on the equation (4). I 0 (E 0 , x) and f (E 0 ,, x) in the equation (4) are evaluated in advance and incorporated in the density calculation device 60. 70 is an output device for outputting the result of the density calculation device 60, for example,
CRT or printer.

試料10は厚さ方向にのみ密度分布が存在すると仮定し
たが、本実施例では、一次γ線及び散乱γ線の試料10中
の透過領域内でこの仮定が成立すれば良く、比較的狭い
平面領域内の厚さ方向の任意の一点の密度を測定するこ
とができる。
The sample 10 was assumed to have a density distribution only in the thickness direction, but in the present example, it is sufficient if this assumption holds in the transmission region of the primary γ-rays and scattered γ-rays in the sample 10, and a relatively narrow plane. It is possible to measure the density at any one point in the region in the thickness direction.

次に、本発明の別の実施例を第3図により以下に説明
する。
Next, another embodiment of the present invention will be described below with reference to FIG.

25はγ線源20のコリメータであり、試料10に対してエ
ネルギーE0の一次γ線22のコーン状に放射するように作
られている。35は試料10中の円環状の測定領域11中で一
次γ線がコンプトン散乱された散乱γ線32を測定するた
めのコリメータであり、コリメータ開口部はコリメータ
25と同様にコーン状である。また、コリメータ25,35
は、γ線源20から放出され試料10を通過してきた一次γ
線22を測定できるような開口部を有している。30は放射
線検出器、41は波高分析装置であり、エネルギーE0の一
次γ線22とエネルギーEの散乱γ線32を区別してそれぞ
れ、43,42の一次γ線計数装置と散乱γ線計数装置に信
号を送る。他の符号は、第1図と同様である。この場合
も、第1図に示した実施例と同様に、一次γ線22の入射
角23(θ)と散乱γ線32の検出角33(θ)すなわち
コンプトン散乱角()は、(6)式の関係を満足する
ように設置されている。
Reference numeral 25 denotes a collimator of the γ-ray source 20, which is made to radiate the primary γ-ray 22 of energy E 0 to the sample 10 in a cone shape. Reference numeral 35 is a collimator for measuring scattered γ rays 32 in which the primary γ rays are Compton scattered in the annular measurement region 11 of the sample 10. The collimator opening is a collimator.
Like the 25, it is cone-shaped. In addition, collimator 25,35
Is the primary γ emitted from the γ-ray source 20 and passing through the sample 10.
It has an opening through which the line 22 can be measured. Reference numeral 30 is a radiation detector, and 41 is a wave height analyzer, which distinguishes the primary γ-rays 22 of energy E 0 and the scattered γ-rays 32 of energy E from each other, and the primary γ-ray counters 43 and 42 and the scattered γ-ray counters respectively. Send a signal to. Other reference numerals are the same as those in FIG. Also in this case, similarly to the embodiment shown in FIG. 1, the incident angle 23 (θ 0 ) of the primary γ rays 22 and the detection angle 33 (θ 1 ) of the scattered γ rays 32, that is, the Compton scattering angle () are It is installed so as to satisfy the relationship of equation (6).

放射線計測値から密度を求める方法は、第1図に示し
た実施例と同様であるが、一次γ線の試料10内での減衰
を示す(4)式のJ1(E0)の評価方法が異なる。(4)
式のJ1(E0)の関係式は、 であり、本実施例で直接に求められるのは、 である。したがつて、 として、J1(E0)を求める。
The method of obtaining the density from the radiation measurement value is the same as that of the embodiment shown in FIG. 1, but the evaluation method of J 1 (E 0 ) of the equation (4) showing the attenuation of the primary γ rays in the sample 10 is shown. Is different. (4)
The relational expression of J 1 (E 0 ) in the equation is Therefore, the direct requirement in this embodiment is Is. Therefore, As a result, J 1 (E 0 ) is obtained.

本実施例では、測定領域11は円環状であり放射線検出
器に入射する散乱γ線の強度が大きくなり、測定時間を
短縮することができる。
In this embodiment, the measurement region 11 has an annular shape, and the intensity of scattered γ-rays incident on the radiation detector becomes large, so that the measurement time can be shortened.

第4図は、第3図に示した実施例のうちγ線源側のコ
リメータに関する別の実施例である。
FIG. 4 shows another embodiment of the collimator on the γ-ray source side among the embodiments shown in FIG.

100は一次γ線の第3図に示す試料10中での減衰を測
定するための開口部に設けた遮へい体である。本実施例
では、第3図の放射線検出器30に入射する一次γ線の強
度は、散乱γ線の強度と同程度になり、放射線検出器30
での散乱γ線強度の測定誤差が小さくなり、密度の測定
精度が向上する。本実施例の効果は、遮へい体100を放
射線検出器側のコリメータに取り付けても同じである。
Reference numeral 100 is a shield provided in the opening for measuring the attenuation of the primary γ ray in the sample 10 shown in FIG. In this embodiment, the intensity of the primary γ-rays incident on the radiation detector 30 shown in FIG.
The measurement error of the scattered γ-ray intensity at 1 is reduced, and the density measurement accuracy is improved. The effect of this embodiment is the same even when the shield 100 is attached to the collimator on the radiation detector side.

第5図は、第3図に示した実施例のうち検出器に関す
る別の実施例である。
FIG. 5 shows another embodiment of the detector in the embodiment shown in FIG.

30b′は第3図に示す一次γ線22を検出する円柱状の
放射線検出器、30a′は同様に散乱γ線32を検出する円
環状の放射線検出器、30cは一次γ線22が放射線検出器3
0a′に、散乱γ線32が放射線検出器30b′に検知される
ことを防ぐための遮へいであり、円環状である。放射線
検出器30a′,30b′は例えばNaI(Tl)シンチレータで作
製することができる。
30b 'is a cylindrical radiation detector for detecting the primary γ-rays 22 shown in FIG. 3, 30a' is an annular radiation detector for similarly detecting scattered γ-rays 32, and 30c is a primary γ-ray 22 for radiation detection. Bowl 3
0a 'is a shield for preventing scattered γ rays 32 from being detected by the radiation detector 30b', and has a ring shape. The radiation detectors 30a 'and 30b' can be made of, for example, NaI (Tl) scintillator.

放射線検出器30a′,30b′の出力のデータ処理は、第
1図と同様である。
The data processing of the outputs of the radiation detectors 30a 'and 30b' is the same as in FIG.

本実施例では、一次γ線と散乱γ線をそれぞれ別の放
射線検出器で検知するので、該検出器内での一次γ線と
散乱γ線の相互作用がなくなる。したがつて、両者を高
計数率でしかも高精度で測定可能であり、密度の測定精
度が向上しかつ測定時間を短縮できる。
In the present embodiment, since the primary γ-rays and the scattered γ-rays are detected by different radiation detectors, there is no interaction between the primary γ-rays and the scattered γ-rays in the detector. Therefore, both can be measured with a high count rate and high accuracy, the density measurement accuracy can be improved, and the measurement time can be shortened.

第6図は、本発明の別の実施例を示す図である。 FIG. 6 is a diagram showing another embodiment of the present invention.

200は、γ線源とコリメータからなる外部線源部であ
り、第1図の実施例においては20と21、第3図の実施例
においては20と25とより構成される。300は、放射線検
出器とコリメータからなる放射線検出部であり、第1図
の実施例においては30a,31a,30b,31b、第3図の実施例
においては30と35から構成される。210は外部線源部200
と放射検出部300とを一体として支持する支持具、220は
スクリユー、230は電動機である。240は距離検出器、25
0は深さ演算機である。他の符号は、第1図及び第3図
と同じである。
Reference numeral 200 designates an external radiation source section composed of a γ-ray source and a collimator, which is composed of 20 and 21 in the embodiment of FIG. 1 and 20 and 25 in the embodiment of FIG. Reference numeral 300 denotes a radiation detecting section including a radiation detector and a collimator, which is composed of 30a, 31a, 30b and 31b in the embodiment of FIG. 1 and 30 and 35 in the embodiment of FIG. 210 is the external radiation source unit 200
And 220, a support, which integrally supports the radiation detection unit 300 and the radiation detection unit 300, and 230 is an electric motor. 240 is a distance detector, 25
0 is a depth calculator. Other reference numerals are the same as those in FIGS. 1 and 3.

本実施例の動作を次に説明する。試料10中の測定領域
11の位置xは、電動機230と支持具220を介して外部線源
部200と放射線検出部300とが一体となり試料10に対して
上下に移動することで変化する。このとき、測定領域11
の位置xは、距離検出器240で測定した距離yの信号を
受けて、深さ演算機250で確定できる。すなわち、 x=a−y ここに、aは外部線深部200と測定領域11までの距離
であり幾何学的配置により一義的に決まる量である。深
さ演算機250の出力は第1図に示す記憶装置に入力す
る。このとき、記憶装置50では、深さxの強度として、
散乱γ線の強度を記憶する。
The operation of this embodiment will be described below. Measurement area in sample 10
The position x of 11 changes as the external radiation source unit 200 and the radiation detection unit 300 become integrated with each other via the electric motor 230 and the support 220 and move up and down with respect to the sample 10. At this time, the measurement area 11
The position x can be determined by the depth calculator 250 by receiving the signal of the distance y measured by the distance detector 240. That is, x = a−y, where a is the distance between the external line deep portion 200 and the measurement region 11, and is a quantity uniquely determined by the geometrical arrangement. The output of the depth calculator 250 is input to the storage device shown in FIG. At this time, in the storage device 50, as the intensity of the depth x,
Memorize the intensity of scattered γ rays.

深さxに対する密度の演算は、第1図の実施例と同様
である。
The calculation of the density with respect to the depth x is the same as that of the embodiment shown in FIG.

本実施例によれば、試料中の深さ方向の任意の深さに
おける密度を、すなわち、密度分布を測定できる。ま
た、板状試料の厚さが不明のものに対しても適用するこ
とができる。
According to this example, the density at an arbitrary depth in the sample, that is, the density distribution can be measured. Further, it can be applied to a plate-shaped sample whose thickness is unknown.

第7図は、放射線検出器として別のものを使用した場
合の本発明の実施例を示す図である。
FIG. 7 is a diagram showing an embodiment of the present invention when another radiation detector is used.

310は、非常にエネルギー分解能の高い、しかも検出
器内での散乱γ線の影響が無視出来る程度に小さく、ま
た、形状の小さい放射線検出器である。他の符号は、第
1図,第3図と同じである。本実施例においても、一次
γ線と散乱γ線の強度測定値から密度を演算する方法は
第1図及び第3図に示したものと同様である。したがつ
て、一次γ線と散乱γ線の強度測定方法を以下に説明す
る。
Reference numeral 310 is a radiation detector having a very high energy resolution, the effect of scattered γ-rays in the detector is negligible, and the shape is small. Other reference numerals are the same as those in FIGS. 1 and 3. Also in this example, the method of calculating the density from the intensity measurement values of the primary γ-rays and the scattered γ-rays is the same as that shown in FIGS. 1 and 3. Therefore, the method for measuring the intensity of primary γ-rays and scattered γ-rays will be described below.

放射線検出器310の出力は、エネルギー分解能が高
く、しかも該検出器内での散乱γ線の影響は非常に小さ
いので、第8図に示すようになる。E0は一次γ線22のエ
ネルギー、E1は該一次γ線22がコンプトン散乱角34
()で散乱された後の散乱γ線32のエネルギーであ
る。ここにおいて、一次γ線22は、γ線源側のコーン状
コリメータ25によりコーン状に放射されているので、測
定体系が決まれば、エネルギーE1は、一義的に測定領域
11の深さxに対応している。したがつて、(6),
(7),(8)式を満足するコンプトン散乱角34()
に対応するエネルギーE1のみを測定すれば、その値が、
深さxに対応する散乱γ線の強度になる。一方、一次γ
線の強度は、エネルギーE0を測定すれば、それが一次γ
線の強度になる。
The output of the radiation detector 310 has a high energy resolution and the influence of scattered γ-rays within the detector is very small, so that it becomes as shown in FIG. E 0 is the energy of the primary γ-ray 22, E 1 is the energy of the Compton scattering angle 34
It is the energy of scattered γ rays 32 after being scattered by (). Here, since the primary γ-rays 22 are radiated in the cone shape by the cone-shaped collimator 25 on the γ-ray source side, if the measurement system is determined, the energy E 1 is uniquely the measurement area.
Corresponds to a depth x of 11. Therefore, (6),
Compton scattering angle 34 () that satisfies Eqs. (7) and (8)
If you measure only the energy E 1 corresponding to
The intensity of scattered γ-rays corresponds to the depth x. On the other hand, the primary γ
The intensity of the line is the primary γ if the energy E 0 is measured.
It becomes the strength of the line.

本実施例では、放射線検出器側のコリメータが不要で
あるから、放射線検出器を試料に近づけることができる
ので、散乱γ線の計数率を高くすることができる。した
がつて、測定時間を短縮できる。
In this embodiment, since the collimator on the side of the radiation detector is unnecessary, the radiation detector can be brought close to the sample, so that the counting rate of scattered γ rays can be increased. Therefore, the measurement time can be shortened.

尚、上述の密度および密度分布測定方法は、温度分布
の測定方法として有効である。
The above-mentioned density and density distribution measuring method is effective as a temperature distribution measuring method.

板状の物体として内部に溶融状態の金属が存在する場
合、密度は金属が溶融状態にある時は小さく、金属が固
まつている状態では大きい。即ち、密度は温度に比例す
ることになる。従つて、上述の密度測定方法を利用する
ことによつて、板状の物体内の温度を計測することがで
きる。
When a molten metal is present inside the plate-shaped object, the density is low when the metal is in the molten state and high when the metal is in a solid state. That is, the density is proportional to the temperature. Therefore, the temperature in the plate-like object can be measured by using the above-mentioned density measuring method.

〔発明の効果〕〔The invention's effect〕

本発明によれば、物体内のある位置で散乱した散乱γ
線強度の測定値が一義的にその位置の密度に対応するの
で、厚さ方向にのみ密度差の存在する板状物体内の密度
及び密度分布を簡単なデータ処理でしかも精度良く測定
できる。
According to the invention, the scattering γ scattered at a position in the object
Since the measured value of the line strength uniquely corresponds to the density at that position, it is possible to measure the density and the density distribution in the plate-shaped object having a density difference only in the thickness direction with simple data processing and with high accuracy.

【図面の簡単な説明】 第1図は本発明の一実施例を示す図、第2図は本発明に
おけるコンプトン散乱角と一次γ線の入射角の関係の例
を示す図、第3図は本発明の別の実施例を示す図、第4
図は第3図に示す実施例のうちγ線源コリメータの別の
実施例を示す図、第5図は第3図に示す実施例のうち放
射線検出器の別の実施例を示す図、第6図は測定領域の
深さを任意に変えることのできる本発明の別の実施例を
示す図、第7図は放射線検出器について別の実施例を示
す図、第8図は第7図に示す放射線検出器によるγ線の
検出例を示す図である。 10……試料、11……測定領域、20……γ線源、21,25…
…コリメータ、22……一次γ線、23……一次γ線の入射
角、30,30a,30b……放射線検出器、31a,31b,35……コリ
メータ、33……散乱γ線の検出角、34……コンプトン散
乱角、40a,42……散乱γ線計数装置、40b,43……一次γ
線計数装置、50……記憶装置、60……密度演算装置、70
……表示装置、240……距離検出器、250……深さ演算
器、230……電動機。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing an example of the relationship between the Compton scattering angle and the incident angle of primary γ rays in the present invention, and FIG. 3 is The figure which shows another Example of this invention, 4th
FIG. 5 is a diagram showing another embodiment of the gamma ray source collimator of the embodiment shown in FIG. 3, and FIG. 5 is a diagram showing another embodiment of the radiation detector of the embodiment shown in FIG. FIG. 6 is a diagram showing another embodiment of the present invention in which the depth of the measurement region can be arbitrarily changed, FIG. 7 is a diagram showing another embodiment of the radiation detector, and FIG. 8 is shown in FIG. It is a figure which shows the example of a detection of the (gamma) ray by the radiation detector shown. 10 …… Sample, 11 …… Measurement area, 20 …… γ-ray source, 21,25…
… Collimator, 22 …… Primary γ-ray, 23 …… Primary γ-ray incident angle, 30,30a, 30b …… Radiation detector, 31a, 31b, 35 …… Collimator, 33 …… Scattered γ-ray detection angle, 34 …… Compton scattering angle, 40a, 42 …… Scattering γ-ray counter, 40b, 43 …… Primary γ
Line counting device, 50 ... Storage device, 60 ... Density calculation device, 70
...... Display device, 240 …… Distance detector, 250 …… Depth calculator, 230 …… Electric motor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 出海 滋 茨城県日立市森山町1168番地 株式会社 日立製作所エネルギー研究所内 (72)発明者 矢葺 隆 茨城県日立市幸町3丁目1番1号 株式 会社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shigeru Izumi 1168 Moriyama-cho, Hitachi-shi, Ibaraki Energy Research Laboratory, Hitachi, Ltd. (72) Inventor Takashi Yaagi 3-1-1, Saicho-cho, Hitachi, Ibaraki Stock Hitachi, Ltd. Hitachi factory

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】γ線源からコリメートした一次γ線を同一
物質で構成され厚さ方向にのみその密度が異なる板状の
被測定物体に照射し、 上記被測定物体に対して上記γ線源が位置する側とは反
対側に設けられた少なくとも一つの放射線検出器によ
り、上記被測定物体の測定領域においてコンプトン散乱
した散乱γ線と、上記被測定物体の透過した上記一次γ
線とを検出して物体内部の上記測定領域の密度を測定す
る方法があって、 γ線の線吸収係数と、γ線透過パスが上記板状の被測定
物体の厚み方向となす角度の余弦との比で定義されるγ
線の実効線吸収係数を、上記一次γ線と上記散乱γ線と
で等しくなるように、上記γ線の照射方向と上記散乱γ
線の検出方向を設定し、上記散乱γ線と一次γ線とを測
定することを特徴する物体の密度測定方法。
1. A γ-ray source which irradiates a plate-shaped object to be measured with primary γ-rays collimated from a γ-ray source, the objects being made of the same substance and having different densities only in the thickness direction. By at least one radiation detector provided on the side opposite to the side where is located, scattered γ-rays that are Compton scattered in the measurement region of the measured object and the primary γ transmitted by the measured object.
There is a method of measuring the density of the above-mentioned measurement region inside the object by detecting a line, and the linear absorption coefficient of γ-rays, and the cosine of the angle that the γ-ray transmission path makes with the thickness direction of the plate-shaped object to be measured. Γ defined as the ratio with
The irradiation direction of the γ-ray and the scattering γ so that the effective absorption coefficient of the ray becomes equal between the primary γ-ray and the scattered γ-ray.
A method for measuring the density of an object, comprising setting a detection direction of rays and measuring the scattered γ-rays and the primary γ-rays.
【請求項2】γ線源からコリメートした一次γ線を同一
物質で構成され厚さ方向にのみその密度が異なる板状物
体に照射し、 上記物体に対して上記γ線源が位置する側とは反対側に
設けられた放射線検出器により、上記物体の測定領域に
おいてコンプトン散乱した散乱γ線と、上記物体の透過
した上記一次γ線とを検出して物体内部の密度を測定す
る方法であって、 を満たす条件下において、下式に基づいて電子密度を求
め該電子密度に上記物質を構成する物質に応じた係数を
乗じて、上記物質の測定領域における密度を測定する物
体の密度測定方法。
2. A plate-shaped object composed of the same substance and having different densities only in the thickness direction is irradiated with primary γ-rays collimated from the γ-ray source, and a side on which the γ-ray source is located with respect to the object. Is a method of measuring the density inside the object by detecting the scattered γ-rays that have been Compton scattered in the measurement region of the object and the primary γ-rays that have passed through the object, with the radiation detector provided on the opposite side. hand, A density measuring method for an object, in which the electron density is obtained based on the following equation and the electron density is multiplied by a coefficient according to the substance constituting the substance to measure the density of the substance in a measurement region.
【請求項3】請求項2において、 とした時に、 に代えて、 を満たすようにする密度測定方法。3. The method according to claim 2, And when Instead of A method for measuring the density so as to satisfy the condition. 【請求項4】放射線源からコリメートした一次放射線を
同一物質で構成され厚さ方向にのみその密度が異なる板
状の物体に照射し、該一次放射線により発生した散乱放
射線をコリメートして検出することにより物体内の密度
を測定する方法において、 前記散乱放射線を、物体に対して放射線源が位置する側
とは反対側において検出するようにするとともに、 放射線の線吸収係数と、放射線透過パスが上記板状の物
体の厚み方向となす角度を余弦との比で定義される放射
線の実効線吸収係数を、上記一次放射線と上記散乱放射
線とで等しくなるように、上記放射線の照射方向と上記
散乱放射線の検出方向を設定し、 前記物体を透過した一次放射線強度から求めた前記一次
放射線の物体内での減衰を、前記一次放射線の物体の測
定領域までの減衰及び前記散乱放射線の物体を測定領域
からの減衰として把えて物体の測定領域の密度を求める
ことを特徴とする物体の密度測定方法。
4. A primary radiation collimated from a radiation source is applied to a plate-shaped object made of the same substance and having a different density only in the thickness direction, and the scattered radiation generated by the primary radiation is collimated and detected. In the method for measuring the density in an object, the scattered radiation is detected on the side opposite to the side where the radiation source is located with respect to the object, and the linear absorption coefficient of radiation and the radiation transmission path are The effective line absorption coefficient of the radiation defined by the ratio of the cosine to the thickness direction of the plate-shaped object, the irradiation direction of the radiation and the scattered radiation so that the primary radiation and the scattered radiation are equal. Is set, the attenuation of the primary radiation in the object obtained from the intensity of the primary radiation transmitted through the object is reduced to the measurement area of the object of the primary radiation. And density measurement method of an object and obtaining a density of the measurement region of the object therefore be regarded as an attenuation from the object measuring region of the scattered radiation.
【請求項5】同一物質で構成され厚さ方向にのみ密度が
異なる板状の被測定物体の一方の面側に配置されたコリ
メータ付きγ線源と、 上記被測定物体の他方の面側に配置され、上記被測定物
体の測定領域において上記γ線源から照射された一次γ
線により発生した散乱γ線と、上記被測定物体を透過し
た一次γ線を検出する少なくとも1つのコリメータ付き
放射線検出器とを備えた物体の密度測定装置であって、 前記γ線源から被測定物体へγ線を入射させる方向と前
記放射線検出器のうち測定領域において発生した散乱γ
線を検出する方向とを、γ線の線吸収係数と、γ線透過
バスが上記板状の被測定物体の厚さ方向となす角度の余
弦との比で定義されるγ線の実効線吸収係数を、被測定
物体に照射する一次γ線とコンプトン散乱した散乱γ線
とで等しくなるように上記γ線源側コリメータの入射角
及び検出器側コリメータの検出角を設定し、 前記放射線検出器で検出された散乱γ線の強度と、前記
放射線検出器で検出された透過一次γ線強度により求め
られる前記一次γ線の入射部から前記物体の測定領域ま
での減衰と前記散乱γ線の前記物体の測定領域から出射
部までの減衰として把えた一次γ線の物体内での減衰に
基づき物体の密度を計算する装置と、 該計算した密度を出力する装置とを備えた物体の密度測
定装置。
5. A γ-ray source with a collimator, which is made of the same substance and has a different density only in the thickness direction and is arranged on one surface side of an object to be measured, and on the other surface side of the object to be measured. The primary γ irradiated from the γ-ray source in the measurement area of the measured object.
A density measuring device for an object, comprising: scattered γ-rays generated by X-rays, and at least one radiation detector with a collimator for detecting primary γ-rays transmitted through the object to be measured. Direction of incidence of γ rays on the object and scattering γ generated in the measurement area of the radiation detector
The effective absorption of γ-rays is defined by the ratio of the γ-ray absorption coefficient and the cosine of the angle formed by the γ-ray transmission bus with the thickness direction of the plate-shaped object to be measured. The incident angle of the γ-ray source-side collimator and the detection angle of the detector-side collimator are set so that the coefficient becomes equal between the primary γ-rays irradiating the object to be measured and the scattered γ-rays that are Compton scattered, and the radiation detector Intensity of scattered γ-rays detected by, the attenuation of the incident γ-rays from the primary γ-rays obtained by the transmitted primary γ-ray intensity detected by the radiation detector to the measurement region of the object and the scattered γ-rays Object density measuring apparatus provided with a device for calculating the density of the object based on the attenuation in the object of the primary γ ray grasped as the attenuation from the measurement region of the object to the emission part, and a device for outputting the calculated density .
【請求項6】同一物質で構成され厚さ方向にのみ密度が
異なる板状の被測定物体の一方の面側に配置されたコリ
メータ付きγ線源と、 上記被測定物体の他方の面側に配置され、上記被測定物
体の測定領域において上記γ線源から照射された一次γ
線により発生した散乱γ線と、上記被測定物体を透過し
た一次γ線を検出する少なくとも1つのコリメータ付き
放射線検出器とを備えた物体の密度測定装置であって、 前記γ線源から被測定物体へ一次γ線を入射させる方向
と前記放射線検出器のうち測定領域において発生した散
乱γ線を検出する方向とを、一次γ線に対する単位電子
密度当りの全コンプトン散乱断面積と一次γ線透過パス
が物体の厚さ方向となす角度の余弦との比と、散乱γ線
に対する単位電子密度当りの全コンプトン散乱断面積と
散乱γ線透過パスが物体の厚さ方向となす角度の余弦と
の比を等しくなるように上記γ線側コリメータの入射角
及び検出基側コリメータの検出角を設定し、前記放射線
検出器で検出された散乱γ線の強度と、前記放射線検出
器で検出された透過一次γ線強度により求められる前記
一次γ線の前記物体の測定領域までの減衰と前記散乱γ
線の前記物体の測定領域からの減衰として把えた一次γ
線の物体内での減衰に基づき物体の密度を計算する装置
と、 該計算した密度を出力する装置とを備えた物体の密度測
定装置。
6. A γ-ray source with a collimator, which is made of the same substance and has a different density only in the thickness direction, arranged on one surface side of a plate-shaped object to be measured, and on the other surface side of the object to be measured. The primary γ irradiated from the γ-ray source in the measurement area of the measured object.
A density measuring device for an object, comprising: scattered γ-rays generated by X-rays, and at least one radiation detector with a collimator for detecting primary γ-rays transmitted through the object to be measured. The direction in which the primary γ-rays are incident on the object and the direction in which scattered γ-rays generated in the measurement region of the radiation detector are detected are defined as the total Compton scattering cross-section per unit electron density for the primary γ-rays and the primary γ-ray transmission. The ratio of the cosine of the angle that the path makes with the thickness direction of the object, the total Compton scattering cross-section per unit electron density for scattered γ-rays, and the cosine of the angle that the scattered γ-ray transmission path makes with the thickness direction of the object. The incident angle of the γ-ray side collimator and the detection angle of the detection base side collimator are set so that the ratio becomes equal, the intensity of the scattered γ-ray detected by the radiation detector and the transmission detected by the radiation detector. Primary γ Attenuation of the primary γ ray to the measurement area of the object and the scattering γ, which are obtained by the line intensity.
The first order γ as the attenuation of the line from the measurement area of the object
An apparatus for measuring a density of an object, comprising: a device for calculating the density of the object based on the attenuation of a line in the object; and a device for outputting the calculated density.
【請求項7】請求項5または6において、 前記散乱γ線と透過一次γ線を同一のコリメータ付き放
射線検出器で検出するとともに、該散乱γ線と透過一次
γ線を区別するための波高分析装置を備えた物体の密度
測定装置。
7. The wave height analysis according to claim 5, wherein the scattered γ-rays and the transmitted primary γ-rays are detected by the same radiation detector with a collimator, and the scattered γ-rays and the transmitted primary γ-rays are distinguished from each other. An object density measuring device equipped with a device.
JP63051502A 1988-03-07 1988-03-07 Method and device for measuring the density of objects Expired - Fee Related JP2544431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63051502A JP2544431B2 (en) 1988-03-07 1988-03-07 Method and device for measuring the density of objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63051502A JP2544431B2 (en) 1988-03-07 1988-03-07 Method and device for measuring the density of objects

Publications (2)

Publication Number Publication Date
JPH01227050A JPH01227050A (en) 1989-09-11
JP2544431B2 true JP2544431B2 (en) 1996-10-16

Family

ID=12888762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63051502A Expired - Fee Related JP2544431B2 (en) 1988-03-07 1988-03-07 Method and device for measuring the density of objects

Country Status (1)

Country Link
JP (1) JP2544431B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107063923A (en) * 2017-03-09 2017-08-18 中国农业大学 A kind of system, method and application for detecting fluid density

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6528795B2 (en) * 2000-04-27 2003-03-04 The United States Of America As Represented By The Secretary Of The Navy Compton scatter imaging instrument
FR2868538B1 (en) * 2004-04-06 2006-05-26 Commissariat Energie Atomique METHOD AND SYSTEM FOR DETERMINING THE VOLUMIC MASS AND DIMENSIONAL CHARACTERISTICS OF AN OBJECT, AND APPLICATION TO THE CONTROL OF NUCLEAR FUEL PELLETS DURING MANUFACTURING
CN103697950B (en) * 2013-08-29 2017-01-11 兰州海默科技股份有限公司 Method and device for measuring flow of oil, gas and water in non-conventional natural gas on line
CN104215553B (en) * 2014-09-05 2017-01-11 北京航空航天大学 Integrated measurement device for atomic density and polarizability of alkali metal vapor
GB2550078B (en) * 2015-01-16 2021-03-03 Rapiscan Systems Inc Non-intrusive inspection systems and methods for the detection of materials interest
CN112748040B (en) * 2020-12-24 2023-11-10 郑州工程技术学院 Slurry pipeline conveying density change detection meter and detection method
CN117571543B (en) * 2024-01-16 2024-04-09 清华大学 Method and system for online measurement of true density of bulk material by utilizing X/gamma rays
CN117890257B (en) * 2024-03-14 2024-05-24 南京愚工智能技术有限公司 Radioactive densimeter mounting structure and density monitoring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107063923A (en) * 2017-03-09 2017-08-18 中国农业大学 A kind of system, method and application for detecting fluid density

Also Published As

Publication number Publication date
JPH01227050A (en) 1989-09-11

Similar Documents

Publication Publication Date Title
US4037105A (en) Radiation detector with array of different scintillators
US3124679A (en) Nuclear determination of
EP0137487B1 (en) Energy separated quantum-counting radiography and apparatus
US3996471A (en) Method and system for in vivo measurement of bone tissue using a two level energy source
US5155366A (en) Method and apparatus for detecting and discriminating between particles and rays
Parks The Compton effect-Compton scattering and gamma ray spectroscopy
JP2008503742A (en) Method and apparatus for investigating nuclear material by photo-fission
JP2003302357A (en) Nuclear density gauge using low activity gamma radiation source and density measuring method
WO2012000299A1 (en) Articles detecting device and detecting method thereof
JP2544431B2 (en) Method and device for measuring the density of objects
US4494001A (en) Detection of concealed materials
US2903590A (en) Nuclear radiation measuring instrument
US4837442A (en) Neutron range spectrometer
US20210255120A1 (en) System and method for moisture measurement
Vampola Measuring energetic electrons—What works and what doesn't
JPH04194772A (en) Radiation measuring device
JPH06103279B2 (en) Component analysis method
US3470372A (en) Fog density measurement by x-ray scattering
RU2502986C1 (en) Neutron radiography method
Brownell et al. Large Plastic Scintillators for Radioactivity Measurement
JPS5977346A (en) Analyzing apparatus for element composition of substance
JPH05180942A (en) Radioactivity measuring instrument for radioactive waste packed in drum
RU2505801C1 (en) Neutron radiography apparatus
US3408496A (en) Alpha ray excited composition analysis
GB2055198A (en) Detection of concealed materials

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees