JP2543360B2 - Porous polypropylene fiber - Google Patents

Porous polypropylene fiber

Info

Publication number
JP2543360B2
JP2543360B2 JP62084442A JP8444287A JP2543360B2 JP 2543360 B2 JP2543360 B2 JP 2543360B2 JP 62084442 A JP62084442 A JP 62084442A JP 8444287 A JP8444287 A JP 8444287A JP 2543360 B2 JP2543360 B2 JP 2543360B2
Authority
JP
Japan
Prior art keywords
fiber
elongation
energy
yarn
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62084442A
Other languages
Japanese (ja)
Other versions
JPS63249711A (en
Inventor
昭夫 福井
正宏 小川
和昭 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP62084442A priority Critical patent/JP2543360B2/en
Publication of JPS63249711A publication Critical patent/JPS63249711A/en
Application granted granted Critical
Publication of JP2543360B2 publication Critical patent/JP2543360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/62Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は弾性体特にエネルギーの回生に有用な弾性体
としての多孔質ポリプロピレン繊維に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a porous polypropylene fiber as an elastic body, particularly as an elastic body useful for energy regeneration.

〔従来の技術〕[Conventional technology]

従来弾性体としてはゴムが知られており、その伸度は
大きいがエネルギー回生出力量は例えば0.0002kgfm/gと
小さく、さらに大きなエネルギー回生出力値を大きくし
た弾性体が望まれていた。ポリプロピレン繊維を紡糸延
伸すると第1図、第2図の比較例の強伸度曲線(S−S
曲線)グラフに示す強伸度特性の繊維となる。そして第
2図のS−S曲線の下方部のハッチング部に相当する部
分の面積から算出されるエネルギー出力値は0.004kgfm/
gとゴムのエネルギー出力値の20倍以上の値を示すもの
が得られる。しかし、比較例で示すポリプロピレン繊維
のエネルギー回生時の有効利用可能な伸度は第2図のA
に相当し約25%程度であり、第1図に示すゴムの伸度に
比べて小さく、弾性体例えばスプリング等として使用す
るには伸度が不十分である。
Conventionally, rubber has been known as an elastic body, and its elasticity is large, but its energy regeneration output amount is small, for example, 0.0002 kgfm / g, and an elastic body having a larger energy regeneration output value has been desired. When the polypropylene fiber was spun and drawn, the strength-elongation curves (S-S) of the comparative examples shown in Figs.
(Curve) A fiber having a strong elongation property shown in the graph is obtained. The energy output value calculated from the area of the lower hatched portion of the SS curve in FIG. 2 is 0.004 kgfm /
It is possible to obtain g and the energy output value of rubber 20 times or more. However, the elongation that can be effectively used during the energy regeneration of the polypropylene fiber shown in the comparative example is A in FIG.
Is about 25%, which is smaller than the elongation of the rubber shown in FIG. 1, and the elongation is insufficient for use as an elastic body such as a spring.

一方、ゴムのようなエントロピー弾性体と異なりエネ
ルギー弾性体としてエラスチック・ハード・フャイバー
ズが知られている(坂奥喜一郎 繊維と工業、Vol.30.N
o.1.18〜21頁(1974))。このエネルギー弾性体は100
%の伸び変形に対して瞬間的に50〜95%の弾性回復を示
し残留歪み時間とともに消失する。すなわち化学結合の
距離や結合角を変えようとする変形に対して現れるのが
エネルギー弾性で、上記エラスチック・ハード・フャイ
バーズの場合は引張り力が作用するとラメラが構造変形
し元に戻ることにより弾性回復を示すものである。
On the other hand, elastic hard fibers are known as energy elastic bodies unlike entropy elastic bodies such as rubber (Kiichiro Sakaoku Textile and Industry, Vol.30.N.
o 1.18 to 21 (1974)). This energy elastic body is 100
%, Elastic recovery of 50 to 95% is instantaneously exhibited for the elongation deformation and disappears with the residual strain time. In other words, energy elasticity appears in response to deformation that attempts to change the distance or bond angle of the chemical bond, and in the case of the above-mentioned elastic hard fibers, when the tensile force acts, the lamella structurally deforms and returns to its original state. Is shown.

この場合、エネルギー回生時の有効な伸度は50%以上
であるがエネルギー回生弾性体として使用すると回生エ
ネルギー出力量が0.001kgfm/gで十分でないという不具
合がある。
In this case, the effective elongation at the time of energy regeneration is 50% or more, but when used as an energy regeneration elastic body, the amount of regenerative energy output is not sufficient at 0.001 kgfm / g.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記のポリプロピレン繊維をエネルギー回生体として
使用する場合、エネルギー出力量(0.004kgfm/g)は十
分であるが伸びが小さいという問題がある。また、通常
の延伸法では繊維を延伸するにつれ弾性率が高くなり、
その結果エネルギー回生時の有効利用可能な伸びが小さ
くなる方向であった。
When the above polypropylene fiber is used as an energy regeneration body, there is a problem that the energy output amount (0.004 kgfm / g) is sufficient but the elongation is small. Further, in the ordinary stretching method, the elastic modulus increases as the fiber is stretched,
As a result, the effective usable elongation at the time of energy regeneration tends to decrease.

一方ゴム動力のように糸を伸ばすことによりエネルギ
ーを蓄え回生する目的でポリプロピレン繊維の3倍延伸
処理糸を使用するとエネルギー回生出力はゴムの20倍で
ある。しかしながら第2図の比較例のグラフで示される
有効伸び(A)は前記の如くもとの糸長さの約25%と小
さく同一減速比ではエネルギー回生時間が短いという問
題がある。すなわち、有効伸びの大きなものが望まれて
いる。
On the other hand, when a 3 times stretch treated yarn of polypropylene fiber is used for the purpose of storing energy and regenerating it by stretching the yarn like rubber power, the energy regeneration output is 20 times that of rubber. However, the effective elongation (A) shown in the graph of the comparative example of FIG. 2 is as small as about 25% of the original yarn length as described above, and there is a problem that the energy regeneration time is short at the same reduction ratio. That is, a material having a large effective elongation is desired.

なお、有効伸びは全伸度から塑性変形伸度部分をひい
たものである。
The effective elongation is the total elongation minus the plastic deformation elongation.

本発明はエネルギー回生弾性体としての有効伸度の大
きな繊維について鋭意検討した結果得られたものであ
り、ポリプロピレン繊維の延伸糸と同等のエネルギー回
生出力を有し、有効伸度のより大きなポリプロピレン繊
維を提供することを目的とする。
The present invention was obtained as a result of extensive studies on fibers having a large effective elongation as an energy regenerative elastic body, having an energy regeneration output equivalent to that of a drawn yarn of polypropylene fibers, and having a larger effective elongation. The purpose is to provide.

〔問題を解決するための手段〕[Means for solving problems]

本発明の多孔質ポリプロピレン繊維は、未延伸繊維を
軟化温度近傍の温度雰囲気下で伸張しその後急冷して得
られる比重が対応する重合体比重より小さい多孔質繊維
であり、その最高有効伸度が30%以上で、最高エネルギ
ー出力値が0.003kgfm/g以上であることを特徴とする。
The porous polypropylene fiber of the present invention is a porous fiber whose specific gravity obtained by stretching unstretched fiber under a temperature atmosphere near the softening temperature and then rapidly cooling is smaller than the corresponding polymer specific gravity, and its maximum effective elongation is It is characterized by a maximum energy output value of 0.003 kgfm / g or more at 30% or more.

本発明の多孔質ポリプロピレン繊維は、繊維比重が対
応するポリプロピレン重合体の0.91より小さいことが必
要である。繊維比重が小さいことは繊維が多孔質である
ことを意味している。この繊維比重は、対応する重合体
比重の75%以下であることが望ましく、繊維を伸長回復
を繰り返した時の放熱が良く、繊維温度が上昇しにく
く、エネルギー回生弾性体として優れた性質が得られる
からである。
The porous polypropylene fiber of the present invention needs to have a fiber specific gravity smaller than 0.91 of the corresponding polypropylene polymer. The small fiber specific gravity means that the fibers are porous. This fiber specific gravity is preferably 75% or less of the corresponding polymer specific gravity, good heat dissipation when the fiber is repeatedly stretched and recovered, the fiber temperature does not rise easily, and excellent properties as an energy regeneration elastic body are obtained. Because it will be done.

本発明の多孔質ポリプロピレン繊維の拡大電顕写真を
写真図として示す。第4図は1,500倍の単繊維(左側)
と左側の繊維の一部を10倍に拡大した15,000倍の単繊維
の電顕写真であり、表面に多孔質の模様が認められる。
第5図はさらに20,000倍に、第6図はさらに50,000倍に
拡大した表面の電顕写真である。第5図、第6図に示さ
れるように引き延ばされた多孔が並んでいるのが明瞭に
見られる。
An enlarged electron micrograph of the porous polypropylene fiber of the present invention is shown as a photograph. Figure 4 shows 1,500 times monofilament (left side)
And an electron micrograph of 15,000 times a single fiber in which a part of the fiber on the left side is magnified 10 times, and a porous pattern is recognized on the surface.
FIG. 5 is a 20,000 times magnification and FIG. 6 is a 50,000 times magnification electron microscope photograph of the surface. It can be clearly seen that the stretched porosity is lined up as shown in FIGS.

本発明の多孔質ポリプロピレン繊維は以下の方法によ
り製造される。通常のポリプロピレン重合体を紡糸して
得られる未延伸ポリプロピレン繊維を軟化温度近傍の温
度雰囲気下に定荷重を加えて3倍に伸長するまで上記温
度雰囲気下に保持した御、固化温度以下の温度に緊張下
に急冷して伸張を止め、荷重下にて放冷し室温になった
ら荷重を外すことにより得られる。
The porous polypropylene fiber of the present invention is manufactured by the following method. The unstretched polypropylene fiber obtained by spinning a normal polypropylene polymer is kept under the above temperature atmosphere until it is stretched 3 times by applying a constant load under a temperature atmosphere near the softening temperature. It can be obtained by quenching under tension to stop stretching, allowing to cool under load, and removing the load when it reaches room temperature.

上記工程において軟化温度近傍の温度雰囲気下に荷重
を加えると瞬間的に繊維が大きく伸張する。このとき繊
維にボイドが生成しているものと考えられる。ただし白
くなるのは瞬間的で直ぐ元の無色に戻る。
When a load is applied in the temperature atmosphere near the softening temperature in the above step, the fibers are instantly greatly expanded. At this time, it is considered that voids are generated in the fiber. However, it turns white instantly and immediately returns to its original colorlessness.

上記の方法で得た繊維(実施例)と通常の方法で3倍
伸長した延伸糸(比較例)との強伸度曲線(略称S−S
曲線)を比較したのが第1図である。本発明の多孔質ポ
リプロピレン繊維(実施例)は、弾性率が上記3倍伸長
した延伸糸(比較例)に比べて低くなり立上り部分の伸
びが大きくなっているが、引張強度は3倍伸長した延伸
糸と同程度の強度を有する。
A strength-elongation curve (abbreviation S-S) of the fiber (Example) obtained by the above method and the drawn yarn (Comparative Example) stretched 3 times by the usual method
The curves are compared in FIG. In the porous polypropylene fiber of the present invention (Example), the elastic modulus is lower than that of the stretched yarn (Comparative Example) stretched 3 times, and the elongation at the rising portion is increased, but the tensile strength is stretched 3 times. It has the same strength as the drawn yarn.

第1図に示すように比較例の3倍延伸処理したポリプ
ロピレン繊維は30kgf/mmまでコンスタントに延び70〜80
%の伸びで破断する。
As shown in FIG. 1, the polypropylene fiber of the comparative example, which has been stretched 3 times, has a constant elongation of 30 to 80 kgf / mm.
It breaks at an elongation of%.

第2図で示すように比較例の繊維に破断強度以下の応
力をかけたとき繊維は上方の曲線で延び、応力を減らす
と下方の曲線で繊維は縮む。このとき繊維は塑性変形を
起こし元の糸長さまで戻らない。次に同様の応力をかけ
ると戻った位置から出発し伸び応力を減らすと伸びた糸
長まで縮む。3回目以降はヒステリシスをほぼなぞった
形で伸縮する。このときの伸びを有効伸びと称し、この
伸びの収縮の際たどった曲線の下方部分の面積がエネル
ギー回生用として使用できる範囲である。
As shown in FIG. 2, when the stress of the breaking strength or less is applied to the fiber of the comparative example, the fiber extends in the upper curve, and when the stress is reduced, the fiber shrinks in the lower curve. At this time, the fibers undergo plastic deformation and do not return to the original yarn length. Next, when the same stress is applied, it starts from the returning position and when the elongation stress is reduced, the yarn length is contracted. After the third time, it expands and contracts in a shape that traces hysteresis. The elongation at this time is called the effective elongation, and the area of the lower part of the curve traced during the contraction of this elongation is the range that can be used for energy regeneration.

第2図は繰り返し伸張した場合の強伸度−回復曲線の
グラフで従来品の比較例では伸度の回復が25%(A)で
あるのに対して上記で製造して得られた本発明の多孔質
糸の伸度の回復が40%(B)である。したがって、最高
有効伸度が30%以上であればエネルギー出力値が0.003k
gfm/g以上となり回生エネルギー弾性体として使用可能
となる。
FIG. 2 is a graph of the strength-elongation-recovery curve when repeatedly stretched, whereas the recovery of the elongation is 25% (A) in the comparative example of the conventional product, and the present invention obtained by the above-mentioned production. The recovery of the elongation of the porous yarn is 40% (B). Therefore, if the maximum effective elongation is 30% or more, the energy output value will be 0.003k.
It becomes gfm / g or more and can be used as a regenerative energy elastic body.

本発明のエネルギー出力値は以下の様に定義説明され
る。
The energy output value of the present invention is defined and explained as follows.

図2に基づき説明すると、弾性体の断面積をS(m
m2)、弾性体の長さl(m)としたときS−S曲線の下
方の三角形abcの面積(エネルギー)は1/2×F(kgf/mm
2)×S(mm2)×l(m)×(B−A)/100=E(kgf/
m)となり出力エネルギーはE=(abcのハッチング部分
の面積)/(△abcの面積)(kgf/m)で表される。
Referring to FIG. 2, the cross-sectional area of the elastic body is S (m
m 2 ), and the length l (m) of the elastic body, the area (energy) of the triangle abc below the SS curve is 1/2 × F (kgf / mm
2 ) x S (mm 2 ) x 1 (m) x (BA) / 100 = E (kgf /
m) and the output energy is represented by E = (area of hatched portion of abc) / (area of Δabc) (kgf / m).

第2図中のハッチング部分はエネルギー回生量を示し
ており実施例および比較例の両者においてほぼ同一の面
積を有している。したがって両者のエネルギー回生量は
同じで0.004kgfm/gある。そして、エネルギー回生弾性
体として有効伸度は30%以上有している。
The hatched portion in FIG. 2 indicates the amount of energy regeneration, and has substantially the same area in both the example and the comparative example. Therefore, the amount of energy regenerated by both is the same, and is 0.004 kgfm / g. And, it has an effective elongation of 30% or more as an energy regeneration elastic body.

(実施例) 以下実施例により具体的に説明する。(Example) Hereinafter, a specific description will be given with reference to an example.

本発明の多孔質ポリプロピレン繊維は以下のようにし
て製造した。ポリプロピレンホモポリマー(E103D宇部
興産株製)メルトインデックス値が3の重合体を用い25
0℃の紡糸温度で0.7ψ×30孔のノズルを用いドラフト率
210で風温19℃、風速0.45m/分の風をあてて冷却固化し
て未延伸糸を製造した。この未延伸糸を第3図に示す方
法により張力下熱処理を行った。即ち丸棒11に繊維15を
巻き付け耐熱弾性体12を介して押え板13にて繊維15をは
さみ込む。ついで繊維15の下端を丸棒に巻きつけて140
℃に保ったオーブンに入れ、3〜10kgfm/gの荷重のおも
りを丸棒16に取りつける。繊維長が元の長さの3倍に延
伸した時点でオーブンの口を開き3〜10kgfm/gの荷重が
かかった状態にて空気中で冷却する。つまり紡糸後のポ
リプロピレン繊維を120〜150℃に加熱しその状態で3〜
10kgfm/g(5.5kgfm/g)の荷重応力にて張力下熱処理を
施すことにより、第1図に示したように通常の3倍延伸
糸に比べ弾性率が低く伸びの大きい弾性糸が得られた。
得られた繊維の配向度及び結晶化度は、従来の3倍延伸
糸に比べて小さく延伸過程にて何らかの差がありその結
果上記の特性が得られたと思われる。偏光顕微鏡により
測定した配向度n×10-3は19であり赤外吸収スペクトル
法による結晶化度は72.0%であった。紡糸後の配向度は
20で、従来の3倍延伸糸の配向度は34であり結晶化度は
85%であった。また、本実施例の繊維と従来品の3倍延
伸繊維についての性質を比較した値を表1に示す。
The porous polypropylene fiber of the present invention was manufactured as follows. Polypropylene homopolymer (E103D Ube Industries, Ltd.) Polymer with melt index value of 3 25
Draft ratio using 0.7φ × 30 hole nozzle at spinning temperature of 0 ℃
At 210, a wind temperature of 19 ° C. and a wind speed of 0.45 m / min were applied to cool and solidify to produce an undrawn yarn. This undrawn yarn was heat-treated under tension by the method shown in FIG. That is, the fiber 15 is wound around the round bar 11 and the fiber 15 is sandwiched by the pressing plate 13 via the heat resistant elastic body 12. Then, wrap the lower end of the fiber 15 around the round bar and
Put it in an oven kept at ℃ and attach a weight with a load of 3 to 10 kgfm / g to the round bar 16. When the fiber length has been stretched to three times the original length, the mouth of the oven is opened and cooling is performed in the air under a load of 3 to 10 kgfm / g. That is, the polypropylene fiber after spinning is heated to 120 to 150 ° C.
By applying heat treatment under tension with a load stress of 10 kgfm / g (5.5 kgfm / g), an elastic yarn having a lower elastic modulus and a larger elongation than that of a normal 3-fold drawn yarn can be obtained as shown in FIG. It was
The orientation degree and crystallinity of the obtained fiber were smaller than those of the conventional 3 times drawn yarn, and there was some difference in the drawing process, and as a result, it is considered that the above characteristics were obtained. The degree of orientation n × 10 −3 measured by a polarization microscope was 19, and the crystallinity by infrared absorption spectroscopy was 72.0%. The degree of orientation after spinning is
The degree of orientation of the conventional 3 times drawn yarn is 34 and the crystallinity is 20
It was 85%. Table 1 shows values comparing the properties of the fiber of this example and the conventional three-fold stretched fiber.

表1に示すように本実施例の繊維は有効伸びが40%で
ある。また比重はポリプロピレンの0.91に比べ0.54と小
さく多孔質繊維となっている。
As shown in Table 1, the fiber of this example has an effective elongation of 40%. In addition, the specific gravity is 0.54, which is smaller than that of polypropylene, which is 0.91, making it a porous fiber.

〔発明の効果〕 本発明の多孔質ポリプロピレン繊維は、従来の3倍延
伸糸と同じエネルギー出力を維持して40%の伸張率での
繰り返し荷重を受けるエネルギー回生弾性糸として使用
が可能となった。従来の3倍延伸糸の上記の伸張率は25
%であり有効伸びの点でも優れている。また拡大写真図
に示す如く本発明の多孔質繊維はその孔の多くまたは一
部が繊維表面に開口しており、繊維の放熱性が優れてお
り、またクリープ量の減少により繊維の高寿命化を図れ
る。よってエネルギー回生用弾性体として利用が可能で
ある。
[Advantages of the Invention] The porous polypropylene fiber of the present invention can be used as an energy-regenerative elastic yarn that maintains the same energy output as that of a conventional 3-times stretched yarn and is subjected to a repeated load at an elongation rate of 40%. . The above-mentioned extension ratio of the conventional 3 times drawn yarn is 25
%, Which is also excellent in effective elongation. Further, as shown in the enlarged photograph, in the porous fiber of the present invention, most or part of the pores are opened on the fiber surface, the heat dissipation of the fiber is excellent, and the life of the fiber is extended by reducing the creep amount. Can be achieved. Therefore, it can be used as an elastic body for energy regeneration.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の3倍延伸糸と本実施例糸のS−S曲線で
あり、第2図は第1図の糸を繰り返し伸張した場合の強
伸度−回復曲線のグラフであり、第3図は実施例の張力
下の熱処理工程の説明図である。第4図〜第6図は本発
明の多孔質繊維の表面の拡大写真で電子顕微鏡による倍
率を第4図は左側が1,500倍右側が15,000倍、第5図は2
0,000倍、第6図は50,000倍で撮影したものである。 11……丸棒、12……耐熱弾性体、13……押え板、14……
留具、15……繊維、16……オモリ
FIG. 1 is an S-S curve of a conventional triple draw yarn and a yarn of this example, and FIG. 2 is a graph of a strength-elongation-recovery curve when the yarn of FIG. 1 is repeatedly stretched. FIG. 3 is an explanatory diagram of a heat treatment process under tension in the example. FIGS. 4 to 6 are enlarged photographs of the surface of the porous fiber of the present invention, and the magnification of the surface under an electron microscope is 1,500 times on the left side and 15,000 times on the right side, and FIG.
The image was taken at a magnification of 0,000 and in Fig. 6 at 50,000. 11 …… Round bar, 12 …… Heat resistant elastic body, 13 …… Presser plate, 14 ……
Fastener, 15 …… Fiber, 16 …… Weight

───────────────────────────────────────────────────── フロントページの続き (72)発明者 戸田 和昭 岐阜市薮田579の1 宇部日東化成株式 会社内 (56)参考文献 特開 昭55−22097(JP,A) 特公 昭61−46564(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuaki Toda 1 579 Yabuta, Gifu City Ube Nitto Kasei Co., Ltd. (56) References JP 55-22097 (JP, A) JP 61-46564 ( JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】未延伸繊維を軟化温度近傍の温度雰囲気下
で伸張しその後急冷して得られる比重が対応する重合体
比重より小さい多孔質繊維であり、その最高有効伸度が
30%以上で、最高エネルギー出力値が0.003kgfm/g以上
であることを特徴とする多孔質ポリプロピレン繊維。
1. A porous fiber having a specific gravity smaller than that of a corresponding polymer, which is obtained by stretching an undrawn fiber in a temperature atmosphere near the softening temperature and then rapidly cooling it, and has a maximum effective elongation.
A porous polypropylene fiber characterized by having a maximum energy output value of 0.003 kgfm / g or more at 30% or more.
JP62084442A 1987-04-06 1987-04-06 Porous polypropylene fiber Expired - Fee Related JP2543360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62084442A JP2543360B2 (en) 1987-04-06 1987-04-06 Porous polypropylene fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62084442A JP2543360B2 (en) 1987-04-06 1987-04-06 Porous polypropylene fiber

Publications (2)

Publication Number Publication Date
JPS63249711A JPS63249711A (en) 1988-10-17
JP2543360B2 true JP2543360B2 (en) 1996-10-16

Family

ID=13830708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62084442A Expired - Fee Related JP2543360B2 (en) 1987-04-06 1987-04-06 Porous polypropylene fiber

Country Status (1)

Country Link
JP (1) JP2543360B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430119A (en) * 1991-06-11 1995-07-04 Mitsui Petrochemical Industries, Ltd. Stretched molded article of ultra-high-molecular weight polypropylene and process for the preparation of the same
CN106811815B (en) * 2015-12-02 2020-01-31 中国科学院化学研究所 porous polyolefin fibers containing micro-nano holes and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2833568C2 (en) * 1978-07-31 1987-02-12 Akzo Gmbh, 5600 Wuppertal Porous threads
JPS6146564A (en) * 1984-08-13 1986-03-06 Hitachi Ltd Method and device for automatically generating constitution of arrangement by size

Also Published As

Publication number Publication date
JPS63249711A (en) 1988-10-17

Similar Documents

Publication Publication Date Title
US4734311A (en) Elasticized non-woven fabric and method of making the same
KR900702096A (en) Stretched polyethylene terephthalate yarn manufacturing process and stretched polyethylene terephthalate multifilament yarn manufactured therefrom
EP0348887A2 (en) Porous polyethylene fibers
US5051216A (en) Process for producing carbon fibers of high tenacity and modulus of elasticity
JP2543360B2 (en) Porous polypropylene fiber
JPS6375136A (en) Polyester cord having dimensional stability and its production
JPH08158229A (en) Production of nonwoven fabric
US4112059A (en) Process for the production of carbon filaments utilizing an acrylic precursor
JP4266247B2 (en) Production method of polypropylene fiber
JP2000239921A (en) Production of polyester fiber
JP2776017B2 (en) Polyphenylene sulfide fiber and method for producing the same
JP2006002294A (en) Nonwoven fabric of flameproof fiber, nonwoven fabric of carbon fiber and production method thereof
JP3164169B2 (en) Crimped fiber
JP2000073230A (en) Production of polyester fiber
KR20170108615A (en) Tirecord and spandex using using piezoelectric fiber, energy harvester using the same and manufaturing method thereof
JP2887380B2 (en) Highly shrinkable polyphenylene sulfide monofilament and method for producing the same
JPH11100780A (en) Artificial leather comprising high hollow polyester fiber
JPH05261184A (en) Cushion material and manufacture thereof
JPH0329890B2 (en)
JP2815490B2 (en) Aromatic copolyamide fiber and method for producing the same
JP3266712B2 (en) Composite fiber
JP2000178827A (en) Staple fiber for cushioning material, cushioning material and their production
JPH0151565B2 (en)
JP2000178828A (en) Production of polyester fiber
JP2549773B2 (en) Composite fiber and its manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees