JP2541722B2 - Fault location method for DC parallel feeding circuit of electric railway - Google Patents

Fault location method for DC parallel feeding circuit of electric railway

Info

Publication number
JP2541722B2
JP2541722B2 JP3355901A JP35590191A JP2541722B2 JP 2541722 B2 JP2541722 B2 JP 2541722B2 JP 3355901 A JP3355901 A JP 3355901A JP 35590191 A JP35590191 A JP 35590191A JP 2541722 B2 JP2541722 B2 JP 2541722B2
Authority
JP
Japan
Prior art keywords
current
fault
substation
failure
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3355901A
Other languages
Japanese (ja)
Other versions
JPH05172892A (en
Inventor
利勝 伊東
健 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
EIRAKU DENKI KK
Original Assignee
Railway Technical Research Institute
EIRAKU DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, EIRAKU DENKI KK filed Critical Railway Technical Research Institute
Priority to JP3355901A priority Critical patent/JP2541722B2/en
Publication of JPH05172892A publication Critical patent/JPH05172892A/en
Application granted granted Critical
Publication of JP2541722B2 publication Critical patent/JP2541722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気鉄道の直流並列き
電回路の故障点標定技術に係り、直流並列き電回路に短
絡事故が発生したときに、その故障区間にき電している
両側の変電所で採取した、き電故障電流データ群からき
電回路の事故点の位置を算出する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fault point locating technique for a DC parallel feeding circuit of an electric railway, and when a short circuit accident occurs in the DC parallel feeding circuit, electricity is supplied to the fault section. The present invention relates to a method of calculating the position of a fault point of a feeder circuit from a feeder failure current data group collected at substations on both sides.

【0002】[0002]

【従来の技術】電力会社の交流高圧送電系統における故
障点を標定するために、従来種々の方式が提案されてい
る。しかし、電気鉄道における、電車線(トロリー)に
対するき電(給電)は、一般的に直流き電である点と、
一本の系統を複数の区間に分割し各区間に対して2つの
変電所により並列き電する点とが、技術的に著しく相違
している。
2. Description of the Related Art Conventionally, various methods have been proposed for locating a failure point in an AC high voltage transmission system of a power company. However, in the electric railway, the feeder (feeding) for the trolley line is generally a DC feeder,
It is technically very different from the point that one system is divided into a plurality of sections and two substations are fed in parallel for each section.

【0003】直流並列き電区間では、変電所のき電々圧
値や、変電所の内部抵抗値の大小により同じ故障現象に
おいても隣接する変電所間の故障電流の分担率が変わ
り、また故障点の状況は一定ではないので同一地点での
故障でも故障電流の大きさは場合場合で異なる。また、
電気鉄道特有の条件として、移動する負荷という形で列
車が選択的に介在することが挙げられる。そして、故障
区間に列車が居るか居ないかで故障状況が異なるので、
直流き電回路の故障点標定は、この分野では長い間の未
解決の課題としており、今までにも、いくつかの方式提
案がなされているが実用化された技術はまだない。
In the DC parallel feeding section, the share of the fault current between the adjacent substations changes depending on the magnitude of the feeding voltage value of the substation and the magnitude of the internal resistance value of the substation. Since the situation is not constant, the magnitude of the fault current varies depending on the case even if the fault occurs at the same point. Also,
A condition unique to electric railways is that trains selectively intervene in the form of moving loads. And since the failure situation differs depending on whether there is a train in the failure section,
Locating a fault point in a DC feeding circuit has been an unsolved problem in this field for a long time, and some methods have been proposed so far, but no technique has been put into practical use yet.

【0004】[0004]

【発明が解決しようとする課題】上述の通り、従来提案
され未だ実用化されていない諸方式は、いずれも適用制
限付きのものであり、例えば、列車がいない場合であれ
ば標定可能、とか対応する変電所の電圧が等しい場合で
あれば標定できる、とかいうものであり、複雑な現象に
オールマイテイに適用可能なものではなかったので、こ
のような問題点を解決課題とした。本発明は、故障点の
故障状況の差異等にかかわらず、オールマイテイに故障
点を標定することのできる方式を提供するものである。
As described above, all of the methods proposed in the past and not yet put into practical use are limited in application. For example, if there is no train, it can be located. If the voltage of the substation is equal, it can be located, and it was not applicable to complex phenomena in almighty manner. The present invention provides a method capable of locating a failure point in an almighty manner regardless of the difference in the failure conditions at the failure point.

【0005】[0005]

【課題を解決するための手段】列車負荷を定電流負荷と
考え、且つ故障電流は故障発生時にしゃ断器によるしゃ
断がなかったとして推定最大電流値を考えて、故障にも
とずく電流増分に着目して故障電流推定増分を算出し、
両変電所における故障電流分担率にもとずいて一方の変
電所から故障点までの距離を計算できるようにした。
[Means for Solving the Problems] Considering the train load as a constant current load, and considering the estimated maximum current value as the fault current assuming that there was no interruption by a circuit breaker when a fault occurred, focus on the current increment based on the fault. To calculate the fault current estimation increment,
The distance from one substation to the fault point can be calculated based on the fault current sharing rate at both substations.

【0006】[0006]

【実施例】先づ本発明の原理について説明する。図2は
標準的な直流き電回路を示す図であって、AおよびBは
対向する変電所、1は変電所A、Bから並列にき電を受
ける電車線である。変電所A、Bからのき電は、2A、
2Bのしゃ断器を通して行われている。3A、3Bは、
き電々流を読み取り異常電流を検出した場合にしゃ断器
2A、2Bにトリップ信号を出力する故障選択装置であ
る。この故障選択装置3A、3Bは、CT(変流器)4
A、4Bに結合され、き電々流を常時監視している。図
2において、Eは列車点、Fはき電回路故障点を示して
いる。故障が発生するとしゃ断器2A、2Bがトリップ
する。
The principle of the present invention will be described first. FIG. 2 is a diagram showing a standard DC feeding circuit, in which A and B are substations facing each other, and 1 is an electric line that receives feeding from the substations A and B in parallel. Feeding from substations A and B is 2A,
It is performed through the 2B circuit breaker. 3A and 3B are
It is a failure selection device that outputs a trip signal to the circuit breakers 2A and 2B when reading an electric current and detecting an abnormal current. The failure selection devices 3A and 3B are provided with a CT (current transformer) 4
It is connected to A and 4B and constantly monitors the electric current. In FIG. 2, E indicates a train point and F indicates a feeding circuit failure point. If a failure occurs, the circuit breakers 2A and 2B will trip.

【0007】図3は、図2において、故障が発生したと
きの故障電流現象を定常直流解析する場合の等価回路で
ある。過渡現象解析は行わないので、回路のインダクタ
ンス分が捨象されている。図3に示す記号の意味は以下
の通りである。 EA ,EB :変電所電圧 RoA,RoB :変電所内部抵抗 RA1,RA2,RB :き電回路抵抗(単位Km当りrオーム
/Kmとして、き電回路の距離に比例する) IA ,IB :変電所のき電々流 IE :E点の列車の負荷電流 IF :F点の故障電流 D :変電所間の距離 d :A変電所から故障点Fまでの距離 上記のうち、事前に分かっているのは、EA ,EB ,R
oA,RoB,Dおよびき電線抵抗rオーム/Kmの各値であ
る。
FIG. 3 is an equivalent circuit for steady-state DC analysis of the fault current phenomenon when a fault occurs in FIG. Since the transient analysis is not performed, the inductance of the circuit is omitted. The meanings of the symbols shown in FIG. 3 are as follows. EA, EB: Substation voltage RoA, RoB: Substation internal resistance RA1, RA2, RB: Feeding circuit resistance (r ohm / Km per unit Km, proportional to feeding circuit distance) IA, IB: Substation Noki Denryoku IE: load current of train at point E IF: failure current at point F D: distance between substations d: distance from substation A to failure point F Among the above, it is known in advance , EA, EB, R
Values are oA, RoB, D and feeder resistance r ohm / Km.

【0008】F点に故障が発生し、故障点に電流IF が
流れたとする。現実には、F点の故障電流が十分に大き
くなり切る前に、変電所のしゃ断器が遮断して故障電流
は流れなくなるのであるが、ここでは、しゃ断器のしゃ
断がなかったとして故障電流が充分に大きく(飽和値
に)なったとしたときの電流値(これを「推定最大電流
値」と称している)をIF とする。E点の列車負荷を定
電流負荷と考えるならば、電気回路現象の重ねの定理に
より、図3の回路現象は図4の(1)の回路現象と図4
の(2)の回路現象の和となる。すなわち、 IA =IA ′+IA ″ IB =IB ′+IB ″ となる。
It is assumed that a failure occurs at point F and a current IF flows at the failure point. In reality, before the fault current at point F becomes sufficiently large, the circuit breaker at the substation shuts off and the fault current stops flowing. However, here, the fault current is assumed to have not been interrupted by the circuit breaker. Let IF be the current value when it becomes sufficiently large (saturation value) (this is called the “estimated maximum current value”). If the train load at point E is considered to be a constant current load, the circuit phenomenon of FIG. 3 is the same as the circuit phenomenon of (1) of FIG.
(2) is the sum of the circuit phenomena. That is, IA = IA '+ IA "IB = IB' + IB".

【0009】図4(2)の回路により故障電流IF は、
IA ″と IB ″に分担されており、それぞれ、
With the circuit of FIG. 4B, the fault current IF is
It is divided into IA "and IB".

【数3】 であり、A,B変電所の故障電流IF の分担率εは、(Equation 3) And the share ε of the fault current IF of the A and B substations is

【数4】 である。[Equation 4] Is.

【0010】F点がA変電所点(d=0点)で生じた場
合は、
When the F point occurs at the A substation point (d = 0 point),

【数5】 となる。ここで、εo (A),εD (A),Dは既知で
あるから、故障による各変電所の増分電流のA変電所の
分担率 ε (A)を得れば、式(6)よりA変電所から
故障点までの距離が算出できることになる。この関係を
図表化して図5に示す。
(Equation 5) Becomes Here, since ε o (A), ε D (A), and D are known, if the substation share rate ε (A) of the incremental current of each substation due to a failure is obtained, A from Equation (6) The distance from the substation to the fault point can be calculated. This relationship is tabulated and shown in FIG.

【0011】以上の説明において、変電所間に列車負荷
があるときは、図4(1)のIA ′IB ′は故障直前の
実際のき電電流値に相当し、図4(2)のIA ″,IB
″は故障による実際のき電電流の増分に相当する。一
方、変電所間に列車負荷がないときは、図3および図4
(1)において、IE =0となるわけであるが、図4
(1)においてはEA とEB の電位差に基づくループ電
流が流れる。
In the above description, when there is a train load between the substations, IA'IB 'in FIG. 4 (1) corresponds to the actual feeding current value immediately before the failure and IA' in FIG. 4 (2). ″, IB
″ Corresponds to the actual increment of feeding current due to a failure. On the other hand, when there is no train load between the substations,
In (1), IE = 0, which is shown in FIG.
In (1), a loop current based on the potential difference between EA and EB flows.

【0012】ところで、現実のき電回路においては、電
源EA ,EB は交流電力を整流器によって整流して得て
いるため、整流器の逆方向電流阻止特性に妨害されて、
この循環電流は流れない。
By the way, in the actual feeding circuit, since the power supplies EA and EB are obtained by rectifying the AC power by the rectifier, they are disturbed by the reverse current blocking characteristic of the rectifier.
This circulating current does not flow.

【0013】すなわち、列車負荷がないときには、図4
(1)のIA ′,IB ′は故障直前の実際のき電電流に
相当せず、計算上で得られる「仮想循環電流」に相当す
る。この「仮想循環電流」は、EA ,EB の電位差およ
びループ回路の総抵抗値(RoA+RA1+RA2+RB +R
oB)によって計算されるものであり、事前に分かってい
る値である。また列車負荷がないときの図4(2)のI
A ″,IB ″は、故障によるき電電流の実際の増分に相
当せず、故障による実際の電流増分は図3のIA ,IB
がこれに相当する。
That is, when there is no train load, FIG.
IA 'and IB' in (1) do not correspond to the actual feeding current immediately before the failure, but to the "virtual circulating current" obtained by calculation. This "virtual circulating current" is the potential difference between EA and EB and the total resistance value of the loop circuit (RoA + RA1 + RA2 + RB + R).
oB), which is a value known in advance. In addition, I in Fig. 4 (2) when there is no train load
A ″ and IB ″ do not correspond to the actual increment of the feeding current due to the failure, and the actual current increment due to the failure is IA and IB in FIG.
Corresponds to this.

【0014】つまり、列車負荷がないときには、図4
(1)のIA ′,IB ′は「仮想循環電流」がこれに相
当し、図4(2)のIA ″,IB ″は故障によるき電電
流増分IA ,IB から「仮想循環電流」を差し引いたも
のに相当する。従って、列車負荷の有無がき電電流現象
から判別できれば、図4(2)のIA″,IB″の算出が
可能となり、式(6)による故障点の計算ができるはず
である。
That is, when there is no train load, FIG.
The "virtual circulating current" corresponds to IA 'and IB' in (1), and IA "and IB" in FIG. 4 (2) subtract the "virtual circulating current" from the feeding current increments IA and IB due to the failure. It is equivalent to Therefore, if the presence / absence of train load can be determined from the feeding current phenomenon, IA ″ and IB ″ in FIG. 4 (2) can be calculated, and the failure point can be calculated by the equation (6).

【0015】ここで、故障直前のき電電流値Io (A)
およびIo (B)がともに0であれば列車負荷なしとみ
なし、いずれか一方でも0でなければ列車負荷ありとみ
なすこととすれば、Io (A)=Io (B)=0のとき
は、故障時の実際の電流の増分から仮想循環電流を差し
引いたものを故障による電流増分とみなし、Io (A)
またはIo (B)のいずれか一方でも0でないときに
は、故障時の実際の電流増分そのものを故障による電流
の増分とみなすことによって、故障点の計算ができるこ
とになる。
Here, the feeding current value Io (A) immediately before the failure
If both Io (B) and Io (B) are 0, it is considered that there is no train load, and if either one is not 0, it is considered that there is a train load. When Io (A) = Io (B) = 0, The value obtained by subtracting the virtual circulating current from the increment of the actual current at the time of failure is regarded as the current increment due to the failure, and Io (A)
Alternatively, when either one of Io (B) is not 0, the failure point can be calculated by regarding the actual current increment at the time of failure as the current increment due to the failure.

【0016】以上に述べた本発明の方式原理の核心は、
故障時の電気現象の中から故障に基づく電流増分に注目
したところにあり、このことによって、列車の有無、変
電所電圧の高低、変電所容量の大小、故障点状況の差異
等を全てクリアした故障点標定が可能となる。
The core of the system principle of the present invention described above is as follows.
Among the electrical phenomena at the time of failure, we focused on the current increment due to the failure, and by doing this, we cleared all the existence of trains, high and low substation voltage, size of substation capacity, difference in fault point situation, etc. Fault location is possible.

【0017】図1は、本発明の実施例を示す概念構成図
である。図2と同一のものには同一の番号を付してい
る。6A,6Bが本発明の変電所側に設けられる故障電
流収集装置で、CT(変流器)5A,5Bと結合され
て、き電々電流を常時監視する。6A,6Bの故障電流
収集装置は、き電々流を常時サンプリングしデイジタル
化して読み取り、デイジタル変換されたデータ列を元に
故障を判別検出する故障検出部7A,7B及び、故障検
出時点の前後一定時間の電流データを記憶して中央へ伝
送する故障電流記憶部8A,8Bから構成される。
FIG. 1 is a conceptual block diagram showing an embodiment of the present invention. The same parts as those in FIG. 2 are designated by the same reference numerals. 6A and 6B are fault current collecting devices provided on the substation side of the present invention, which are connected to CTs (current transformers) 5A and 5B to constantly monitor the feeding current. The fault current collectors 6A and 6B constantly sample the feeding current, digitize and read the fault current, and fault detectors 7A and 7B that discriminate and detect faults based on the digitally converted data string, and a constant before and after the fault detection time. It is composed of fault current storage units 8A and 8B that store time current data and transmit it to the center.

【0018】図6(1)及び(2)は、故障電流をA変
電所及びB変電所で見た電流波形の例を示したもので、
故障検出部7A,7Bは、電流の急激な立ち上がりを見
て、A変電所は図6(1)のta 点で故障検出し、B変
電所は図6(2)のtb 点で故障検出したことを示して
いる。故障検出前後の一定時間のデータ(実際には前後
各100ms〜200ms分)を記憶すれば、以後の中央で
の演算処理に必要なデータは収集できる。
FIGS. 6 (1) and 6 (2) show examples of current waveforms of fault currents observed at the A and B substations.
The failure detection units 7A and 7B detect the failure at the substation A at point ta in FIG. 6 (1) and the failure at the substation B at point tb in FIG. It is shown that. By storing the data for a certain time before and after the failure detection (actually, 100 ms to 200 ms each before and after the failure), the data necessary for the subsequent arithmetic processing in the center can be collected.

【0019】図1のCは中央指令所で、この中に設けら
れる中央側の故障点演算装置9は、対応故障データ抽出
部10、抽出されたデータを元に推定最大電流値Imax
(A) ,Imax (B)を算出する推定最大電流演算部1
1、および推定最大電流値と故障直前の電流値 Io
(A),Io (B)から故障電流推定増分 ΔImax
(A),ΔImax (B)を算出し、各変電所の推定増分
分担率 ε(A),ε(B)を算出し、前もって入力さ
れている変電所定数(電圧値、容量、内部抵抗)、き電
回路定数(単位長当り電線路抵抗)、変電所間距離、を
元に前述(6)式の演算を行なう故障点標定部12とか
ら構成される。なお、故障点演算装置9は、中央指令所
に設置すべき必要はなく、任意の他の場所に設置し遠隔
制御してもよい。
C in FIG. 1 is a central command station, and the central fault point arithmetic unit 9 provided therein has a corresponding fault data extraction unit 10 and an estimated maximum current value Imax based on the extracted data.
Estimated maximum current calculation unit 1 for calculating (A) and Imax (B)
1, and estimated maximum current value and current value immediately before failure Io
Failure current estimation increment ΔImax from (A) and Io (B)
(A), ΔImax (B) are calculated, and the estimated incremental share ratios ε (A) and ε (B) of each substation are calculated, and a predetermined number of substations (voltage value, capacity, internal resistance) input in advance are calculated. , A fault point locating unit 12 that performs the calculation of the above equation (6) based on the feeder circuit constant (electric line resistance per unit length) and the distance between substations. The failure point calculation device 9 does not have to be installed in the central command station, but may be installed in any other place and remotely controlled.

【0020】図7は中央側の故障点演算装置での動作説
明図である。故障電流データは、各変電所から時刻付き
データとして送られてくるので、対応故障データ抽出部
10によっておおよそA,Bデータのつき合わせを行な
った後、A変電所データについてはその波形から図7の
(1)の(a)点を見出し、B変電所データについては
その波形から図7の(2)の(b)点を見出し、次い
で、A,B変電所データのうち、推定最大電流値を算出
するためのデータ群701A,701Bを抽出する。こ
のデータ群はA,Bデータ群の中の同一時間帯のデータ
を抽出する。次いで推定最大電流演算部11で図7に図
示したImax (A),Imax (B)を算出する。このI
max (A),Imax (B)は、原理説明で用いた図3の
IA ,IBに相当するものである。
FIG. 7 is a diagram for explaining the operation of the failure point calculating device on the center side. Since the fault current data is sent from each substation as time-stamped data, the corresponding fault data extracting unit 10 roughly matches the A and B data, and then the A substation data is shown in FIG. The point (a) in (1) is found, the point (b) in (2) of FIG. 7 is found from the waveform for the B substation data, and then the estimated maximum current value of the A and B substation data is found. Data groups 701A and 701B for calculating are extracted. This data group extracts data in the same time zone from the A and B data groups. Next, the estimated maximum current calculator 11 calculates Imax (A) and Imax (B) shown in FIG. This I
max (A) and Imax (B) correspond to IA and IB in FIG. 3 used in the explanation of the principle.

【0021】故障点標定部12では、故障直前電流値
[ 図7のIo (A),Io (B)]を算出し、Io
(A)=Io (B)=0の場合には、既定の仮想循環電
流をもってIo (A),Io (B)とみなし、Io
(A)またはIo (B)の少なくとも一方が0でない場
合には、読み取った値をそのままIo (A),Io
(B)とみなして、これとImax (A),Imax (B)
とより、故障電流推定増分ΔImax(A),ΔImax
(B)を算出し、次いで既に述べた算式(6)によって
故障点を算出し、適当な出力手段によって、人間に伝達
する。
In the fault point locator 12, the current value immediately before the fault is
[Io (A), Io (B) in FIG. 7] is calculated, and Io
When (A) = Io (B) = 0, the predetermined virtual circulating current is regarded as Io (A) and Io (B), and Io
If at least one of (A) and Io (B) is not 0, the read value is Io (A), Io
(B), and Imax (A) and Imax (B)
And the fault current estimation increments ΔImax (A), ΔImax
(B) is calculated, then the failure point is calculated by the above-described formula (6), and the result is transmitted to a human by an appropriate output means.

【発明の効果】以上説明したように本発明は、強い要望
にも拘わらず実用に耐える方法が見出せなかったため実
用化できなかった、電気鉄道の直流並列き電回路の故障
点標定の問題を解決する道を開いた。即ち、本発明は故
障電流の増分の2変電所間での分担率に着目することに
より、列車の有無、変電所の電圧差、容量差などの複雑
な現実条件を捨象して故障点を算出できるので、原理的
に実用に耐え、故障点の探索及び事故復旧を早めること
ができる。
As described above, the present invention solves the problem of locating a fault point in a DC parallel feeder circuit of an electric railway, which could not be put into practical use because a method for withstanding practical use could not be found despite strong demand. Opened the way to. That is, the present invention focuses on the share of the increment of the fault current between the two substations to calculate the fault point by omitting complicated actual conditions such as the presence / absence of a train, the voltage difference at the substation, and the capacity difference. Therefore, in principle, it can be put to practical use, and the search for a failure point and the recovery from an accident can be accelerated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】標準的な直流き電回路を示す図である。FIG. 2 is a diagram showing a standard DC feeding circuit.

【図3】故障が発生したときの等価回路を示す図であ
る。
FIG. 3 is a diagram showing an equivalent circuit when a failure occurs.

【図4】図3の等価回路図を(1),(2)に分解して
示した図である。
FIG. 4 is an exploded view of the equivalent circuit diagram of FIG. 3 into (1) and (2).

【図5】故障点までの距離関係を示す図である。FIG. 5 is a diagram showing a distance relationship to a failure point.

【図6】故障電流をA変電所で見た波形図(1)および
B変電所で見た波形図(2)である。
FIG. 6 is a waveform diagram (1) of the fault current as seen at the A substation and a waveform diagram (2) as seen at the B substation.

【図7】中央指令所における故障点演算装置の動作説明
図である。
FIG. 7 is an operation explanatory diagram of the failure point calculation device in the central command station.

【符号の説明】[Explanation of symbols]

1 電車線 1′ レール 2A,2B しゃ断器 3A,3B 故障選択装置 4A,4B,5A,5B CT(変流器) 6A,6B 故障電流収集装置 7A,7B 故障検出部 8A,8B 故障電流記憶部 9 故障点演算装置 10 対応故障データ抽出部 11 推定最大電流演算部 12 故障点標定部 A,B 変電所 C 中央指令所 D 変電所間の距離 E 列車点 F 故障点 d A変電所から故障点Fまでの距離 1 Train line 1'Rail 2A, 2B Circuit breaker 3A, 3B Fault selection device 4A, 4B, 5A, 5B CT (current transformer) 6A, 6B Fault current collecting device 7A, 7B Fault detection unit 8A, 8B Fault current storage unit 9 Fault point calculator 10 Corresponding fault data extractor 11 Estimated maximum current calculator 12 Fault point locator A, B Substation C Central command station D Distance between substations E Train point F Fault point d A Fault point from substation Distance to F

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電気鉄道直流並列き電回路の対応する2
つの変電所A,Bの各々において、変電所出口のき電回
路電流値を常時サンプリングして読み取り、電流変化を
監視しており、故障電流が発生したとき故障を判別検出
する故障検出部7A,7Bおよび故障電流検出時点の前
後の電流データを記憶し伝送する故障電流記憶部8A,
8Bとからなる変電所側の故障電流収集装置6A,6B
と、 中央指令所Cにおいて、2つの変電所の故障電流記憶部
から伝送されてくる故障電流データを受信し2つの電流
データ群の中から故障現象に対応する時間帯のデータを
抽出する対応故障データ抽出部10と、抽出されたデー
タから故障電流の推定最大電流値 Imax (A), Ima
x (B)を推定演算する推定最大電流演算部11と、事
故直前の電流値 Io (A),Io (B)を読み取り、
Io (A)=Io (B)=0の場合には、既定値として
入力されている仮想循環電流をもってIo (A),Io
(B)とみなし、またIo (A)またはIo (B)の少
なくとも一方が0でない場合には、読み取った値をその
ままIo (A),Io (B)とみなして故障電流推定増
分 △Imax (A)= Imax (A)− Io (A) △Imax (B)= Imax (B)− Io (B) を算出し、次いで各変電所の推定増分の分担率 【数1】 を算出し、事前に既定値として入力されている A変電所地点故障時のA変電所の電流増分負担率 εo
(A) B変電所地点故障時のA変電所の電流増分負担率 εD
(A) および 変電所間距離 D の各定数を元に、算式、 【数2】 によって、A変電所から故障点までの距離を算出する故
障点標定部12とからなる故障点演算装置9と、で構成
される電気鉄道直流並列き電回路の故障点標定方式。
1. Corresponding two of an electric railway direct current parallel feeding circuit.
In each of the substations A and B, the feeding circuit current value at the substation outlet is constantly sampled and read to monitor the current change, and a fault detection unit 7A that discriminates and detects a fault when a fault current occurs, 7B and a fault current storage unit 8A for storing and transmitting current data before and after the fault current detection time,
Substation side fault current collector 6A, 6B consisting of 8B
And the central command center C receives the fault current data transmitted from the fault current storage units of the two substations, and extracts the time zone data corresponding to the fault phenomenon from the two current data groups. The data extraction unit 10 and the estimated maximum current value Imax (A), Ima of the fault current from the extracted data.
An estimated maximum current calculation unit 11 that estimates and calculates x (B) and the current values Io (A) and Io (B) immediately before the accident are read,
In the case of Io (A) = Io (B) = 0, Io (A), Io with the virtual circulating current input as the default value.
(B) and when at least one of Io (A) and Io (B) is not 0, the read value is regarded as it is as Io (A), Io (B) and the fault current estimation increment ΔImax ( A) = Imax (A) −Io (A) ΔImax (B) = Imax (B) −Io (B), and then the estimated share of each substation [Equation 1] Is calculated in advance and is input in advance as the default value. The current increment burden ratio at substation A at the time of failure at substation A εo
(A) Incremental current burden ratio at A substation at B substation failure εD
Based on the constants of (A) and distance between substations D, A fault point locating system for an electric railway DC parallel feeding circuit configured by a fault point computing device 9 including a fault point locating unit 12 that calculates the distance from the A substation to the fault point.
【請求項2】上記故障点演算装置9は中央指令所に設置
せず、2つの変電所のうちの一方、または変電所以外の
地点に設置して、中央指令所から遠隔制御されるように
したことを特徴とする、請求項1の電気鉄道直流並列き
電回路の故障点標定方式。
2. The fault point computing device 9 is not installed at the central command station, but is installed at one of the two substations or at a point other than the substation so that it can be remotely controlled from the central command station. The fault point locating system for an electric railway direct current parallel feeding circuit according to claim 1, characterized in that.
JP3355901A 1991-12-20 1991-12-20 Fault location method for DC parallel feeding circuit of electric railway Expired - Fee Related JP2541722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3355901A JP2541722B2 (en) 1991-12-20 1991-12-20 Fault location method for DC parallel feeding circuit of electric railway

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3355901A JP2541722B2 (en) 1991-12-20 1991-12-20 Fault location method for DC parallel feeding circuit of electric railway

Publications (2)

Publication Number Publication Date
JPH05172892A JPH05172892A (en) 1993-07-13
JP2541722B2 true JP2541722B2 (en) 1996-10-09

Family

ID=18446314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3355901A Expired - Fee Related JP2541722B2 (en) 1991-12-20 1991-12-20 Fault location method for DC parallel feeding circuit of electric railway

Country Status (1)

Country Link
JP (1) JP2541722B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100578451B1 (en) * 2004-08-25 2006-05-10 피앤씨테크 주식회사 A fault locating method and apparatus in electric railway system
KR101009996B1 (en) * 2010-05-11 2011-01-21 미래전기 주식회사 Fault position measuring method and system at electric railway of at type power supply system
KR101358441B1 (en) * 2011-12-13 2014-02-07 서울메트로 System And Apparatus, and Method For measuring error point in DC current environment
JP6091960B2 (en) * 2013-03-29 2017-03-08 東日本旅客鉄道株式会社 Fault location system and fault location method for DC railway feed circuit
CN103941149B (en) * 2014-03-25 2016-06-08 四川旷谷信息工程有限公司 Electrified railway traction networks localization of fault method
CN104316830B (en) * 2014-10-08 2017-06-16 成都交大许继电气有限责任公司 Fault distance-finding method during railway AT power supply mode over-zone feeding
RU2629734C2 (en) * 2015-09-22 2017-08-31 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Ростовский Государственный Университет Путей Сообщения" Method for determining distance to short circuit point of ac contact network (versions)
RU2619625C2 (en) * 2015-09-22 2017-05-17 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Ростовский Государственный Университет Путей Сообщения" Method of determining remoteness of short curcuit in contact network of electric transport (versions)
RU2609727C1 (en) * 2015-09-24 2017-02-02 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Ростовский Государственный Университет Путей Сообщения" Method of determining distance to catenary system failure point (versions)
CN105652152B (en) * 2015-12-31 2019-02-22 缪弼东 A kind of Fault Locating Method and system of multiple line direct supply system contact net

Also Published As

Publication number Publication date
JPH05172892A (en) 1993-07-13

Similar Documents

Publication Publication Date Title
US7400150B2 (en) Remote fault monitoring in power lines
JP2541722B2 (en) Fault location method for DC parallel feeding circuit of electric railway
US9046553B2 (en) Method and apparatus for dynamic signal switching of a merging unit in an electrical power system
US7683558B2 (en) Electric car control apparatus
CN109444644A (en) Based on the differential wire selection method for power distribution network single phase earthing failure of transient
CN105119243B (en) Wide area backup protection method based on false voltage ratio and Multi-information acquisition
CN112398103B (en) Protection method and device of direct current traction power supply system
KR101844468B1 (en) Apparatus and method for high speed fault distinction and fault location estimation using the database based on inductive analysis in high speed ac railway feeding system
EP1661233B1 (en) Method and apparatus for detecting faults in ac to ac, or dc to ac power conversion equipments when the equipment is in a high impedance mode
JP4745000B2 (en) Fault detection device for fault location device for AC AT feeder circuit
CN107167709A (en) A kind of electric network fault localization method and alignment system
CN106526429B (en) A kind of ground fault line selecting method with error correction
CN110988604A (en) Power distribution network single-phase earth fault phase selection method
CN106655113B (en) A kind of bus tie dead zone fault identification and fault protecting method
CN102650573B (en) A kind of electric locomotive automatic passing over of neutral section function detection device
EP3162613A1 (en) Power supply equipment for ac electric vehicle
CN100563075C (en) Same lever/parallel double loop high resistance earthing protecting method and device
CN106501678B (en) A kind of earth fault line selection method and system
JP2003032895A (en) Method of measuring loss in tidal current controller, and its use
CN207994616U (en) It is a kind of based on the singlephase earth fault shielding system for applying signal outside
CN108666989A (en) A kind of differential protecting method and device applied to bus tie dead zone failure
JPH1048286A (en) Method and apparatus for locating ground fault section of isolated overhead transmission line
Yu et al. Simulation and protection algorithm development of sequential tripping in DC traction system
Biliuk et al. P. Mikhalichenko
JP2724324B2 (en) Uninterruptible power supply system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees