JP2541656B2 - Naphthalocyanine compound and method for producing the same - Google Patents

Naphthalocyanine compound and method for producing the same

Info

Publication number
JP2541656B2
JP2541656B2 JP1087230A JP8723089A JP2541656B2 JP 2541656 B2 JP2541656 B2 JP 2541656B2 JP 1087230 A JP1087230 A JP 1087230A JP 8723089 A JP8723089 A JP 8723089A JP 2541656 B2 JP2541656 B2 JP 2541656B2
Authority
JP
Japan
Prior art keywords
metal
formula
compound
represented
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1087230A
Other languages
Japanese (ja)
Other versions
JPH02265971A (en
Inventor
康寛 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orient Chemical Industries Ltd
Original Assignee
Orient Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orient Chemical Industries Ltd filed Critical Orient Chemical Industries Ltd
Priority to JP1087230A priority Critical patent/JP2541656B2/en
Priority to US07/504,309 priority patent/US5064951A/en
Priority to DE69018115T priority patent/DE69018115T2/en
Priority to EP90106541A priority patent/EP0391415B1/en
Publication of JPH02265971A publication Critical patent/JPH02265971A/en
Priority to US07/700,453 priority patent/US5149847A/en
Application granted granted Critical
Publication of JP2541656B2 publication Critical patent/JP2541656B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6561Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/165Thermal imaging composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Optical Filters (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ナフタロシアニン化合物および金属ナフタ
ロシアニン化合物(以下、両化合物を合わせて「(金
属)ナフタロシアニン化合物」という。)、ならびにそ
れらの合成中間体として有用なホスホリル基を有する2,
3−ジ置換ナフタレン化合物およびそれらの製造方法に
関し、さらに詳しくは、近赤外領域の光に対して強い吸
収を示し、安定でかつ一般の有機溶媒に対し良溶解性を
示す新規なナフタロシアニン化合物に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a naphthalocyanine compound and a metal naphthalocyanine compound (hereinafter, both compounds are collectively referred to as “(metal) naphthalocyanine compound”), and their synthesis. 2, which has a phosphoryl group useful as an intermediate
Regarding a 3-di-substituted naphthalene compound and a method for producing them, more specifically, a novel naphthalocyanine compound that exhibits strong absorption for light in the near infrared region, is stable, and has good solubility in general organic solvents It is about.

(従来の技術) ナフタロシアニン化合物は、光、熱、温度等に対して
安定、かつ、堅牢性に優れた化合物であり、近赤外吸収
色素として知られている。
(Prior Art) A naphthalocyanine compound is a compound that is stable to light, heat, temperature and the like and has excellent fastness, and is known as a near-infrared absorbing dye.

近赤外吸収色素としては、シアニン系、フタロシアニ
ン系、ジチオニッケル錯体、ナフトキノン系、アントラ
キノン系、インドフェノール系、アゾ系等が提案されて
おり、その応用分野は、光ディスク、コンパクトディス
ク、レーザープリンター、レーザー読み取り、あるいは
電子写真感光体、半導体受光素子の赤外線カットフィル
ターなど多岐に亙る。
As near-infrared absorbing dyes, cyanine dyes, phthalocyanine dyes, dithionickel complexes, naphthoquinone dyes, anthraquinone dyes, indophenol dyes, azo dyes, etc. have been proposed, and their application fields are optical disks, compact disks, laser printers, Laser reading, electrophotographic photoreceptor, infrared cut filter for semiconductor light receiving element, etc.

近年、レーザー、就中、半導体レーザーを用いて音
声、画像、情報などを記録、再生する光記録媒体に関す
る提案は多く、例えば光ディスクの記録層に近赤外吸収
色素を用いた提案として、特開昭61−25886号、特開昭6
1−163891号、特開昭62−233287号、特開昭63−72594号
(以上ナフタロシアニン色素)、特開昭62−122788号、
特開昭63−39388号(以上フタロシアニン色素)、特開
昭60−252344号、特開昭61−16891号(以上シアニン系
色素)等を挙げることができる。
In recent years, there have been many proposals for an optical recording medium for recording and reproducing voice, image, information and the like using a laser, especially a semiconductor laser. For example, as a proposal using a near-infrared absorbing dye in a recording layer of an optical disc, Sho 61-25886, JP 6
1-163891, JP-A-62-233287, JP-A-63-72594 (the above naphthalocyanine dyes), JP-A-62-122788,
Examples thereof include JP-A-63-39388 (above phthalocyanine dye), JP-A-60-252344, and JP-A 61-16891 (above cyanine dye).

ところで、半導体レーザーを熱エネルギーに変換し、
ピットを形成し、記録部と非記録部の反射率の差を誘起
し、光信号を記録するDRAW型に用いられる色素には、レ
ーザー発信域に大きい吸収を持つこと、高い反射率をも
つこと、保存耐性の良いことおよび均一な記録媒体膜が
得られること等が要求されている。
By the way, converting a semiconductor laser into heat energy,
The dye used in the DRAW type, which forms pits, induces the difference in reflectance between the recorded part and the non-recorded part, and records the optical signal, has a large absorption in the laser emission range, and has a high reflectivity. It is required that the storage resistance be good and that a uniform recording medium film be obtained.

しかし、上記のシアニン色素は耐光堅牢性が低いた
め、これを用いた光記録媒体は保存安定性の面で十分満
足できるものではなかった。また、フタロシアニン色
素、ナフタロシアニン色素に関する提案のものは、溶解
性に優れるものが少ないこと、極性有機溶媒に溶解性を
示すものが少ないこと等のために、均一な記録媒体膜が
得られない等の塗布方による製膜上の問題があった。さ
らに、溶解性向上などを目的としたナフタロシアニン化
合物の提案として、例えば、米国特許第4492750号、特
開昭61−215662号公報、特開昭61−215663号公報に開示
されたナフタレン環にアルキル基、置換シリル基、アル
コキシ基、フェノキシ基あるいはアラルコキシ基が置換
したナフタロシアニン化合物、あるいは、特開昭63−72
761号公報、特開昭63−95269号公報に開示された、中心
金属にアルコキシ、アルキルシロキシが置換したナフタ
ロシアニン化合物を挙げることができる。しかし、これ
らの化合物はポリカーボネイト等の基板上の案内溝にダ
メージを与え難い有機溶媒、例えば、アルコールに対す
る溶解性が低い等の問題を有する。
However, since the cyanine dye described above has low light fastness, an optical recording medium using the dye is not sufficiently satisfactory in storage stability. Further, among the proposals for phthalocyanine dyes and naphthalocyanine dyes, a uniform recording medium film cannot be obtained because few have excellent solubility and few have solubility in polar organic solvents. There was a problem in film formation depending on the coating method. Further, as a proposal of a naphthalocyanine compound for the purpose of improving solubility, for example, alkyl naphthalene ring disclosed in U.S. Pat.No. 4,492,750, JP 61-215662, JP 61-215663. Group, substituted silyl group, alkoxy group, phenoxy group or aralkoxy group-substituted naphthalocyanine compound, or JP-A-63-72
Examples thereof include naphthalocyanine compounds disclosed in JP-A-761 and JP-A-63-95269, in which the central metal is substituted with alkoxy or alkylsiloxy. However, these compounds have problems such as low solubility in organic solvents, such as alcohol, which hardly damage the guide grooves on the substrate such as polycarbonate.

(発明が解決しようとする課題) 上記の事情に鑑み、本発明は近赤外光を吸収する能力
に優れると共に、スピンコーティング等、塗布法による
光記録媒体の製膜形成に有利に使用できる溶解性に優れ
た新規な(金属)ナフタロシアニン化合物を提供するこ
とを目的とする。
(Problems to be Solved by the Invention) In view of the above circumstances, the present invention has excellent ability to absorb near-infrared light and can be advantageously used for film formation of an optical recording medium by a coating method such as spin coating. An object of the present invention is to provide a novel (metal) naphthalocyanine compound having excellent properties.

(課題を解決するための手段) 本発明者は、近赤外吸収色素における上記した問題点
を解決するために耐光性に優れたナフタロシアニン化合
物に着目し、これを形成するナフタレン環にアリール
基、アルキル基またはアルコキシ基を有するホスホリル
基を置換することにより、半導体レーザーの発信波長の
吸収性能に優れるのみならず種々の有機溶剤、特に、ア
ルコール系溶剤等の極性溶剤に対する溶解性に優れた新
規な(金属)ナフタロシアニン化合物を得ることができ
ることを見出して、本発明に至ったものである。
(Means for Solving the Problem) The present inventor has focused on a naphthalocyanine compound having excellent light resistance in order to solve the above-mentioned problems in the near-infrared absorbing dye, and the naphthalene ring forming the aryl group has an aryl group. , By substituting a phosphoryl group having an alkyl group or an alkoxy group, it is excellent not only in the absorption performance of the emission wavelength of a semiconductor laser but also in various organic solvents, particularly in a polar solvent such as an alcohol solvent. The present invention has been completed by finding that it is possible to obtain such a (metal) naphthalocyanine compound.

即ち、一般式: [式中、Xは (但し、R1およびR2はそれぞれ独立にヒドロキシル基、
アルキル基、アリール基または炭素数1〜10のアルコキ
シ基を示す。)、Mは2H、金属、金属酸化物または金属
塩化物を示す。] で表わされるナフタロシアニン化合物および金属ナフタ
ロシアニン化合物とその製造方法を提供する。
That is, the general formula: [Where X is (However, R 1 and R 2 are each independently a hydroxyl group,
An alkyl group, an aryl group or an alkoxy group having 1 to 10 carbon atoms is shown. ), M represents 2H, a metal, a metal oxide or a metal chloride. ] The naphthalocyanine compound and metal naphthalocyanine compound represented by these, and its manufacturing method are provided.

本発明による上記(金属)ナフタロシアニン化合物
は、Xで示される基がナフタレン環に置換していること
を特徴とする。
The (metal) naphthalocyanine compound according to the present invention is characterized in that the group represented by X is substituted on the naphthalene ring.

上記式[1]中、ナフタレン環上の置換基Xは、それ
ぞれ独立にR1とR2で示されるアリール基、アルキル基ま
たは炭素数1〜10のアルコキシ基を有するホスホリル基
であって、例えば、−P(=O)(C6H5、−P(=
O)(OC2H5、−P(=O)(C10H21、−P
(=O)(OH)である。また、この置換基Xはナフタ
レン環の5位、6位、7位または8位の何れの位置に置
換していてもよい。
In the above formula [1], the substituents X on the naphthalene ring are each independently an aryl group represented by R 1 and R 2 , an alkyl group or a phosphoryl group having an alkoxy group having 1 to 10 carbon atoms, and for example, , -P (= O) (C 6 H 5) 2, -P (=
O) (OC 2 H 5) 2, -P (= O) (C 10 H 21) 2, -P
(= O) (OH) 2 . Further, the substituent X may be substituted at any of the 5-position, 6-position, 7-position and 8-position of the naphthalene ring.

上記式[1]中、Mは、ナフタロシアニン化合物であ
る場合は2H(水素)を表わし、また、金属ナフタロシア
ニン化合物である場合は、Cu、Zn、Ni、Co、Fe、Ge、S
n、Pb、Ti、Cr、Mn、Al、In等の金属、Ti=O、V=
O、Sn=O等の金属酸化物、あるいはSiCl2、GeCl2、Al
Cl、SnCl2、InCl等の金属塩化物を表わす。
In the above formula [1], M represents 2H (hydrogen) when it is a naphthalocyanine compound, and Cu, Zn, Ni, Co, Fe, Ge, S when it is a metal naphthalocyanine compound.
Metals such as n, Pb, Ti, Cr, Mn, Al and In, Ti = O, V =
O, Sn = O and other metal oxides, or SiCl 2 , GeCl 2 , Al
Represents metal chlorides such as Cl, SnCl 2 and InCl.

また、下記一般式: [式中、Xは前記と同意義。] で表わされる置換Xを有する2,3−ジシアノナフタレン
は、本発明による上記ナフタロシアニン化合物の合成中
間体である。
Also, the following general formula: [In the formula, X has the same meaning as described above. ] 2,3-Dicyanonaphthalene having a substitution X represented by the following is a synthetic intermediate of the above naphthalocyanine compound according to the present invention.

置換基Xは、ナフタレン環の5位または6位のいずれ
かの位置に置換してもよい。
The substituent X may be substituted at either the 5-position or the 6-position of the naphthalene ring.

上記一般式[2]で表わされる中間体の合成法は、例
えば3−または4−ブロモ−o−キシレンとホスフィン
オキシドあるいは触媒の存在下ホスファイトと反応し、
一般式 [式中、Xは前記と同意義。] で表わされるX置換−o−キシレンを得、次に、これを
N−ブロモこはく酸イミドと反応させ、一般式: [但し、式中Xは前記と同意義。] で表わされる化合物を得、さらに、これを一般式: で表わされるフマロニトリルと反応させて製造すること
ができる。
The synthetic method of the intermediate represented by the above general formula [2] is, for example, the reaction of 3- or 4-bromo-o-xylene with phosphine oxide or phosphite in the presence of a catalyst,
General formula [In the formula, X has the same meaning as described above. ] X-substituted-o-xylene represented by the following formula is obtained, and then this is reacted with N-bromosuccinimide to give a compound of the general formula: [However, in the formula, X has the same meaning as described above. ] The compound of the formula: It can be produced by reacting with fumaronitrile represented by

上記式[3]で表わされる化合物の合成において使用
されるホスフィンオキシドとしては、例えばクロロジエ
チルホスフィンオキシド、クロロジフェニルホスフィン
オキシド等が挙げられる。また、ホスファイトとしては
メチルホスファイト、エチルホスファイト、デシルホス
ファイト等が挙げられる。この際用いる触媒としては無
水塩化ニッケル等を挙げることができる。また、それら
の使用量は、3−または4−ブロモ−o−キシレン1モ
ルに対してホスフィンオキシドは1.0〜1.1モル、ホスフ
ァイトは1.1〜1.2モルである。また、この際使用する触
媒の量は0.05〜0.2モルである。
Examples of the phosphine oxide used in the synthesis of the compound represented by the above formula [3] include chlorodiethylphosphine oxide and chlorodiphenylphosphine oxide. Examples of the phosphite include methyl phosphite, ethyl phosphite and decyl phosphite. Examples of the catalyst used at this time include anhydrous nickel chloride and the like. The amounts of phosphine oxide and phosphite used are 1.0 to 1.1 mol and 1.1 to 1.2 mol, respectively, relative to 1 mol of 3- or 4-bromo-o-xylene. The amount of catalyst used at this time is 0.05 to 0.2 mol.

また、上記式[4]で表わされる化合物の合成におい
て使用されるN−ブロモこはく酸イミドの量は式[3]
で表わされるX置換−o−キシレン1モルに対して4.0
〜4.5モル必要である。
Further, the amount of N-bromosuccinimide used in the synthesis of the compound represented by the above formula [4] is determined by the formula [3].
X-substituted-o-xylene represented by
~ 4.5 mol is required.

また、上記式[5挙で表わされるフマロニトリルの使
用量は式[4]で表わされる化合物1モルに対して1.0
〜1.3モル必要である。
The amount of fumaronitrile represented by the above formula [5] is 1.0 per 1 mol of the compound represented by the formula [4].
~ 1.3 mol is required.

本発明の上記式[1]で表わされる(金属)ナフタロ
シアニン化合物は、ナフタロシアニン化合物およびその
金属化合物と同様な方法で合成できる。
The (metal) naphthalocyanine compound represented by the above formula [1] of the present invention can be synthesized in the same manner as the naphthalocyanine compound and the metal compound thereof.

即ち、上記式[1](但し、Mは2Hを示す。)で表わ
されるナフタロシアニン化合物の合成は、例えば上記式
[2]で表わされる中間体をプロトン授受型促進剤、例
えば、1,8−ジアザビシクロ[5,4,0]ウンデ−7−セン
の存在下、アルコール溶媒中で反応させて無金属ナフタ
ロシアニン化合物を得る。
That is, the synthesis of the naphthalocyanine compound represented by the above formula [1] (wherein M represents 2H) is carried out by, for example, converting the intermediate represented by the above formula [2] into a proton-donating accelerator such as 1,8 -In the presence of diazabicyclo [5,4,0] unde-7-cene, the reaction is carried out in an alcohol solvent to obtain a metal-free naphthalocyanine compound.

上記アルコール溶媒としては、例えばn−ブタノー
ル、n−アミルアルコール、2−メトキシエチルアルコ
ール、2−エトキシエチルアルコール等が挙げられる。
使用量は、上記式[2]で表わされる中間体1モルに対
してプロトン授受型促進剤は化学量論量以上必要であ
る。アルコール溶媒は500〜2000ml、好ましくは1000ml
であるが、特に制限するものではない。
Examples of the alcohol solvent include n-butanol, n-amyl alcohol, 2-methoxyethyl alcohol, 2-ethoxyethyl alcohol and the like.
The amount used of the proton-donating accelerator should be at least stoichiometric with respect to 1 mol of the intermediate represented by the above formula [2]. Alcohol solvent is 500-2000ml, preferably 1000ml
However, it is not particularly limited.

また、上記ナフタロシアニン化合物のうち、特にR1R2
=OHであるものは、例えば上記の合成法で得たテトラキ
ス(ジアルコキシホスホリル)ナフタロシアニン化合物
のリン酸エステル塩酸水等で加水分解しても得られる。
Of the above naphthalocyanine compounds, R 1 R 2
= OH can also be obtained, for example, by hydrolyzing the tetrakis (dialkoxyphosphoryl) naphthalocyanine compound obtained by the above-mentioned synthetic method with phosphoric acid hydrochloric acid water or the like.

また、上記式[1](但し、Mは金属、金属酸化物ま
たは金属塩化物を示す。)で表わされる金属ナフタロシ
アニン化合物の合成は、例えば、上記[2]で表わされ
る中間体と金属あるいは金属塩化物または金属酸化物
を、融解もしくは高沸点溶媒中で反応させて金属ナフタ
ロシアニン化合物を得る。上記金属としては、例えば、
Cu、Zn、Ni、Co、Fe、Ge、Sn、Pb、Ti、Cr、Mn、Al、In
等が挙げられる。上記金属塩化物としては、例えばCuC
l、Cu2Cl2、SnCl2、InCl3・4H2O、AlCl3、TiCl4、SiC
l4、GeCl4、FeCl3、SnCl4等が挙げられる。上記金属酸
化物としては、例えばPbO2、PbO等が挙げられる。ま
た、上記高沸点溶媒としては、例えばトリクロルベンゼ
ン等が一般的であるが、キノリン、クロロナフタレン、
ブロモナフタレン等を使用できる。
Further, the synthesis of the metal naphthalocyanine compound represented by the above formula [1] (wherein M represents a metal, a metal oxide or a metal chloride) can be carried out, for example, by synthesizing an intermediate represented by the above [2] and a metal or The metal chloride or metal oxide is melted or reacted in a high boiling point solvent to obtain a metal naphthalocyanine compound. Examples of the metal include
Cu, Zn, Ni, Co, Fe, Ge, Sn, Pb, Ti, Cr, Mn, Al, In
Etc. Examples of the metal chloride include CuC
l, Cu 2 Cl 2, SnCl 2, InCl 3 · 4H 2 O, AlCl 3, TiCl 4, SiC
l 4 , GeCl 4 , FeCl 3 , SnCl 4 and the like. Examples of the metal oxide include PbO 2 and PbO. In addition, as the high boiling point solvent, for example, trichlorobenzene and the like are generally used, but quinoline, chloronaphthalene,
Bromonaphthalene or the like can be used.

これらの使用量は、式[2]で表わされる中間体1モ
ルに対し、上記金属あるいは金属塩化物または金属酸化
物を1/4〜2モル、好ましくは3/10〜4/10モルである。
また、使用してもよい上記高沸点溶媒は反応スケールに
より適量使用できる。
The amount of these used is 1/4 to 2 mol, preferably 3/10 to 4/10 mol of the above metal, metal chloride or metal oxide, relative to 1 mol of the intermediate represented by the formula [2]. .
The high boiling point solvent that may be used can be used in an appropriate amount depending on the reaction scale.

また、上記金属ナフタロシアニン化合物の別途合成法
として、式: [但し、式中Xは前記と同意義。] で表わされるX置換ナフタレン−2,3−カルボン酸無水
物を、尿素の存在下、上記の金属あるいは金属塩化物ま
たは金属酸化物と、所望により、モリブデン酸アンモニ
ウム、バナジン酸アンモニウム、亜ヒ素酸またはリン酸
アンモニウムなどの触媒を加え、融解もしくは上記の高
沸点溶媒中で反応させて金属ナフタロシアニン化合物を
得る。
In addition, as another method for synthesizing the above metal naphthalocyanine compound, a compound of [However, in the formula, X has the same meaning as described above. ] The X-substituted naphthalene-2,3-carboxylic acid anhydride represented by the formula (1) is combined with the above metal or metal chloride or metal oxide in the presence of urea, and if desired, ammonium molybdate, ammonium vanadate, and arsenous acid. Alternatively, a catalyst such as ammonium phosphate is added, and a metal naphthalocyanine compound is obtained by melting or reacting in the above high boiling point solvent.

上記反応試薬の使用量は、式[6]で表わされる化合
物1モルに対して、尿素を5〜10モル、上記金属あるい
は金属塩化物または金属酸化物を1/4モル以上、好まし
くは3/10モル、使用しても良い高沸点溶媒を好ましくは
1000〜1500mlである。
The reaction reagent is used in an amount of 5 to 10 mol of urea, 1/4 mol or more of the metal or metal chloride or metal oxide, and preferably 3 / mole to 1 mol of the compound represented by the formula [6]. 10 mol, preferably a high boiling solvent that may be used
It is 1000-1500 ml.

さらにまた、上記金属ナフタロシアニン化合物の別途
合成法として、式: [但し、式中Xは前記と同意義。] で表わされるX置換1,3−ジイミノベンズ(f)イソイ
ンドリンと上記の金属あるいは金属塩化物または酸化物
を融解もしくは三級アミンの存在下、上記高沸点溶媒中
で反応させて金属ナフタロシアニン化合物を得る。
Furthermore, as another method for synthesizing the above metal naphthalocyanine compound, the following formula: [However, in the formula, X has the same meaning as described above. ] The X-substituted 1,3-diiminobenz (f) isoindoline represented by the formula (I) and the above metal or metal chloride or oxide are melted or reacted in the presence of a tertiary amine in the above high boiling point solvent to produce a metal naphthalocyanine compound. To get

上記三級アミンとしては、例えばトリエチルアミン、
トリ−n−ブチルアミン等が挙げられる。
Examples of the tertiary amine include triethylamine,
Tri-n-butylamine etc. are mentioned.

上記角反応試薬の使用量は、式[7]で表わされる化
合物1モルに対して、上記の金属あるいは金属塩化物ま
たは金属酸化物を1/4〜2モル、好ましくは3/10〜4/10
モル、上記三級アミンを触媒量、上記使用しても良い高
沸点溶媒を100〜2000ml、好ましくは500〜1000mlであ
る。
The amount of the above corner reaction reagent used is 1/4 to 2 mol, preferably 3/10 to 4 /, of the above metal or metal chloride or metal oxide per 1 mol of the compound represented by the formula [7]. Ten
Mol, a catalytic amount of the tertiary amine, and 100 to 2000 ml, preferably 500 to 1000 ml of the high boiling point solvent which may be used.

以上のようにして得られる本発明のナフタロシアニン
化合物は、種々の有機溶剤(例えば、アルコール類、ケ
トン類、エーテル類、エステル類、脂肪族ハロゲン化炭
化水素類、芳香族類)に対し、良溶解性を示すと共に、
溶媒により電子スペクトルの吸収特性が変化するという
特性を有する。具体例として、例えば、後述する実施例
3に示したテトラキス(ジフェニルホスホリル)無金属
ナフタロシアニンの電子スペクトルは、クロロホルム溶
媒では図−8に示す吸収特性を有するが、テトラヒドロ
フラン(以下、THFという)を溶媒とすると図−18に示
す如く、低波数側にその吸収が変化する。
The naphthalocyanine compound of the present invention obtained as described above is good for various organic solvents (for example, alcohols, ketones, ethers, esters, aliphatic halogenated hydrocarbons, aromatics). In addition to exhibiting solubility
It has the property that the absorption characteristics of the electron spectrum change depending on the solvent. As a specific example, for example, the electronic spectrum of tetrakis (diphenylphosphoryl) metal-free naphthalocyanine shown in Example 3 described later has an absorption characteristic shown in FIG. 8 in a chloroform solvent, but tetrahydrofuran (hereinafter referred to as THF) is used. When a solvent is used, its absorption changes to the low wavenumber side, as shown in Figure-18.

(発明の効果) 本発明による新規なナフタロシアニン化合物は、現
在、多用されているAlGaAsレーザーに代表される半導体
レーザーの発信波長780〜830nmの近赤外光の吸収性能に
優れる緑色、青色、褐色または黒色等の結晶または粉末
であり、光、熱、温度、酸、アルカリに対し堅牢であ
る。しかも、種々の有機溶剤、特に極性有機溶剤に対す
る溶解性、樹脂に対する相溶性に優れ、近赤外光吸収性
色素として有用である。
(Effect of the invention) The novel naphthalocyanine compound according to the present invention is a green, blue, or brown compound which is excellent in absorption of near-infrared light having a transmission wavelength of 780 to 830 nm of a semiconductor laser typified by AlGaAs laser which is currently widely used. Alternatively, it is a black crystal or powder and is robust against light, heat, temperature, acid, and alkali. Moreover, it has excellent solubility in various organic solvents, particularly polar organic solvents, and compatibility with resins, and is useful as a near-infrared light absorbing dye.

さらに、本発明による新規なナフタロシアニン化合物
は、前述した如く、極性有機溶剤に対する溶解性にも優
れるため、スプレー、ローラーコーティング、ディッピ
ィングおよびスピンニング等の塗布法による薄膜形成
時、ポリ(メタ)アクリレート系樹脂、ポリカーボネー
ト等の有機系樹脂を用いた光記録媒体の基盤の表面を溶
解することなく、均一かつ高密度の記録層を得ることが
できる。
Furthermore, since the novel naphthalocyanine compound according to the present invention has excellent solubility in polar organic solvents as described above, poly (meth) acrylate may be used during thin film formation by a coating method such as spraying, roller coating, dipping and spinning. A uniform and high-density recording layer can be obtained without melting the surface of the base of an optical recording medium using an organic resin such as a resin and a polycarbonate.

(実施例) 以下に本発明を実施例を挙げて説明するが、本発明は
何らこれらの実施例に限定されるものではない。
(Examples) Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.

実施例1 4−ジフェニルホスホリル−o−キシレン の合成 予め、リチウムアルミニウムヒドリドを用いて乾燥蒸
留したテトラヒドロフラン(以下、乾燥THFという)100
mlにターニングマグネシウム2.83g(0.1209mol)を加
え、加熱還流下、4−ブロモ−o−キシレン19.6g(0.1
06mol)の乾燥THF溶液をおよそ1時間を要し、滴下し
た。滴下終了後、混合溶液を約1時間加熱還流した後、
5〜10℃まで冷却し、この温度範囲以内に保ちながらク
ロロジフェニルホスフィンオキシド25g(0.106mol)の
乾燥THF溶液を約30分を要して滴下した。滴下終了後、5
0〜60℃で2時間攪拌した後、放冷した。冷却下、希塩
酸水100ml、ジエチルエーテル100mlを加え30分攪拌した
後、ジエチルエーテル200mlを用いて3回抽出した。こ
の溶液を5%炭酸水素ナトリウム溶液で3回洗浄後、無
水硫酸ナトリウムを加え乾燥した。エーテル溶液を濃縮
後カラムクロマトグラフィーによって白色固体25gを得
た。
Example 1 4-diphenylphosphoryl-o-xylene Synthesis of Tetrahydrofuran (hereinafter referred to as dry THF) 100 which was previously distilled and dried using lithium aluminum hydride
Turning magnesium 2.83 g (0.1209 mol) was added to ml, and 4-bromo-o-xylene 19.6 g (0.1
A solution of 06 mol) in dry THF was added dropwise over a period of about 1 hour. After the dropping, the mixed solution is heated under reflux for about 1 hour,
After cooling to 5 to 10 ° C, a dry THF solution of 25 g (0.106 mol) of chlorodiphenylphosphine oxide was added dropwise over about 30 minutes while keeping this temperature range. After dropping, 5
After stirring at 0 to 60 ° C for 2 hours, the mixture was allowed to cool. After cooling, 100 ml of dilute hydrochloric acid water and 100 ml of diethyl ether were added, and the mixture was stirred for 30 minutes, and then extracted with 200 ml of diethyl ether three times. This solution was washed 3 times with a 5% sodium hydrogen carbonate solution, and then anhydrous sodium sulfate was added and dried. After concentrating the ether solution, 25 g of a white solid was obtained by column chromatography.

NMRスペクトル値:CDCl3溶媒…(第1図参照。) δ値 7.45(13H,br) 2.23(6H,br−s) 実施例2 3−ジエトキシホスホリル−o−キシレン の合成 3−ブロモ−o−キシレン25.0g(0.135mol)と無水
塩化ニッケル2.0g(0.015mol)の混合溶液を予め150〜1
60℃で加熱しておき、この溶液に1〜2時間を要してト
リエチルホスファイト26.9g(0.162mol)を加えた。滴
下終了後、この温度で4時間攪拌した。冷却後水30mlを
加え、30分攪拌した後、ジエチルエーテル100mlを用い
て3回抽出した。この溶液を5%炭酸水素ナトリウム溶
液で3回洗浄後、無水硫酸ナトリウムを加え乾燥した。
エーテル溶液を濃縮後、カラムクロマトグラフィーによ
って無色液体20.0gを得た。
NMR spectrum value: CDCl 3 solvent (see FIG. 1) δ value 7.45 (13H, br) 2.23 (6H, br-s) Example 2 3-diethoxyphosphoryl-o-xylene Synthesis of 3-bromo-o-xylene 25.0 g (0.135 mol) and anhydrous nickel chloride 2.0 g (0.015 mol) mixed solution in advance to 150-1
The mixture was heated at 60 ° C., and 26.9 g (0.162 mol) of triethylphosphite was added to this solution over 1 to 2 hours. After the completion of dropping, the mixture was stirred at this temperature for 4 hours. After cooling, 30 ml of water was added, the mixture was stirred for 30 minutes, and then extracted with 100 ml of diethyl ether three times. This solution was washed 3 times with a 5% sodium hydrogen carbonate solution, and then anhydrous sodium sulfate was added and dried.
After concentrating the ether solution, column chromatography gave 20.0 g of a colorless liquid.

NMRスペクトル値:CDCl3溶媒…(第2図参照。) δ値 7.92−7.13(3H,m) 4.13(4H,d.q.,JH-H=JH-p=7.26Hz) 2.50(3H,s) 2.30(3H,s) 1.33(6H,t,JH-H=7.26Hz) 実施例3 4−ジエトキシホスホリル−o−キシレン の合成 実施例2で用いた3−ブロモ−o−キシレンを4−ブ
ロモ−o−キシレンに代えた他は実施例2と同様にし
て、無色の液体20.8gを得た。
NMR spectrum value: CDCl 3 solvent (see FIG. 2) δ value 7.92-7.13 (3H, m) 4.13 (4H, dq, J HH = J Hp = 7.26 Hz) 2.50 (3H, s) 2.30 (3H, m) s) 1.33 (6H, t, J HH = 7.26Hz) example 3 4-diethoxyphosphoryl -o- xylene 20.8 g of a colorless liquid was obtained in the same manner as in Example 2, except that 3-bromo-o-xylene used in Example 2 was replaced with 4-bromo-o-xylene.

NMRスペクトル値:CDCl3溶媒…(第3図参照。) δ値 7.66−7.28(3H,m) 4.11(4H,d.q.,JH-H=JH-p=7.04Hz) 2.30(6H,s) 1.32(6H,t,JH-H=7.04Hz) 実施例4 6−ジフェニルホスホリル−2,3−ジシアノナフタレン の合成 4−ジフェニルホスホリル−o−キシレン10.3g(0.0
35mol)およびN−ブロモこはく酸イミド25.3g(0.142m
ol)の四塩化炭素100ml溶液に過酸化ベンゾイル0.3gを
加え還流しながら10〜12時間、水銀灯で光照射した。放
冷後、析出した白色固体を吸引濾過して除き、母液の四
塩化炭素溶液を減圧下濃縮した。得られた固体をごく少
量のメタノールで洗浄後、減圧乾燥して、1,2−(ビス
(ジブロモメチル)−4−ジフェニルホスホリルベンゼ
ン21.3gを得た。
NMR spectrum value: CDCl 3 solvent (see FIG. 3) δ value 7.66-7.28 (3H, m) 4.11 (4H, dq, J HH = J Hp = 7.04Hz) 2.30 (6H, s) 1.32 (6H, m) t, J HH = 7.04 Hz) Example 4 6-diphenylphosphoryl-2,3-dicyanonaphthalene Synthesis of 4-diphenylphosphoryl-o-xylene 10.3 g (0.0
35mol) and 25.3g (0.142m) of N-bromosuccinimide
benzoic acid peroxide (0.3 g) was added to 100 ml of carbon tetrachloride solution and refluxed for 10 to 12 hours with a mercury lamp. After allowing to cool, the precipitated white solid was removed by suction filtration, and the carbon tetrachloride solution of the mother liquor was concentrated under reduced pressure. The obtained solid was washed with a very small amount of methanol and then dried under reduced pressure to obtain 21.3 g of 1,2- (bis (dibromomethyl) -4-diphenylphosphorylbenzene.

1,2−ビス(ジブロモメチル)−4−ジフェニルホス
ホリルベンゼンの分析結果は、 1)元素分析値 計算値(%):C;38.61,H;2.41 実測値(%):C;37.97,H;2.39 2)NMRスペクトル値:CDCl3溶媒 δ値 8.28−7.39(13H,m) 7.26 (1H,s) 7.06 (1H,s) であった。
The analysis results of 1,2-bis (dibromomethyl) -4-diphenylphosphorylbenzene are as follows: 1) Elemental analysis value Calculated value (%): C; 38.61, H; 2.41 Measured value (%): C; 37.97, H; 2.39 2) NMR spectrum value: CDCl 3 solvent δ value was 8.28-7.39 (13H, m) 7.26 (1H, s) 7.06 (1H, s).

次に、得られた1,2−ビス(ジブロモメチル)−4−
ジフェニルホスホリルベンゼン21.3g(0.034mol)とフ
マロニトリル3.5g(0.045mol)の無水N,N−ジメチルホ
ルムアミド100ml溶液に良く攪拌しながらヨウ化ナトリ
ウム23.2g(0.155mol)を加えて、窒素雰囲気下、約75
℃で5時間攪拌した。反応後、混合物を約500mlの氷水
へ注ぎ、数十分攪拌した後、赤褐色水溶液が淡黄色にな
るまで徐々に亜硫酸水素ナトリウムを加え、その後、約
1時間攪拌した。析出した淡黄色固体を吸引濾過し、充
分に水洗を行った後、減圧乾燥して粗製品8.5gを得た。
Then, the obtained 1,2-bis (dibromomethyl) -4-
To a solution of diphenylphosphorylbenzene 21.3 g (0.034 mol) and fumaronitrile 3.5 g (0.045 mol) in anhydrous N, N-dimethylformamide 100 ml was added sodium iodide 23.2 g (0.155 mol) while stirring well, and under nitrogen atmosphere, 75
Stirred at 5 ° C for 5 hours. After the reaction, the mixture was poured into about 500 ml of ice water and stirred for several dozen minutes, and then sodium hydrogen sulfite was gradually added until the reddish brown aqueous solution became pale yellow, and then stirred for about 1 hour. The precipitated pale yellow solid was suction filtered, washed thoroughly with water, and dried under reduced pressure to obtain 8.5 g of a crude product.

このもの7.0gをエタノールから再結晶することによっ
て5.85gの白色結晶を得た。この結晶は、下記の分析結
果から6−ジフェニルホスホリル−2,3−ジシアノナフ
タレンであることを確認した。
By recrystallizing 7.0 g of this product from ethanol, 5.85 g of white crystals were obtained. It was confirmed from the following analysis results that this crystal was 6-diphenylphosphoryl-2,3-dicyanonaphthalene.

1)元素分析値 計算値(%):C;76.19;H;3.97;N;7.41 実測値(%):C;75.53;H;4.11;N;7.45 2)NMRスペクトル値:CDCl3溶媒…(第4図参照。) δ値 8.46−7.41(15H,m) 3)IRスペクトル(CHCl3溶液の薄膜法)…(第5図参
照。) 2200cm-1にニトリルC≡N伸縮振動に帰因する吸収 1210cm-1,1175cm-1にPh2P=O伸縮振動に帰因する吸
収を有する。
1) Elemental analysis value Calculated value (%): C; 76.19; H; 3.97; N; 7.41 Actual value (%): C; 75.53; H; 4.11; N; 7.45 2) NMR spectrum value: CDCl 3 solvent… ( (See Fig. 4.) δ value 8.46-7.41 (15H, m) 3) IR spectrum (CHCl 3 solution thin film method) (See Fig. 5) Attribution to nitrile C≡N stretching vibration at 2200 cm -1 Absorption 1210 cm -1 , 1175 cm -1 has absorption due to Ph 2 P = O stretching vibration.

実施例5 6−ジエトキシホスホリル−2,3−ジシアノナフタレン の合成 4−ジエトキシホスホリル−o−キシレン47.7g(0.1
97mol)およびN−ブロモこはく酸イミド144g(0.809mo
l)の四塩化炭素500ml溶液に過酸化ベンゾイル1.0gを加
え、還流しながら10〜12時間水銀灯により光照射した。
放冷後、析出した白色固体を吸引濾過して除き、母液の
四塩化炭素溶液を減圧下濃縮した。
Example 5 6-Diethoxyphosphoryl-2,3-dicyanonaphthalene Synthesis of 4-diethoxyphosphoryl-o-xylene 47.7 g (0.1
97mol) and N-bromosuccinimide 144g (0.809mo)
Benzoyl peroxide (1.0 g) was added to carbon tetrachloride (500 ml) solution of (l), and the mixture was irradiated with light from a mercury lamp for 10 to 12 hours while refluxing.
After allowing to cool, the precipitated white solid was removed by suction filtration, and the carbon tetrachloride solution of the mother liquor was concentrated under reduced pressure.

得られた粘稠液体へ、ごく少量のエーテルを加え、超
音波をかけると固体が析出し、これを濾過し、約40gの
白色結晶を得た。この結晶は、下記の分析結果から1,2
−ビス(ジブロモメチル)−4−ジエトキシホスホリル
ベンゼンであることを確認した。
A very small amount of ether was added to the obtained viscous liquid and ultrasonic waves were applied to precipitate a solid, which was filtered to obtain about 40 g of white crystals. This crystal is 1,2 from the analysis results below.
It was confirmed to be -bis (dibromomethyl) -4-diethoxyphosphorylbenzene.

1)元素分析値 計算値(%):C;27.82,H;2.90 実測値(%):C;26.25,H;2.68 2)NMRスペクトル値:CDCl3溶媒 δ値 8.12−7.76(3H,m) 7.23(1H,s) 7.07(1H,s) 4.17(4H,d.q.,JH-H=JH-p=7.26Hz) 1.36(6H,t,JH-H=7.26Hz) 次に、得られた1,2−ビス(ジブロモメチル)−4−
ジエトキシホスホリルベンゼン20g(0.036mol)とフマ
ロニトリル3.5g(0.045mol)の無水N,N−ジメチルホル
ムアミド100ml溶液に良く攪拌しながらヨウ化ナトリウ
ム23.2g(0.155mol)を加えて、窒素雰囲気下、約75℃
で5時間攪拌した。反応後、混合物を5%亜硫酸水素溶
液2000mlへゆっくりと滴下すると、白色スラリーが急速
に生成した。滴下終了後、塩化ナトリウムによる塩析を
行い、吸引濾過し、得られた固体を充分水洗した後、減
圧乾燥して、5.1gの白色固体を得た。このものは、さら
に精製の必要はなく、下記の分析結果からせ6−ジエト
キシホスホリル−2,3−ジシアノナフタレンであること
を確認した。
1) Elemental analysis value Calculated value (%): C; 27.82, H; 2.90 Actual value (%): C; 26.25, H; 2.68 2) NMR spectrum value: CDCl 3 solvent δ value 8.12-7.76 (3H, m) 7.23 (1H, s) 7.07 (1H, s) 4.17 (4H, dq, J HH = J Hp = 7.26Hz) 1.36 (6H, t, J HH = 7.26Hz) Next, the obtained 1,2-bis (Dibromomethyl) -4-
23.2 g (0.155 mol) of sodium iodide was added to a solution of 20 g (0.036 mol) of diethoxyphosphorylbenzene and 3.5 g (0.045 mol) of fumaronitrile in 100 ml of anhydrous N, N-dimethylformamide while stirring well, and under a nitrogen atmosphere, 75 ° C
And stirred for 5 hours. After the reaction, the mixture was slowly added dropwise to 2000 ml of 5% hydrogen sulfite solution, and a white slurry rapidly formed. After completion of the dropping, salting out with sodium chloride was performed, suction filtration was performed, the obtained solid was sufficiently washed with water, and then dried under reduced pressure to obtain 5.1 g of a white solid. It was confirmed that this product was 6-diethoxyphosphoryl-2,3-dicyanonaphthalene based on the analysis results described below without further purification.

1)元素分析値 計算値(%):C;61.15,H;4.78,N;8.92 実測値(%):C;60.09,H;4.76,N;8.89 2)NMRスペクトル値:CDCl3溶媒…(第6図参照。) δ値 8.61(1H,s) 8.45(1H,s) 8.41(1H,s) 8.12(1H,s) 8.04(1H,s) 4.19(4H,d.q.,JH-H=JH-p=7.04Hz) 1.36(6H,t,JH-H=7.04Hz) 3)IRスペクトル(CHCl3溶媒)…(第7図参照。) 2250cm-1にニトリルC≡N伸縮振動に帰因する吸収 1290cm-11260cm-1に(C2H5O)2P=O伸縮振動に帰因
する吸収を有する。
1) Elemental analysis value Calculated value (%): C; 61.15, H; 4.78, N; 8.92 Measured value (%): C; 60.09, H; 4.76, N; 8.89 2) NMR spectrum value: CDCl 3 solvent… ( See Fig. 6.) δ value 8.61 (1H, s) 8.45 (1H, s) 8.41 (1H, s) 8.12 (1H, s) 8.04 (1H, s) 4.19 (4H, dq, J HH = J Hp = 7.04Hz) 1.36 (6H, t, J HH = 7.04Hz) 3) IR spectrum (CHCl 3 solvent) (see Figure 7.) attributed to 2250 cm -1 nitrile C≡N stretching vibration absorbing 1290Cm -1 At 1260 cm −1, it has an absorption attributed to (C 2 H 5 O) 2 P═O stretching vibration.

実施例6 テトラキス(ジフェニルホスホリル)無金属ナフタロシ
アニンの合成 6−ジフェニルホスホリル−2,3−ジシアノナフタレ
ン1,124g(3mmol)と乾燥アミルアルコール3mlの混合液
を窒素雰囲気下、加熱還流し、ここへ1,8−ジアザビシ
クロ[5,4,0]ウンデ−7−セン0.50ml(3.3mmol)を約
15分かけ滴下した。その後、加熱還流下で約10時間攪拌
した後、約70℃まで放冷し、メタノール30mlを加え、こ
の温度でさらに1時間攪拌した。析出した深緑色固体を
濾取し、メタノールで洗浄した。次に、これを再びメタ
ノール300mlへ分散し、約1時間加熱還流した後、熱時
吸引濾過し、メタノールで濾液が透明になるまで充分に
洗浄した。濾取した深緑色固体を減圧乾燥して600mgの
固体を得た。
Example 6 Synthesis of tetrakis (diphenylphosphoryl) metal-free naphthalocyanine A mixture of 6-diphenylphosphoryl-2,3-dicyanonaphthalene (1,124 g, 3 mmol) and dry amyl alcohol (3 ml) was heated to reflux under a nitrogen atmosphere. About 0.50 ml (3.3 mmol) of 8,8-diazabicyclo [5,4,0] unde-7-sen
It dripped over 15 minutes. Then, the mixture was stirred under heating under reflux for about 10 hours, then allowed to cool to about 70 ° C., 30 ml of methanol was added, and the mixture was further stirred at this temperature for 1 hour. The deposited dark green solid was collected by filtration and washed with methanol. Next, this was again dispersed in 300 ml of methanol, heated under reflux for about 1 hour, suction filtered while hot, and thoroughly washed with methanol until the filtrate became transparent. The dark green solid collected by filtration was dried under reduced pressure to obtain 600 mg of a solid.

このものは、下記の分析結果から、テトラキス(ジフ
ェニルホスホリル)無金属ナフタロシアニンであること
を確認した。
This was confirmed to be tetrakis (diphenylphosphoryl) metal-free naphthalocyanine from the following analysis results.

1)元素分析値 計算値(%):C;76.09,H;4.10,N;7.40 実測値(%):C;72.80,H;4.33;N;7.23 2)電子スペクトル(CHCl3溶液)…(第8図参照。) 電子スペクトル(THF溶液)…(第18図参照。) 3)IRスペクトル(KBr法)…(第9図参照。) 実施例7 テトラキス(ジエトキシホスホリル)無金属ナフタロシ
アニンの合成 6−(ジエトキシホスホリル)−2,3−ジシアノナフ
タレン1.2g(4.7mmol)と乾燥アミルアルコール3mlおよ
び1,8−ジアザビシクロ[5,4,0]ウンデ−7−セン0.8m
l(5.3mmol)を実施例6と同様にして反応させ、反応終
了後、メタノール及び水を5mlづつ加え、攪拌した後、
塩化ナトリウムを用いて塩析を行った。得られた固体を
濾取し、水洗した後、メタノール/水=3/7の溶液で濾
液が透明になるまで洗浄した。この深緑色固体を減圧乾
燥して、約450mgの固体を得た。
1) Elemental analysis value Calculated value (%): C; 76.09, H; 4.10, N; 7.40 Measured value (%): C; 72.80, H; 4.33; N; 7.23 2) Electronic spectrum (CHCl 3 solution)… ( (See FIG. 8) Electronic spectrum (THF solution) (See FIG. 18) 3) IR spectrum (KBr method) (See FIG. 9) Example 7 Tetrakis (diethoxyphosphoryl) metal-free naphthalocyanine Synthesis 6- (diethoxyphosphoryl) -2,3-dicyanonaphthalene 1.2 g (4.7 mmol) and dry amyl alcohol 3 ml and 1,8-diazabicyclo [5,4,0] unde-7-cene 0.8 m
l (5.3 mmol) was reacted in the same manner as in Example 6, and after the reaction was completed, methanol and water were added in 5 ml portions, and the mixture was stirred,
Salting out was performed using sodium chloride. The obtained solid was collected by filtration, washed with water, and then washed with a solution of methanol / water = 3/7 until the filtrate became transparent. The dark green solid was dried under reduced pressure to obtain about 450 mg of solid.

1)元素分析値 計算値(%):C,61.05;H,4.93;N,8.90 実測値(%):C,60.92;H,4.90;N,8.87 2)電子スペクトル(CHCl3溶液)…(第10図参照。) 3)IRスペクトル(KBr法)…(第11図参照。) 実施例8 テトラキス(ジヒドロキシホスホリル)無金属ナフタロ
シアニンの合成 実施例7で合成したテトラキス(ジエトキシホスホリ
ル)無金属ナフタロシアニン100mg、10%塩酸水100mlの
混合液を約5時間加熱還流した後、放冷し、深緑色固体
を濾取した。これを適量のイオン交換水で水洗した後、
メタノール約50mlを用いて洗浄し、減圧乾燥して、約55
mgの固体を得た。
1) Elemental analysis value Calculated value (%): C, 61.05; H, 4.93; N, 8.90 Measured value (%): C, 60.92; H, 4.90; N, 8.87 2) Electronic spectrum (CHCl 3 solution)… ( (See FIG. 10) 3) IR spectrum (KBr method) (See FIG. 11) Example 8 Synthesis of tetrakis (dihydroxyphosphoryl) metal-free naphthalocyanine Tetrakis (diethoxyphosphoryl) metal-free synthesized in Example 7 A mixed liquid of 100 mg of naphthalocyanine and 100 ml of 10% hydrochloric acid was heated under reflux for about 5 hours, then allowed to cool, and a deep green solid was collected by filtration. After washing this with an appropriate amount of ion-exchanged water,
Wash with about 50 ml of methanol, dry under reduced pressure,
Obtained mg of solid.

このものは、下記の分析結果からテトラキス(ジヒド
ロキシホスホリル)無金属ナフタロシアニンであること
を確認した。
This was confirmed to be tetrakis (dihydroxyphosphoryl) metal-free naphthalocyanine from the following analysis results.

1)元素分析値 計算値(%):C,55.71;H,2.90;N,10.83 実測値(%):C,55.50;H,2.87;N,10.75 2)電子スペクトル(5%炭酸水素ナトリウム水溶液)
…(第12図参照。) 3)IRスペクトル(KBr法)…(第13図参照。) 実施例9 テトラキス(ジフェニルホスホリル)バナジルナフタロ
シアニンの合成 6−ジフェニルホスホリル−2,3−ジシアノナフタレ
ン1.0g(2.65mmol)、塩化バナジウム0.3g(1.33mmo
l)、トリ−n−ブチルアミン0.5ml、α−ブロモナフタ
レン3mlの混合液を180〜200℃で、約3時間加熱攪拌し
た後、約60℃まで放冷し、メタノール50mlを加え、さら
に、この温度で1時間攪拌した後、析出した深緑色固体
を濾取した。メタノールを用いて濾液に色がつかなくな
るまで洗浄した後、3%塩酸水300mlへ分散し、約1時
間70〜80℃で、攪拌した。濾取後、充分に水洗した後、
さらに、メタノール300mlで洗浄し、減圧乾燥して、525
mgの固体を得た。
1) Elemental analysis value Calculated value (%): C, 55.71; H, 2.90; N, 10.83 Measured value (%): C, 55.50; H, 2.87; N, 10.75 2) Electronic spectrum (5% sodium hydrogen carbonate aqueous solution) )
(See FIG. 12) 3) IR spectrum (KBr method) (See FIG. 13) Example 9 Synthesis of tetrakis (diphenylphosphoryl) vanadyl naphthalocyanine 6-diphenylphosphoryl-2,3-dicyanonaphthalene 1.0 g (2.65mmol), vanadium chloride 0.3g (1.33mmo
l), 0.5 ml of tri-n-butylamine and 3 ml of α-bromonaphthalene were heated and stirred at 180 to 200 ° C for about 3 hours, then allowed to cool to about 60 ° C, 50 ml of methanol was added, and After stirring at temperature for 1 hour, the precipitated dark green solid was collected by filtration. The filtrate was washed with methanol until it became colorless, dispersed in 300 ml of 3% hydrochloric acid water, and stirred at 70 to 80 ° C for about 1 hour. After being filtered, washed thoroughly with water,
Furthermore, it was washed with 300 ml of methanol, dried under reduced pressure, and
Obtained mg of solid.

このものは、下記の分析結果からテトラキス(ジフェ
ニルホスホリル)バナジルナフタロシアニンであること
を確認した。
This was confirmed to be tetrakis (diphenylphosphoryl) vanadyl naphthalocyanine from the following analysis results.

1)元素分析値 計算値(%):C,73.00;H,3.80;N,7.09 実測値(%):C,70.13;H,4.02;N,6.84 2)電子スペクトル(CHCl3溶液)…(第14図参照。) 3)IRスペクトル(KBr法)…(第15図参照。) 実施例10 テトラキス(ジフェニルホスホリル)クロロインジウム
ナフタロシアニンの合成 6−ジフェニルホスホリル−2,3−ジシアノナフタレ
ン1.5g(4mmol)、塩化インジウム−4水和物0.75g(2.
56mmol)、キノリン3ml、の混合物を約200℃で、約6時
間加熱攪拌した後、約60℃まで放冷し、メタノール60ml
を加え、さらに、この温度で1時間攪拌した後、析出し
た深緑色固体を濾取した。次いで、メタノールを用いて
濾液に色がつかなくなるまで洗浄した後、3%塩酸水30
0mlへ分散し、約1時間70〜80℃で攪拌した。濾取後、
充分に水洗した後、再び、メタノール300mlで洗浄し、
減圧乾燥して、500mgの固体を得た。
1) Elemental analysis value Calculated value (%): C, 73.00; H, 3.80; N, 7.09 Measured value (%): C, 70.13; H, 4.02; N, 6.84 2) Electronic spectrum (CHCl 3 solution)… ( (See FIG. 14) 3) IR spectrum (KBr method) (See FIG. 15) Example 10 Synthesis of tetrakis (diphenylphosphoryl) chloroindium naphthalocyanine 6-diphenylphosphoryl-2,3-dicyanonaphthalene 1.5 g ( 4 mmol), indium chloride tetrahydrate 0.75 g (2.
(56 mmol) and quinoline 3 ml, and the mixture is heated and stirred at about 200 ° C for about 6 hours, then allowed to cool to about 60 ° C and methanol 60 ml.
Was added, and the mixture was further stirred at this temperature for 1 hour, and then the precipitated dark green solid was collected by filtration. Next, wash the filtrate with methanol until the filtrate is no longer colored, and then use 3% hydrochloric acid water 30
It was dispersed in 0 ml and stirred at 70 to 80 ° C. for about 1 hour. After filtration
After thoroughly washing with water, wash again with 300 ml of methanol,
After drying under reduced pressure, 500 mg of solid was obtained.

このものは、下記の分析結果からテトラキス(ジフェ
ニルホスホリル)クロロインジウムナフタロシアニンで
あることを確認した。
This was confirmed to be tetrakis (diphenylphosphoryl) chloroindium naphthalocyanine from the following analysis results.

1)元素分析値 計算値(%):C,69.30;H,3.61;N,6.74 実測値(%):C,67.64;H,3.82;N,6.41 2)電子スペクトル(CHCl3溶液)…(第16図参照。) 3)IRスペクトル(KBr法)…(第17図参照。)1) Elemental analysis value Calculated value (%): C, 69.30; H, 3.61; N, 6.74 Measured value (%): C, 67.64; H, 3.82; N, 6.41 2) Electronic spectrum (CHCl 3 solution)… ( (See Fig. 16.) 3) IR spectrum (KBr method) ... (See Fig. 17)

【図面の簡単な説明】 第1図は、実施例1の化合物のNMRスペクトル図、第2
図は、実施例2の化合物のNMRスペクトル図、第3図
は、実施例3の化合物のNMRスペクトル図、第4図は、
実施例4の化合物のNMRスペクトル図、第5図は、実施
例4の化合物のIRスペクトル図、第6図は、実施例5の
化合物のNMRスペクトル図、第7図は、実施例5の化合
物のIRスペクトル図、第8図は、実施例6の化合物の電
子スペクトル図、第9図は、実施例6の化合物のIRスペ
クトル図、第10図は、実施例7の化合物の電子スペクト
ル図、第11図は、実施例7の化合物のIRスペクトル図、
第12図は、実施例8の化合物の電子スペクトル図、第13
図は、実施例8の化合物のIRスペクトル図、第14図は、
実施例9の化合物の電子スペクトル図、第15図は、実施
例9の化合物のIRスペクトル図、第16図は、実施例10の
化合物の電子スペクトル図、第17図は、実施例10の化合
物のIRスペクトル図、第18図は、実施例6の化合物の電
子スペクトル図を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an NMR spectrum diagram of the compound of Example 1, FIG.
The figure shows the NMR spectrum of the compound of Example 2, FIG. 3 shows the NMR spectrum of the compound of Example 3, and FIG.
5 is an NMR spectrum of the compound of Example 4, FIG. 5 is an IR spectrum of the compound of Example 4, FIG. 6 is an NMR spectrum of the compound of Example 5, and FIG. 7 is a compound of Example 5. IR spectrum of the compound of Example 6, FIG. 8 is an electronic spectrum of the compound of Example 6, FIG. 9 is an IR spectrum of the compound of Example 6, and FIG. 10 is an electronic spectrum of the compound of Example 7. FIG. 11 is an IR spectrum diagram of the compound of Example 7,
FIG. 12 is an electron spectrum diagram of the compound of Example 8, FIG.
The figure shows the IR spectrum of the compound of Example 8, and FIG. 14 shows
15 is an electron spectrum diagram of the compound of Example 9, FIG. 15 is an IR spectrum diagram of the compound of Example 9, FIG. 16 is an electron spectrum diagram of the compound of Example 10, and FIG. 17 is a compound of Example 10. FIG. 18 shows the IR spectrum of the compound of Example 6, and FIG.

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式: [式中、Xは (但し、R1およびR2はそれぞれ独立にヒドロキシル基、
アルキル基、アリール基または炭素数1〜10のアルコキ
シ基を示す。)、Mは2H、金属、金属酸化物または金属
塩化物を示す。] で表わされるナフタロシアニン化合物および金属ナフタ
ロシアニン化合物。
1. A general formula: [Where X is (However, R 1 and R 2 are each independently a hydroxyl group,
An alkyl group, an aryl group or an alkoxy group having 1 to 10 carbon atoms is shown. ), M represents 2H, a metal, a metal oxide or a metal chloride. ] The naphthalocyanine compound and metal naphthalocyanine compound represented by these.
【請求項2】一般式: [式中、Xは前記と同意義。] で表わされる請求項1記載の化合物の中間体。2. A general formula: [In the formula, X has the same meaning as described above. ] The intermediate of the compound of Claim 1 represented by these. 【請求項3】3−または4−ブロモ−o−キシレンとホ
スフィンオキシドまたはホスファイトとを反応して一般
[式中、Xは前記と同意義。] で表わされるX置換−o−キシレンを得、次に、これを
N−ブロモこはく酸イミドと反応させ、一般式: [式中、Xは前記と同意義。] で表わされる化合物を得、さらに、これを一般式: で表わされるフマロニトリルと反応させることを特徴と
する請求項2記載の一般式[2]で表わされる中間体の
製造方法。
3. A compound represented by the general formula by reacting 3- or 4-bromo-o-xylene with phosphine oxide or phosphite. [In the formula, X has the same meaning as described above. ] X-substituted-o-xylene represented by the following formula is obtained, and then this is reacted with N-bromosuccinimide to give a compound of the general formula: [In the formula, X has the same meaning as described above. ] The compound of the formula: The method for producing an intermediate represented by the general formula [2] according to claim 2, wherein the intermediate is represented by the formula (2).
【請求項4】請求項2記載の中間体を、プロトン授受型
促進剤の存在下、アルコール溶媒中で反応させることを
特徴とする一般式[1](但し、式中Mは2Hを示す。)
で表わされるナフタロシアニン化合物の製造方法。
4. The general formula [1] characterized in that the intermediate according to claim 2 is reacted in an alcohol solvent in the presence of a proton-donating type accelerator (wherein M represents 2H). )
A method for producing a naphthalocyanine compound represented by:
【請求項5】請求項2記載の中間体と金属あるいは金属
塩化物または酸化物を、融解もしくは高沸点溶媒中で反
応させる一般式[1](但し、式中Mは金属、金属酸化
物または金属塩化物を示す。)で表わされる金属ナフタ
ロシアニン化合物の製造方法。
5. The general formula [1] in which the intermediate according to claim 2 is reacted with a metal or a metal chloride or oxide in a melting or high boiling point solvent (wherein M is a metal, a metal oxide or A method for producing a metal naphthalocyanine compound represented by the formula (1).
【請求項6】一般式: [但し、式中Xは前記と同意義。] で表わされるX置換ナフタレン−2,3−ジカルボン酸無
水物と金属あるいは金属塩化物または酸化物を、尿素の
存在下、融解もしくは高沸点溶媒中で反応させる一般式
[1](但し、Mは金属、金属酸化物または金属塩化物
を示す。)で表わされる金属ナフタロシアニン化合物の
製造方法。
6. A general formula: [However, in the formula, X has the same meaning as described above. ] The X-substituted naphthalene-2,3-dicarboxylic acid anhydride represented by the formula and a metal or metal chloride or oxide are reacted in the presence of urea in a molten or high-boiling solvent [1] (provided that M Represents a metal, a metal oxide or a metal chloride.) The method for producing a metal naphthalocyanine compound represented by.
【請求項7】一般式: [但し、式中Xは前記と同意義。] で表わされるX置換1,3−ジイミノベンズ(f)イソイ
ンドリンと金属あるいは金属塩化物または酸化物を、融
解もしくは三級アミンの存在下、高沸点溶媒中で反応さ
せる一般式[1](但し、Mは金属、金属酸化物または
金属塩化物を示す。)で表わされる金属ナフタロシアニ
ン化合物の製造方法。
7. A general formula: [However, in the formula, X has the same meaning as described above. ] The X-substituted 1,3-diiminobenz (f) isoindoline represented by the formula and a metal or metal chloride or oxide are reacted in the presence of a high boiling point solvent in the presence of a molten or tertiary amine [1] (provided that , M represents a metal, a metal oxide or a metal chloride.).
JP1087230A 1989-04-06 1989-04-06 Naphthalocyanine compound and method for producing the same Expired - Lifetime JP2541656B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1087230A JP2541656B2 (en) 1989-04-06 1989-04-06 Naphthalocyanine compound and method for producing the same
US07/504,309 US5064951A (en) 1989-04-06 1990-04-04 Naphthalocyanine compound and production thereof
DE69018115T DE69018115T2 (en) 1989-04-06 1990-04-05 Naphthalocyanine compounds and their production.
EP90106541A EP0391415B1 (en) 1989-04-06 1990-04-05 Naphthalocyanine compounds and production thereof
US07/700,453 US5149847A (en) 1989-04-06 1991-05-15 Naphthalocyanine compound and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1087230A JP2541656B2 (en) 1989-04-06 1989-04-06 Naphthalocyanine compound and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02265971A JPH02265971A (en) 1990-10-30
JP2541656B2 true JP2541656B2 (en) 1996-10-09

Family

ID=13909058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1087230A Expired - Lifetime JP2541656B2 (en) 1989-04-06 1989-04-06 Naphthalocyanine compound and method for producing the same

Country Status (4)

Country Link
US (1) US5064951A (en)
EP (1) EP0391415B1 (en)
JP (1) JP2541656B2 (en)
DE (1) DE69018115T2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5409797A (en) * 1991-03-04 1995-04-25 Fuji Photo Film Co., Ltd. Heat-sensitive recording material for laser recording
EP0502723B1 (en) * 1991-03-05 1996-10-09 Hitachi Chemical Co., Ltd. Water-soluble tetraazaporphins and fluorochrome for labeling
JPH07118273A (en) * 1993-10-22 1995-05-09 Hiroyoshi Shirai Naphthalocyanine compound, its production, naphthalocyanine polymer and its production
EP0712904B1 (en) * 1994-09-23 2000-04-26 Ciba SC Holding AG Phtalocyanines substituted with groups containing phosphorus
US7122076B2 (en) * 2004-08-09 2006-10-17 Silverbrook Research Pty Ltd Synthetically expedient water-dispersible IR dyes
CA2576197C (en) 2004-08-09 2011-10-18 Silverbrook Research Pty Ltd Synthetically expedient water-dispersible ir dyes having improved lightfastness
US20070241072A1 (en) * 2006-04-12 2007-10-18 Bryant James C Shelving system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2613129A (en) * 1951-03-27 1952-10-07 Du Pont Mixture of phthalocyanine vat dyes and process of making the same
CA1006655A (en) * 1972-06-07 1977-03-15 Ronald Swidler Reactively dyed substrate
US4311775A (en) * 1980-10-06 1982-01-19 Eastman Kodak Company Novel phthalocyanine pigments and electrophotographic uses thereof
US4492750A (en) * 1983-10-13 1985-01-08 Xerox Corporation Ablative infrared sensitive devices containing soluble naphthalocyanine dyes
JPS60252344A (en) * 1984-05-30 1985-12-13 Ricoh Co Ltd Optical information recording medium
JPS6116891A (en) * 1984-07-03 1986-01-24 Tdk Corp Optical recording medium
JPS6125886A (en) * 1984-07-17 1986-02-04 Yamamoto Kagaku Gosei Kk Optical information recording medium
JPS61163891A (en) * 1985-01-14 1986-07-24 Mitsui Toatsu Chem Inc Photo-recording medium
JPS61215662A (en) * 1985-03-20 1986-09-25 Yamamoto Kagaku Gosei Kk Naphthalocyanine compound
US4719613A (en) * 1985-08-27 1988-01-12 Mitsui Toatsu Chemicals, Inc. Optical recording medium having a reflective recording layer including a resinous binder and a naphthalocyanine dye
JPS62233287A (en) * 1986-04-02 1987-10-13 Kao Corp Optical information recording medium
JPS6339388A (en) * 1986-08-05 1988-02-19 Kao Corp Optical information recording medium
JPH07107138B2 (en) * 1986-09-16 1995-11-15 株式会社日立製作所 Germanium naphthalocyanine derivative
JPH0745259B2 (en) * 1986-09-16 1995-05-17 株式会社日立製作所 Optical information recording medium
JPH0721118B2 (en) * 1987-06-26 1995-03-08 日立化成工業株式会社 Naphthalocyanine derivative, method for producing the same, optical recording medium using the same, and method for producing the optical recording medium

Also Published As

Publication number Publication date
DE69018115D1 (en) 1995-05-04
US5064951A (en) 1991-11-12
JPH02265971A (en) 1990-10-30
DE69018115T2 (en) 1995-08-03
EP0391415A3 (en) 1991-11-21
EP0391415A2 (en) 1990-10-10
EP0391415B1 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
US4960538A (en) 1,2-naphthalocyanine near-infrared absorbent and recording/display materials using same
KR920002984B1 (en) Process for the preparation of naphthalo cyanine compounds
JP3455183B2 (en) Metallocenyl-phthalocyanine
KR100288681B1 (en) Optical recording materials and optical recording media
JP3836192B2 (en) Phthalocyanine compounds
JP2541656B2 (en) Naphthalocyanine compound and method for producing the same
KR910006442B1 (en) Tetera azaporphin and process for producing the same
US5446142A (en) Phthalocyanine and naphthalocyanine light-absorbing compound and optical recording medium containing same
EP0284370B1 (en) Naphthalocyanine derivatives and production processes thereof, as well as optical information recording media using the derivatives and production processes thereof
EP0619345A1 (en) Phthalocyanine compound and optical recording medium containing it
EP0254553B1 (en) Optical recording medium
JPH05295283A (en) Colorant for filter and color filter containing the colorant
US5149847A (en) Naphthalocyanine compound and production thereof
JP3839073B2 (en) Phthalonitrile compound, diiminoisoindoline compound, phthalocyanine near-infrared absorbing material, and production method thereof
JP2698067B2 (en) Phthalocyanine compound and method for producing the same
JP3732528B2 (en) Light absorbing compound and optical recording medium containing the same
US5219706A (en) Naphthalocyanine derivative and production process thereof, as well as optical information recording media using the derivatives and production process thereof
US8222401B2 (en) Metallocenyl phthalocyanine compounds and use thereof
JP3604435B2 (en) Phthalocyanine compound and optical recording medium containing the same
JP3604427B2 (en) Phthalocyanine compound and optical recording medium containing the same
JP3863195B2 (en) Phthalocyanine compounds
JP2727826B2 (en) Environment-resistant naphthalocyanine composition and optical recording medium using the same
JP3604439B2 (en) Phthalocyanine compound and optical recording medium containing the same
US5188922A (en) Optical recording medium
JPH01178494A (en) Optical recording medium