JP2541561B2 - Engine intake system - Google Patents

Engine intake system

Info

Publication number
JP2541561B2
JP2541561B2 JP62155100A JP15510087A JP2541561B2 JP 2541561 B2 JP2541561 B2 JP 2541561B2 JP 62155100 A JP62155100 A JP 62155100A JP 15510087 A JP15510087 A JP 15510087A JP 2541561 B2 JP2541561 B2 JP 2541561B2
Authority
JP
Japan
Prior art keywords
intake
resonance
passage
engine
intake passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62155100A
Other languages
Japanese (ja)
Other versions
JPS64317A (en
JPH01317A (en
Inventor
光夫 人見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP62155100A priority Critical patent/JP2541561B2/en
Publication of JPS64317A publication Critical patent/JPS64317A/en
Publication of JPH01317A publication Critical patent/JPH01317A/en
Application granted granted Critical
Publication of JP2541561B2 publication Critical patent/JP2541561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1824Number of cylinders six

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、容積拡大部のない共鳴吸気通路によって吸
気を共鳴過給するようにしたエンジンの吸気装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake device for an engine, which is designed to supercharge intake air by a resonance intake passage having no volume expansion portion.

(従来の技術) 従来より、エンジンの気筒内燃焼室に吸入される吸気
の動的効果によってその充填効率を高め、エンジンの出
力トルクを増大させるようにしたものは種々知られてい
る。その1例として、例えば特公昭60−14169号公報等
に示されるものでは、多気筒エンジンにおける吸気通路
を、吸気順序(点火順序)の連続しない気筒を同じグル
ープとする気筒群にそれぞれ接続される2つの吸気通路
に分け、その各々の吸気通路を、吸気マニホールドのブ
ランチ部上流端が接続された拡大室と、この拡大室に接
続された共鳴通路とで構成するとともに、該共鳴通路の
上流端を上流側集合室に連通させ、上記拡大室に、両吸
気通路同士を連通状態又は連通遮断状態に切り換える切
換装置を設け、上記切換装置によって各吸気通路同士の
連通を遮断したときには、各気筒の吸気行程に生じた負
の圧力波を上記上流側集合室で反射させて正の圧力波に
反転させ、その反転した正の圧力波により比較的低い回
転域で吸気の共鳴過給効果を発揮させる一方、各吸気通
路同士を連通させたときには、上記吸気圧力波の反転反
射位置を吸気ポートに近付けて、吸気圧力振動の固有振
動数を高くし、高速回転域で共鳴過給効果を得るように
なされている。
(Prior Art) Conventionally, there have been known various ones in which the filling efficiency is increased by a dynamic effect of intake air taken into a combustion chamber in a cylinder of an engine to increase the output torque of the engine. As an example thereof, in the one disclosed in Japanese Patent Publication No. 60-14169, etc., the intake passage in a multi-cylinder engine is connected to a cylinder group in which cylinders whose intake order (ignition order) is not continuous belong to the same group. The intake passage is divided into two intake passages, and each intake passage is composed of an expansion chamber to which the upstream end of the branch portion of the intake manifold is connected and a resonance passage connected to the expansion chamber, and the upstream end of the resonance passage. Is connected to the upstream side collecting chamber, and a switching device for switching both intake passages to a communication state or a communication cutoff state is provided in the expansion chamber, and when the communication between the intake passages is cut off by the switching device, The negative pressure wave generated in the intake stroke is reflected in the upstream side collecting chamber to be inverted to the positive pressure wave, and the inverted positive pressure wave causes the resonance supercharging effect of the intake in a relatively low rotation range. On the other hand, when the intake passages are communicated with each other, the reversal reflection position of the intake pressure wave is brought closer to the intake port to increase the natural frequency of the intake pressure vibration, thereby achieving the resonance supercharging effect in the high speed rotation range. It is designed to get you.

また、特開昭56−52522号公報に示されるものでは、
エアクリーナに接続されているインテークマニホールド
にループを形成して、該ループ内を吸気が一方向に流れ
るようにし、かつ該インテークマニホールドに分岐接続
される吸気管は該マニホールドに対してループ内の吸気
流れ方向と鋭角をなすように取り付けることにより、ル
ープ内の吸気流速を利用して、その慣性力により吸気充
填効率を高めるようになされている。
Further, in what is disclosed in JP-A-56-52522,
A loop is formed in the intake manifold connected to the air cleaner to allow the intake air to flow in one direction in the loop, and the intake pipe branch-connected to the intake manifold has an intake flow in the loop with respect to the manifold. By installing so as to form an acute angle with the direction, the intake flow velocity in the loop is utilized, and the intake charging efficiency is increased by its inertial force.

(発明が解決しようとする課題) ところが、上記した前者のものでは、吸気マニホール
ドブランチ部の集合部分の大容積の拡大室が設けられて
いるので、吸気系が大形化し、大きな設置スペースを要
する等の不具合がある。
(Problems to be Solved by the Invention) However, in the former case, since a large-volume expansion chamber is provided in the gathering portion of the intake manifold branches, the intake system becomes large, and a large installation space is required. And so on.

そこで、上記後者の技術において、吸気マニホールド
にループ部を形成するという点に着目し、吸気順序が連
続しない気筒を同じグループとする2つの気筒群の各吸
気ポートを、拡大室のない共通の共鳴用環状通路に接続
し、この共鳴用環状通路を、一方の気筒群に各吸気ポー
トに連通する部分と、他方の気筒群に各吸気ポートに連
通する部分とがそれぞれ2方向に延びて両側で相互に接
続された環状となし、上記両気筒群間の両側連通経路の
長さを、同じ気筒群の隣接する気筒の吸気ポート間の長
さよりも充分に大きく形成することにより、各気筒の吸
気行程の終期に吸気ポート付近に発生した正圧の圧力波
を共鳴用環状通路を略一周させて、同じ気筒群の気筒の
吸気ポートに作用させるようにし、吸気の動的効果を有
効に発揮させつつ、吸気の拡大室を不要として大きさを
コンパクト化するようにすることが考えられる。
Therefore, in the latter technique described above, focusing on the point that a loop portion is formed in the intake manifold, the intake ports of two cylinder groups in which the cylinders whose intake orders are not consecutive are the same group are connected to a common resonance without an expansion chamber. And a portion that communicates with each intake port in one cylinder group and a portion that communicates with each intake port in the other cylinder group extend in two directions, and are connected on both sides. The cylinders connected to each other are not connected to each other, and the length of the both-side communication path between the two cylinder groups is set sufficiently larger than the length between the intake ports of the adjacent cylinders of the same cylinder group, so that the intake air of each cylinder is The positive pressure wave generated near the intake port at the end of the stroke is made to go around the resonance annular passage almost once to act on the intake ports of the cylinders in the same cylinder group, and the dynamic effect of intake is effectively exhibited. While And eliminates the need for expansion chamber of the gas can be considered to be compact size.

さらには、このような環状吸気通路による吸気の共鳴
過給効果に限らず、各気筒の吸気ポートをサージタンク
等の容積拡大室のない吸気通路に接続し、その吸気通路
での吸気の共振周波数がエンジンの特定回転域(例えば
低速回転域)になるように吸気通路の長さを設定するこ
とにより、吸気をその共鳴効果によって過給するように
することも可能である。
Furthermore, not only the intake supercharging effect of the annular intake passage but also the intake port of each cylinder is connected to an intake passage having no capacity expansion chamber such as a surge tank, and the resonance frequency of the intake air in the intake passage is connected. By setting the length of the intake passage so that the engine speed becomes a specific rotation range (for example, a low speed rotation range) of the engine, it is possible to supercharge the intake air by its resonance effect.

ところで、エンジンに燃料を噴射供給する燃料噴射式
のエンジンでは、その吸入空気量を検出する必要がある
が、その検出方式として、エンジンの吸気管内の吸気負
圧を検出し、その吸気負圧とエンジン回転数とを基に吸
入空気量を間接的に算出して、その吸入空気量に対応す
る燃料噴射量を決定するようにしたスピードデンシティ
方式と呼ばれるものはよく知られている。
By the way, in a fuel injection type engine for injecting fuel into the engine, it is necessary to detect the intake air amount. As a detection method, the intake negative pressure in the intake pipe of the engine is detected and the intake negative pressure is detected. A so-called speed density system is well known in which the intake air amount is indirectly calculated based on the engine speed and the fuel injection amount corresponding to the intake air amount is determined.

しかし、このスピードデンシテイ方式の燃料噴射制御
装置を備えたエンジンに対して上記の吸気装置を適用し
た場合、以下に説明する問題が生じる。すなわち、上記
吸気装置では、容積拡大室のない吸気通路によって吸気
を共鳴させる構造であるので、吸気系の容積が小さく、
その吸気通路での吸気脈動のレベルが通常のものよりも
大きい。このため、吸気負圧を圧力センサにより検出す
るとき、例えばエンジン回転数が変化すると、それに伴
って吸気の圧力波形も異なるため、上記検出圧力が吸気
の平均圧力に対応しないことがあり、正確な空気量の検
出が困難になる。
However, when the above intake device is applied to an engine equipped with this speed-density type fuel injection control device, the following problems occur. That is, in the above-described intake device, since the intake passage has no volume expansion chamber and the intake passage is resonated, the intake system has a small volume,
The level of intake pulsation in the intake passage is higher than usual. For this reason, when the intake negative pressure is detected by the pressure sensor, for example, when the engine speed changes, the pressure waveform of the intake air also changes accordingly, so the detected pressure may not correspond to the average pressure of the intake air. It becomes difficult to detect the amount of air.

本発明は斯かる点に鑑みてなされたものであり、その
目的は、上記した共鳴吸気通路により吸気の共鳴過給を
行うようにしたエンジンの吸気装置において、エンジン
の吸気負圧に基づいて燃料噴射量を制御する場合、その
吸気負圧を検出する圧力センサの取付箇所を適正に特定
することにより、この圧力センサにより検出される吸気
の圧力変化が可及的に小さくなるようにして、吸気負圧
を正確に検出し、燃料噴射量を緻密に制御できるように
することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an engine intake system in which resonance supercharging of intake air is performed by the resonance intake passage described above. When controlling the injection amount, by appropriately specifying the mounting location of the pressure sensor that detects the intake negative pressure, the change in the intake pressure detected by this pressure sensor is made as small as possible, The purpose is to accurately detect the negative pressure and precisely control the fuel injection amount.

(課題を解決するための手段) この目的の達成のため、本発明の解決手段は、圧力セ
ンサの取付箇所を、スロットル弁下流の共鳴吸気通路で
吸気の共鳴圧力変動の節(節点)となる部分に設定した
ものである。
(Means for Solving the Problem) In order to achieve this object, the solution means of the present invention is such that the mounting location of the pressure sensor becomes a node (node) of the resonance pressure fluctuation of the intake air in the resonance intake passage downstream of the throttle valve. It is set in the part.

すなわち、本発明の構成は、容積拡大部のない共鳴吸
気通路と、上流端が該共鳴吸気通路に分岐接続される一
方、下流端がエンジンの各気筒に接続された独立吸気通
路とを有し、上記共鳴吸気通路によって吸気を共鳴過給
するようにしたエンジンの吸気装置として、上記各独立
吸気通路に配設され、エンジンに燃料を噴射供給する燃
料噴射弁と、エンジンの吸気管内の負圧を検出する圧力
センサと、この圧力センサからの出力信号に基づいて燃
料噴射量を決定し、該噴射量の燃料が噴射されるように
上記各燃料噴射弁を制御する制御手段とが備えられてお
り、上記圧力センサがスロットル弁下流の共鳴吸気通路
で吸気の共鳴圧力変動の節となる部分に配設された構成
とする。
That is, the configuration of the present invention has a resonance intake passage without a volume expansion portion, and an independent intake passage whose upstream end is branched and connected to the resonance intake passage and whose downstream end is connected to each cylinder of the engine. As an engine intake device that resonates and supercharges intake air by the resonance intake passage, a fuel injection valve disposed in each of the independent intake passages for injecting fuel to the engine, and a negative pressure in the intake pipe of the engine. And a control means for determining a fuel injection amount based on an output signal from the pressure sensor and controlling each of the fuel injection valves so that the fuel of the injection amount is injected. Therefore, the pressure sensor is arranged in a portion of the resonance intake passage downstream of the throttle valve, which serves as a node for the resonance pressure fluctuation of the intake air.

また、望ましくは、上記共鳴吸気通路は、各々点火順
序の連続しない気筒で構成される2つの気筒群における
各気筒の独立吸気通路同士を連通しかつ端部にて互いに
接続された2つの連通路を有しており、上記吸気の共鳴
圧力変動の節となる部分は、上記2つの気筒群の連通路
同士の接続部とする。
Further, desirably, the resonance intake passage communicates with the independent intake passages of the respective cylinders in the two cylinder groups each of which is composed of cylinders whose ignition order is not continuous, and two communication passages connected to each other at the end portions. And a portion serving as a node of the resonance pressure fluctuation of the intake air is a connecting portion between the communication passages of the two cylinder groups.

(作用) この構成により、エンジンの運転中、共鳴吸気通路に
おいて吸気の共鳴が生じ、この共鳴によって吸気を過給
することができる。
(Operation) With this configuration, the resonance of the intake air occurs in the resonance intake passage during the operation of the engine, and the intake air can be supercharged by this resonance.

また、エンジンの吸気管内の負圧が圧力センサにより
検出され、制御手段により、この圧力センサからの出送
信号に基づいて燃料噴射量が決定されるとともに、各独
立吸気通路にある燃料噴射弁が制御されて該燃料噴射弁
から上記噴射量の燃料が噴射される。
Further, the negative pressure in the intake pipe of the engine is detected by the pressure sensor, the control unit determines the fuel injection amount based on the output signal from the pressure sensor, and the fuel injection valve in each independent intake passage is The fuel injection valve is controlled to inject the fuel of the above injection amount.

上記吸気の共鳴過給の際、スロットル弁下流の共鳴吸
気通路で吸気の共鳴圧力変動の節となる部分の吸気圧力
波の変化が最小となる。そして、この部位に上記圧力セ
ンサが配設されているため、その圧力センサの検出する
圧力は吸気負圧の平均負圧に対応し、その平均負圧を正
確に検出できることとなり、よって上記エンジンの燃料
噴射制御を精度よく行うことができる。
At the time of the resonance supercharging of the intake air, the change in the intake pressure wave is minimized in the resonance intake passage downstream of the throttle valve, which is a node of the resonance pressure fluctuation of the intake air. Further, since the pressure sensor is arranged at this portion, the pressure detected by the pressure sensor corresponds to the average negative pressure of the intake negative pressure, and the average negative pressure can be accurately detected. The fuel injection control can be performed accurately.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Hereinafter, the Example of this invention is described based on drawing.

第1図は本発明の一実施例の全体構成を示し、1は第
1〜第6の6つの気筒2a〜2fを有する燃料噴射式V型6
気筒エンジンであって、上記6気筒2a〜2fの点火順序は
気筒番号どおりに第1気筒2a〜第6気筒2fの順序に設定
されている。そして、これら6つの気筒2a〜2fは点火順
序の連続しない3つの第1、第3及び第5気筒2a,2c,2e
と、第2、第4及び第6気筒2b,2d,2fでそれぞれ構成さ
れる2つの気筒群に分けられ、その一方の気筒群を構成
する3つの気筒2a,2c,2eはエンジン1のV形に配置され
た一方のバンク1aに順に形成され、他方の気筒群の3気
筒2b,2d,2fは他方のバンク1aに順に形成されている。
FIG. 1 shows the overall configuration of an embodiment of the present invention, in which 1 is a fuel injection type V-type 6 having six cylinders 1a to 1f.
In the cylinder engine, the ignition order of the 6 cylinders 2a to 2f is set to the order of the first cylinder 2a to the sixth cylinder 2f according to the cylinder number. These six cylinders 2a to 2f are the three first, third and fifth cylinders 2a, 2c and 2e whose ignition order is not continuous.
And the second, fourth and sixth cylinders 2b, 2d and 2f are respectively divided into two cylinder groups, and the three cylinders 2a, 2c and 2e which constitute one of the cylinder groups are V of the engine 1. The three cylinders 2b, 2d, 2f of the other cylinder group are sequentially formed in the other bank 1a.

上記各気筒2a〜2fは吸気ポート3と排気ポート(図示
せず)とを備え、上記吸気ポート3,3,…にはサージタン
ク等の容積拡大部のない吸気通路4が接続されている。
該吸気通路4は、各気筒2a〜2fの吸気ポート3に接続さ
れた独立吸気通路5と、該各独立吸気通路5の上流端に
接続された共鳴吸気通路としての環状吸気通路6と、該
環状吸気通路6に接続された共通吸気通路10とからな
り、この共通吸気通路10の上流端はエアクリーナ11に連
通されている。そして、上記環状吸気通路6は、各々上
記2つの気筒群における各気筒2a〜2fの独立吸気通路5,
5に接続された2つの連通路7,7と、該両連通路7,7の第
5及び第6気筒2e,2f側の端部同士を連通して一方向に
延び、かつ中間部に上記共通吸気通路10の下流端が接続
される上流側連通路8と、上記両連通路7,7の第1及び
第2気筒2a,2b側の端部同士を連通して他方向に延びる
下流側連通路9とからなり、上記上流側連通路8及び下
流側連通路9の通路長さは、いずれも各気筒群の独立吸
気通路5が接続される各連通路7において、隣接する2
つの気筒(例えば第1気筒2a及び第3気筒2c)に対応す
る独立吸気通路5,5との接続部位間の通路長さよりも長
く設定されている。そして、吸気順序の連続しない気筒
群の各気筒2a〜2fの吸気ポート3付近に、該各気筒2a〜
2fの吸気行程終期に正圧となる吸気の圧力振動を生じさ
せ、その圧力振動の圧力波を上流側及び下流側連通路8,
9において互いに異なる2方向に環状吸気通路6を周回
するように伝播させて該環状吸気通路6を略一周させた
後、同じ気筒群の他の気筒2a〜2fの吸気ポート3に作用
させることにより、吸気を共鳴過給させるように構成さ
れている。
Each of the cylinders 2a to 2f is provided with an intake port 3 and an exhaust port (not shown), and the intake ports 3, 3, ... Are connected to an intake passage 4 without a volume expansion part such as a surge tank.
The intake passage 4 includes an independent intake passage 5 connected to the intake port 3 of each cylinder 2a to 2f, an annular intake passage 6 connected to an upstream end of each independent intake passage 5 as a resonance intake passage, It comprises a common intake passage 10 connected to the annular intake passage 6, and the upstream end of the common intake passage 10 communicates with an air cleaner 11. The annular intake passage 6 has the independent intake passages 5 of the cylinders 2a to 2f in the two cylinder groups.
The two communication passages 7, 7 connected to 5 and the end portions of the both communication passages 7, 7 on the fifth and sixth cylinders 2e, 2f side are communicated with each other and extend in one direction, and the intermediate portion is provided with the above. The upstream side communication passage 8 to which the downstream end of the common intake passage 10 is connected, and the downstream side which communicates the ends of the first and second cylinders 2a, 2b side of both the communication passages 7, 7 and extends in the other direction. The upstream communication passage 8 and the downstream communication passage 9 are adjacent to each other in each communication passage 7 to which the independent intake passage 5 of each cylinder group is connected.
It is set to be longer than the passage length between the connection portions with the independent intake passages 5, 5 corresponding to one cylinder (for example, the first cylinder 2a and the third cylinder 2c). Then, in the vicinity of the intake port 3 of each cylinder 2a to 2f of the cylinder group whose intake order is not continuous, the cylinder 2a to
At the end of the intake stroke of 2f, the pressure oscillation of the intake air that becomes positive pressure is generated, and the pressure wave of the pressure oscillation is generated in the upstream and downstream communication passages 8,
By making the annular intake passage 6 travel around the annular intake passage 6 in two directions different from each other and making the annular intake passage 6 to make one round, by acting on the intake ports 3 of the other cylinders 2a to 2f of the same cylinder group. , Is configured to supercharge the intake air.

さらに、上記共通吸気通路10の途中には吸入空気量を
調整するスロットル弁12が配設されている。また、上記
各独立吸気通路5には燃料を噴射供給する燃料噴射弁13
が配設されている。
Further, a throttle valve 12 for adjusting the intake air amount is arranged in the middle of the common intake passage 10. Further, a fuel injection valve 13 for injecting and supplying fuel to each of the independent intake passages 5
Are arranged.

上記各燃料噴射弁13はコントロールユニット14により
作動制御される。このコントロールユニット14にはエン
ジン回転数(詳しくは回転速度)の信号と、吸気負圧を
検出する圧力センサ15の出力信号とが入力されており、
コントロールユニット14により、圧力センサ15によって
検出された吸気負圧及びエンジン回転数に基づいてエン
ジン1への吸入空気量を算出し、その算出された吸入空
気量に対応する燃料噴射量を決定して、その指令信号を
各燃料噴射弁13に出力して、各気筒2a〜2d内の燃焼室に
燃料を噴射供給するようになされている。
The operation of each fuel injection valve 13 is controlled by the control unit 14. The control unit 14 is supplied with an engine speed signal (specifically, a rotation speed) and an output signal of a pressure sensor 15 that detects an intake negative pressure.
The control unit 14 calculates the intake air amount into the engine 1 based on the intake negative pressure detected by the pressure sensor 15 and the engine speed, and determines the fuel injection amount corresponding to the calculated intake air amount. The command signal is output to each fuel injection valve 13 to inject and supply fuel to the combustion chamber in each cylinder 2a to 2d.

そして、上記圧力センサ15は、上記スロットル弁12下
流の環状吸気通路6において上記2つの気筒群の連通路
7,7同士の一方の接続部である下流側連通路9の略中央
部に配設されている。この圧力センサ15の配置されてい
る下流側連通路9の略中央部は、第2図に示すように吸
気の共鳴圧力変動の節(節点)となる。すなわち、第2
図は、環状吸気通路6の一方の気筒群に対応する連通路
7において中央の第3気筒2cに連通する独立吸気通路5
との接続点Aと、下流側連通路9及び上流側連通路8の
各々の通路長さの中央点B,B′と、他方の気筒群に対応
する連通路7において中央の第4気筒2dに連通する独立
吸気通路5との接続点Cとにおける吸気の圧力変化を示
しており、A点又はC点においては、第1、第3及び第
5気筒2a,2c,2e(又は第2、第4及び第6気筒2b,2d,2
f)の各吸気行程の終期に発生した正の圧力波が環状吸
気通路6を周回して同じ気筒群の他の気筒2a,2c,2e(2
b,2d,2f)の吸気行程終期に作用することにより、該各
気筒2a,2c,2e(2b,2d,2f)の吸気行程終期の吸気負圧が
基準レベルよりも正圧側に変化して、吸気の共鳴過給効
果が得られるのに対し、B点及びB′点については、一
方の気筒群の各気筒2a,2c,2e(2b,2d,2f)から伝播した
圧力波と他方の気筒群の各気筒2b,2d,2f(2a,2c,2e)か
ら伝播した圧力波とが打ち消しあって、圧力変動の節点
となるため、その圧力変動は極めて小さくて略基準レベ
ルに保たれることとなる。尚、第2図中、太い実線で記
載した範囲は吸気負圧のレベルが基準レベルよりも正圧
側に大きいレベルを示している。
Further, the pressure sensor 15 is provided in the annular intake passage 6 downstream of the throttle valve 12 so as to connect the two cylinder groups with each other.
It is arranged at a substantially central portion of the downstream side communication passage 9, which is one of the connecting portions of 7,7. The substantially central portion of the downstream side communication passage 9 in which the pressure sensor 15 is arranged serves as a node (node) of the resonance pressure fluctuation of the intake air as shown in FIG. That is, the second
The figure shows the independent intake passage 5 communicating with the central third cylinder 2c in the communication passage 7 corresponding to one cylinder group of the annular intake passage 6.
Connection point A, the center points B and B ′ of the passage lengths of the downstream side communication passage 9 and the upstream side communication passage 8, and the fourth cylinder 2d at the center in the communication passage 7 corresponding to the other cylinder group. Shows a change in intake pressure at a connection point C with an independent intake passage 5 communicating with the first, third and fifth cylinders 2a, 2c, 2e (or second, at a point A or a point C). 4th and 6th cylinders 2b, 2d, 2
The positive pressure wave generated at the end of each intake stroke of (f) circulates in the annular intake passage 6 and the other cylinders 2a, 2c, 2e (2
b, 2d, 2f) at the end of the intake stroke, the intake negative pressure at the end of the intake stroke of each cylinder 2a, 2c, 2e (2b, 2d, 2f) changes to the positive pressure side from the reference level. , While the resonance supercharging effect of intake air is obtained, at points B and B ′, the pressure wave propagated from each cylinder 2a, 2c, 2e (2b, 2d, 2f) of one cylinder group and the other The pressure waves propagating from the cylinders 2b, 2d, 2f (2a, 2c, 2e) of the cylinder group cancel each other out and become the nodal points of the pressure fluctuations, so the pressure fluctuations are extremely small and are maintained at approximately the reference level. It will be. Incidentally, in FIG. 2, the range indicated by a thick solid line shows a level where the intake negative pressure level is larger on the positive pressure side than the reference level.

したがって、上記実施例においては、基本的に、エン
ジン1の運転中、圧力センサ15によってスロットル弁12
下流の吸気負圧が検出され、この圧力センサ15の出力信
号を入力したコントロールユニット14において上記検出
吸気負圧とエンジン回転数とに基づいて間接的に吸入空
気量が算出されるとともに、この算出された空気量に対
応する燃料噴射量が決定され、その燃料噴射量に対応す
る指令信号が各燃料噴射弁13に出力されて該各燃料噴射
弁13から燃料が噴射される。
Therefore, in the above embodiment, the throttle valve 12 is basically operated by the pressure sensor 15 during the operation of the engine 1.
The intake negative pressure on the downstream side is detected, and the intake air amount is indirectly calculated based on the detected intake negative pressure and the engine speed in the control unit 14 to which the output signal of the pressure sensor 15 is input. The fuel injection amount corresponding to the determined air amount is determined, a command signal corresponding to the fuel injection amount is output to each fuel injection valve 13, and fuel is injected from each fuel injection valve 13.

そして、このエンジン1の運転に伴い、吸気順序の連
続しない気筒群における気筒2a〜2fの吸気ポート3付近
に、該各気筒2a〜2fの吸気行程終期に正圧となる吸気の
圧力振動が生じる。この圧力振動の圧力波は上流側及び
下流側連通路8,9において互いに異なる2方向に環状吸
気通路6を周回するように伝播されて、該環状吸気通路
6を略一周したのち同じ気筒群の他の気筒2a〜2fの吸気
ポート3に作用し、吸気の共鳴状態が生じる。この共鳴
状態によって吸気を過給することができる。
With the operation of the engine 1, pressure fluctuation of intake air that becomes a positive pressure at the end of the intake stroke of each of the cylinders 2a to 2f occurs in the vicinity of the intake port 3 of the cylinders 2a to 2f in the cylinder group in which the intake order is not continuous. . The pressure wave of this pressure oscillation is propagated in the upstream and downstream communication passages 8 and 9 so as to circulate in the two different directions so as to circulate in the annular intake passage 6, and the circular intake passage 6 is circulated substantially once, and then the same cylinder group It acts on the intake ports 3 of the other cylinders 2a to 2f and causes a resonance state of intake air. By this resonance state, intake air can be supercharged.

その場合、スロットル弁12下流の環状吸気通路6で吸
気の共鳴圧力変動の節となる、下流側連通路9の中央部
の吸気圧力波の変化が最小となるが、この部位に上記圧
力センサ15が配設されているため、その圧力センサ15の
検出する圧力は吸気負圧の平均負圧に対応することとな
り、その平均負圧を正確に検出でき、よって吸入空気量
を正確に算出して、エンジン1に対する燃料噴射制御を
精度よく行うことができる。
In that case, the change of the intake pressure wave in the central portion of the downstream side communication passage 9, which becomes a node of the resonance pressure fluctuation of the intake air in the annular intake passage 6 downstream of the throttle valve 12, is minimized. Therefore, the pressure detected by the pressure sensor 15 corresponds to the average negative pressure of the intake negative pressure, and the average negative pressure can be accurately detected. Therefore, the intake air amount can be accurately calculated. Therefore, the fuel injection control for the engine 1 can be accurately performed.

尚、上記圧力センサ15の配置位置は、上記環状吸気通
路6における下流側連通路9の中央部分に限定されな
い。すなわち、第2図の特性に基づいて、第1図で仮想
線にて示すように、環状吸気通路6における上流側連通
路8(2つの気筒群の連通路7,7同士の他方の接続部)
の中央部分(B′点位置)に配設してもよい。しかし、
この上流側連通路8は、共通吸気通路10から流下する吸
入空気の動圧があり、このことを考慮した場合、吸気負
圧をより正確に検出するためには上記実施例の如く下流
側連通路9の中央部分に配設する方が好ましい。
The position of the pressure sensor 15 is not limited to the central portion of the downstream side communication passage 9 in the annular intake passage 6. That is, based on the characteristics of FIG. 2, as shown by the phantom line in FIG. 1, the upstream side communication passage 8 in the annular intake passage 6 (the other connecting portion of the communication passages 7, 7 of the two cylinder groups). )
It may be arranged at the central portion (position B '). But,
This upstream side communication passage 8 has a dynamic pressure of the intake air flowing down from the common intake passage 10, and in consideration of this, in order to detect the intake negative pressure more accurately, the downstream side communication passage 8 as in the above embodiment. It is preferable to arrange it in the central portion of the passage 9.

第3図〜第5図はそれぞれ本発明の他の実施例を示
す。尚、第1図と同じ部分については同じ符号を付して
その詳細な説明は省略する。
3 to 5 each show another embodiment of the present invention. The same parts as those in FIG. 1 are designated by the same reference numerals and detailed description thereof will be omitted.

第3図に示す実施例では、上記実施例の如く、共通吸
気通路10からの吸気を環状吸気通路6にその上流側連通
路8から導入させるのではなく、環状吸気通路6の大半
を吸気導入用の通路から独立させた吸気装置に適用した
ものである。すなわち、共通吸気通路10′の下流側部分
は2又状に分岐されて、それぞれ環状吸気通路6の各連
通路7に連通されており、吸気を環状吸気通路6の各吸
気ポート3付近のみを通して各気筒2a〜2fに供給するよ
うにすることにより、環状吸気通路6の上流側及び下流
側連通路8,9を、吸気の導入に直接的に関与する吸気通
路ではなくて、圧力波の伝播のみを行う通路とし、その
環状吸気通路6を吸気流通のための制約を受けることな
く、共鳴過給に適した形状構造に設定することができる
ようにしたものである。そして、圧力センサ15は、上記
環状吸気通路6の下流側連通路9の中央側部分に配設さ
れており、よって、この実施例でも上記実施例と同様の
作用効果を奏することができる。
In the embodiment shown in FIG. 3, the intake air from the common intake passage 10 is not introduced into the annular intake passage 6 from the upstream side communication passage 8 as in the above embodiment, but most of the annular intake passage 6 is introduced. It is applied to an intake device that is independent of the air passage. That is, the downstream side portion of the common intake passage 10 ′ is branched into two branches and communicates with the communication passages 7 of the annular intake passage 6, respectively, and the intake air is passed through only the vicinity of the intake ports 3 of the annular intake passage 6. By supplying to the cylinders 2a to 2f, the upstream and downstream communication passages 8 and 9 of the annular intake passage 6 are not the intake passages directly involved in the introduction of the intake air, but the propagation of the pressure wave. The annular intake passage 6 can be set to a shape structure suitable for resonance supercharging without being restricted by the intake air flow. The pressure sensor 15 is arranged in the central portion of the downstream side communication passage 9 of the annular intake passage 6, so that this embodiment can also achieve the same effects as the above embodiment.

また、第4図に示す実施例は、3つの気筒2′a〜
2′cが吸気順序に関して2つの気筒群に分けられてい
ない3気筒エンジン1′の吸気装置に適用した場合を示
す。
In the embodiment shown in FIG. 4, the three cylinders 2'a ...
The case where 2'c is applied to the intake system of a three-cylinder engine 1'which is not divided into two cylinder groups in terms of intake order is shown.

この実施例の場合、環状吸気通路6′は一方の連通路
がなく、上流側連通路8と下流側連通路9とは各一端部
同士で直接接続されている。そして、吸気の共鳴過給状
態では、環状吸気通路6′において3つの気筒2′a〜
2′cの中央側の第2気筒2′bに対応する部位を起点
として通路全長の略1/4の距離の位置が圧力振動の節と
なり、その部位に圧力センサ15が配設されている。よっ
て、この実施例でも、上記実施例と同様の作用効果を奏
することができる。
In the case of this embodiment, the annular intake passage 6'does not have one communication passage, and the upstream communication passage 8 and the downstream communication passage 9 are directly connected at their one ends. In the resonance supercharging state of the intake air, the three cylinders 2'a ...
The position of a distance of about 1/4 of the entire passage length from the part corresponding to the second cylinder 2'b on the center side of 2'c is a node of pressure vibration, and the pressure sensor 15 is arranged at that part. . Therefore, also in this embodiment, the same operation and effect as the above embodiment can be obtained.

さらに、第5図に示す実施例では、上記実施例の如く
環状吸気通路ではなく、通常の共鳴吸気通路によって共
鳴過給する吸気装置に適用したものである。
Further, the embodiment shown in FIG. 5 is applied to an intake device that performs resonance supercharging by a normal resonance intake passage instead of the annular intake passage as in the above embodiment.

すなわち、この実施例では、v型6気筒エンジン1に
おいて、各気筒群の気筒2a〜2fの吸気ポート3がそれぞ
れ共鳴吸気通路16に連通され、その両共鳴吸気通路16,1
6はその上流端部のみで互いに合流して共通吸気通路10
に接続されており、気筒群の各気筒2a〜2fで発生した負
の圧力波を気筒群に対応する共鳴吸気通路16の上流側に
伝播して、その上流端合流部での反射により正の圧力波
に反転させた後に、同じ気筒群の他の気筒2a〜2fに作用
させることにより、吸気を共鳴過給するように構成され
ている。そして、この実施例の場合、吸気の共鳴過給状
態では、両共鳴吸気通路16,16の上流端合流部で圧力振
動の節が生じ、この部分に圧力センサ15が配設されてい
る。
That is, in this embodiment, in the v-type 6-cylinder engine 1, the intake ports 3 of the cylinders 2a to 2f of each cylinder group are respectively communicated with the resonance intake passages 16, and both resonance intake passages 16, 1 are connected.
6 merges with each other only at the upstream end and the common intake passage 10
The negative pressure wave generated in each of the cylinders 2a to 2f of the cylinder group is propagated to the upstream side of the resonance intake passage 16 corresponding to the cylinder group, and the positive pressure is generated by the reflection at the upstream end merging portion. After the pressure waves are inverted, the intake air is resonantly supercharged by acting on the other cylinders 2a to 2f of the same cylinder group. Further, in the case of this embodiment, in the resonance supercharging state of intake air, a node of pressure oscillation occurs at the upstream end confluence portion of both resonance intake passages 16, 16, and the pressure sensor 15 is arranged at this portion.

したがって、この実施例でも、吸気の共鳴過給時に圧
力振動の節となる部分に圧力センサ15が配設されている
ので、該圧力センサ15により検出する吸気負圧の変動が
小さく、よって吸気負圧を正確に検出することができ
る。
Therefore, in this embodiment as well, since the pressure sensor 15 is arranged at the portion that becomes a node of pressure oscillation during resonance supercharging of intake air, the fluctuation of the intake negative pressure detected by the pressure sensor 15 is small, and therefore the intake negative pressure is reduced. The pressure can be detected accurately.

(発明の効果) 以上説明したように、本発明によると、容積拡大部の
ない共鳴吸気通路と、この共鳴吸気通路をエンジンの各
気筒に接続する独立吸気通路とを有し、共鳴吸気通路に
よって吸気を共鳴過給するようにしたエンジンの吸気装
置に対し、吸気負圧を検出する圧力センサと、この圧力
センサの出力信号に基づいて燃料噴射量を決定し、各独
立吸気通路の燃料噴射弁から燃料を噴射させる制御手段
とを設ける場合において、上記圧力センサの取付位置を
スロットルバルブ下流で共鳴圧力変動の節となる位置に
設定したことにより、容積拡大部が不要となって吸気系
のコンパクト化が図れる一方で吸気圧力変動の大きい吸
気通路式の吸気装置であっても、圧力波形の変化の最小
となる部位の吸気負圧を検出でき、よって吸気負圧をエ
ンジンの運転状態に関係にく正確に検出して、吸気負圧
に基づくエンジンの燃料噴射制御の精度を向上させるこ
とができる。
(Effects of the Invention) As described above, according to the present invention, the resonance intake passage having no volume expansion portion and the independent intake passage connecting the resonance intake passage to each cylinder of the engine are provided. For an intake system of an engine designed to supercharge the intake air, a pressure sensor that detects the negative pressure of the intake air, and the fuel injection amount is determined based on the output signal of this pressure sensor. When a control means for injecting fuel is provided, the mounting position of the pressure sensor is set at a position which becomes a node of resonance pressure fluctuation downstream of the throttle valve, so that the volume expansion part becomes unnecessary and the intake system is compact. The intake negative pressure can be detected even in the intake passage type intake system in which the intake pressure fluctuation is large, but the intake negative pressure can be detected at the site where the change in the pressure waveform is the smallest. It is possible to improve the accuracy of the fuel injection control of the engine based on the intake negative pressure by accurately detecting it regardless of the operating state of the engine.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明の実施例を示すもので、第1図は吸気装置
の全体構成を示す模式平面図、第2図は吸気通路での圧
力変動を示す説明図である。第3図〜第5図はそれぞれ
本発明の他の実施例を示す第1図相当図である。 1,1′……エンジン、2a〜2f,2′a〜2′c……気筒、
5……独立吸気通路、6,6′……環状吸気通路、7……
連通路、12……スロットル弁、13……燃料噴射弁、14…
…コントロールユニット、15……圧力センサ、16……共
鳴吸気通路。
The drawings show an embodiment of the present invention. FIG. 1 is a schematic plan view showing the overall structure of an intake device, and FIG. 2 is an explanatory diagram showing pressure fluctuations in the intake passage. 3 to 5 are views corresponding to FIG. 1 showing another embodiment of the present invention. 1,1 '... Engine, 2a-2f, 2'a-2'c ... Cylinder,
5 ... Independent intake passage, 6, 6 '... Annular intake passage, 7 ...
Communication passage, 12 ... Throttle valve, 13 ... Fuel injection valve, 14 ...
… Control unit, 15 …… Pressure sensor, 16 …… Resonance intake passage.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】容積拡大部のない共鳴吸気通路と、上流端
が該共鳴吸気通路に分岐接続される一方、下流端がエン
ジンの各気筒に接続された独立吸気通路とを有し、上記
共鳴吸気通路によって吸気を共鳴過給するようにしたエ
ンジンの吸気装置であって、 上記各独立吸気通路に配設され、エンジンに燃料を噴射
供給する燃料噴射弁と、 エンジンの吸気管内の負圧を検出する圧力センサと、 上記圧力センサからの出力信号に基づいて燃料噴射量を
決定し、該噴射量の燃料が噴射されるように上記各燃料
噴射弁を制御する制御手段とを備え、 上記圧力センサは、スロットル弁下流の共鳴吸気通路で
吸気の共鳴圧力変動の節となる部分に配設されているこ
とを特徴とするエンジンの吸気装置。
1. A resonance intake passage having no volume expansion portion, and an independent intake passage having an upstream end branched and connected to the resonance intake passage and a downstream end connected to each cylinder of the engine. An intake device for an engine in which intake air is resonantly supercharged by an intake passage, the fuel injection valve being arranged in each of the independent intake passages for injecting fuel to the engine and a negative pressure in an intake pipe of the engine. A pressure sensor for detecting, a fuel injection amount is determined based on an output signal from the pressure sensor, and a control means for controlling each fuel injection valve so that the fuel of the injection amount is injected, An intake device for an engine, wherein the sensor is arranged at a portion of a resonance intake passage downstream of the throttle valve, which serves as a node for resonance pressure fluctuation of intake air.
【請求項2】共鳴吸気通路は、各々点火順序の連続しな
い気筒で構成される2つの気筒群における各気筒の独立
吸気通路同士を連通しかつ端部にて互いに接続された2
つの連通路を有しており、 吸気の共鳴圧力変動の節となる部分は、上記2つの気筒
群の連通路同士の接続部であることを特徴とする特許請
求の範囲第(1)項記載のエンジンの吸気装置。
2. The resonance intake passage communicates with the independent intake passages of the cylinders in the two cylinder groups each of which is composed of cylinders whose ignition order is not continuous, and is connected to each other at the end portions.
Claim 3 (1), characterized in that it has three communication passages, and the portion that serves as a node of the resonance pressure fluctuation of intake air is a connection portion between the communication passages of the two cylinder groups. Engine intake system.
JP62155100A 1987-06-22 1987-06-22 Engine intake system Expired - Fee Related JP2541561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62155100A JP2541561B2 (en) 1987-06-22 1987-06-22 Engine intake system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62155100A JP2541561B2 (en) 1987-06-22 1987-06-22 Engine intake system

Publications (3)

Publication Number Publication Date
JPS64317A JPS64317A (en) 1989-01-05
JPH01317A JPH01317A (en) 1989-01-05
JP2541561B2 true JP2541561B2 (en) 1996-10-09

Family

ID=15598625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62155100A Expired - Fee Related JP2541561B2 (en) 1987-06-22 1987-06-22 Engine intake system

Country Status (1)

Country Link
JP (1) JP2541561B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728241B2 (en) 2007-06-14 2010-06-01 Brother Kogyo Kabushiki Kaisha Electronic apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5791442B2 (en) * 2011-09-20 2015-10-07 ダイハツ工業株式会社 Internal combustion engine
CN102698524A (en) * 2012-06-17 2012-10-03 鞍钢集团矿业公司 Method for making ore dressing filter bag with high abrasion resistance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291622A (en) * 1985-10-17 1987-04-27 Nissan Motor Co Ltd Intake-air device of internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291622A (en) * 1985-10-17 1987-04-27 Nissan Motor Co Ltd Intake-air device of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728241B2 (en) 2007-06-14 2010-06-01 Brother Kogyo Kabushiki Kaisha Electronic apparatus

Also Published As

Publication number Publication date
JPS64317A (en) 1989-01-05

Similar Documents

Publication Publication Date Title
JP2543537B2 (en) Intake device for V-type multi-cylinder engine
JPH02146221A (en) Suction device for multi-cylinder v-engine
JPS6014169B2 (en) Intake system for multi-cylinder engines
JP2541561B2 (en) Engine intake system
KR920010121B1 (en) Intake manifold in v-type engine
JPH01317A (en) engine intake system
JP2560440B2 (en) Method for improving filling efficiency of internal combustion engine
JPS6291623A (en) Intake-air device of engine
JPS6155355A (en) Exhaust gas reflux device for multicylinder engine
JP2820411B2 (en) Engine intake system
JPH0320496Y2 (en)
JP2549383B2 (en) Engine intake system
JP2609282B2 (en) Engine intake system
JP2552478B2 (en) V-type engine exhaust system
JPS6210450A (en) Fuel feeding device of multicylinder internal combustion engine
JP2649372B2 (en) Intake device for supercharged engine
JP2583526B2 (en) Engine intake system
JP3115078B2 (en) Engine intake system
JPH11210477A (en) Intake air temperature controlling device for cylinder injection type engine incorporating supercharger
JPH041300Y2 (en)
JP2583527B2 (en) Engine intake system
JPH01314A (en) engine intake system
JPH0629559B2 (en) Multi-cylinder engine intake system
JP2776865B2 (en) Engine intake system
JPH0121135Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees