JP2540938B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2540938B2
JP2540938B2 JP1093706A JP9370689A JP2540938B2 JP 2540938 B2 JP2540938 B2 JP 2540938B2 JP 1093706 A JP1093706 A JP 1093706A JP 9370689 A JP9370689 A JP 9370689A JP 2540938 B2 JP2540938 B2 JP 2540938B2
Authority
JP
Japan
Prior art keywords
heating operation
temperature
heating
heat exchanger
defrost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1093706A
Other languages
Japanese (ja)
Other versions
JPH02272246A (en
Inventor
秀明 田頭
正美 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1093706A priority Critical patent/JP2540938B2/en
Publication of JPH02272246A publication Critical patent/JPH02272246A/en
Application granted granted Critical
Publication of JP2540938B2 publication Critical patent/JP2540938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、冷暖房を行う空気調和装置に関するもの
である。
TECHNICAL FIELD The present invention relates to an air conditioner for cooling and heating.

〔従来の技術〕[Conventional technology]

従来の空気調和装置の冷凍サイクルの構成を第2図に
示す。図において、1は圧縮機、2は四方切換弁、3は
室外側熱交換器、4,5は冷房運転時及び暖房運転時に膨
張機構として機能する第1及び第2の絞り装置、6は室
内側熱交換器、7はアキュムレータで、これらを順次冷
媒配管10で連結することにより冷凍サイクルが構成され
ている。又、8,9は室内側、室外側熱交換器6,3にそれぞ
れ送風する室内側及び室外側送風機、4a,4bは第1の絞
り装置4を構成する第1の減圧装置(キャピラリチュー
ブ)及びこれをバイパスする回路中に設けられた第1の
逆止弁、5a,5bは第2の絞り装置5を構成する第2の減
圧装置(キャピラリチューブ)及びこれをバイパスする
回路中に設けられた第2の逆止弁、17は室外側熱交換器
3の入口温度を検出する温度センサであり、室外側熱交
換器3の暖房時の入口側の冷媒配管10に設けられてい
る。
The structure of the refrigeration cycle of the conventional air conditioner is shown in FIG. In the figure, 1 is a compressor, 2 is a four-way switching valve, 3 is an outdoor heat exchanger, 4 and 5 are first and second expansion devices functioning as expansion mechanisms during cooling operation and heating operation, and 6 is a room. The inner heat exchanger, 7 is an accumulator, and a refrigerating cycle is configured by sequentially connecting these with a refrigerant pipe 10. Further, 8 and 9 are indoor side and outdoor side and outdoor side air blowers for blowing air to the outdoor heat exchangers 6 and 3, respectively, and 4a and 4b are first pressure reducing devices (capillary tubes) constituting the first expansion device 4. And a first check valve 5a, 5b provided in a circuit that bypasses the second pressure reducing device (capillary tube) that constitutes the second expansion device 5 and a circuit that bypasses the second pressure reducing device (capillary tube). The second check valve 17 is a temperature sensor that detects the inlet temperature of the outdoor heat exchanger 3, and is provided in the refrigerant pipe 10 on the inlet side of the outdoor heat exchanger 3 during heating.

又、第1図は制御用電気回路図を示し、TB1は電源端
子、TB2,TB3は接続端子、52C,52Fは電源スイッチ、14は
暖房スイッチ、15は補助リレー、16は除霜制御部、17は
室外側熱交換器3の入口温度を検出する温度センサ、21
は圧縮機1用リレー、22は四方切換弁2用リレー、28は
室内側送風機8用リレー、29は室外側送風機9用リレー
である。
Further, FIG. 1 shows an electric circuit diagram for control. TB1 is a power supply terminal, TB2 and TB3 are connection terminals, 52C and 52F are power supply switches, 14 is a heating switch, 15 is an auxiliary relay, 16 is a defrost control unit, Reference numeral 17 is a temperature sensor for detecting the inlet temperature of the outdoor heat exchanger 3, 21
Is a relay for the compressor 1, 22 is a relay for the four-way switching valve 2, 28 is a relay for the indoor blower 8, and 29 is a relay for the outdoor blower 9.

次に、動作について説明する。冷房運転時(冷媒の流
れを第2図中太い実線による矢印で示す。)には、電源
スイッチ52C,52Fの投入によってリレー21,28が励磁され
るとともにリレー15が非励磁であり、圧縮機1及び送風
機8,9が駆動される。圧縮機1から吐出された高温高圧
のガス冷媒は四方切換弁2を通り、室外側熱交換器3で
室外側送風機9によって送風される室外側空気と熱交換
され、ガス冷媒が凝縮液化される。そして、第1の絞り
装置4側でのバイパス回路中の第1の逆止弁4bを通り、
第2の絞り装置5を構成する第2の減圧装置5a側に導入
されて減圧され、低温低圧の液冷媒となる。その後、こ
の液冷媒は室内側熱交換器6に入り、室内側送風機8に
よって送風される室内空気と熱交換され、室内空気を冷
却するとともに、液冷媒が蒸発ガス化され、四方切換弁
2、アキュムレータ7を通り圧縮機1に戻るという冷房
時の冷凍サイクルが構成され、以後冷媒は上述した冷凍
サイクル内を順次液化、気化を繰り返しながら循環され
る。
Next, the operation will be described. During the cooling operation (refrigerant flow is indicated by the thick solid arrow in FIG. 2), the relays 21 and 28 are excited and the relay 15 is de-excited by turning on the power switches 52C and 52F. 1 and the blowers 8 and 9 are driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way switching valve 2, is heat-exchanged with the outdoor air blown by the outdoor blower 9 by the outdoor heat exchanger 3, and the gas refrigerant is condensed and liquefied. . Then, passing through the first check valve 4b in the bypass circuit on the side of the first expansion device 4,
It is introduced into the second pressure reducing device 5a side of the second expansion device 5 and reduced in pressure to become a low-temperature low-pressure liquid refrigerant. Then, this liquid refrigerant enters the indoor heat exchanger 6, is heat-exchanged with the indoor air blown by the indoor blower 8, cools the indoor air, and the liquid refrigerant is vaporized and gasified, and the four-way switching valve 2, A refrigerating cycle for cooling is constituted by returning to the compressor 1 through the accumulator 7, and thereafter, the refrigerant is circulated in the refrigerating cycle while repeatedly liquefying and vaporizing.

一方、暖房運転時(冷媒の流れを図中細い実線による
矢印で示す。)には、暖房スイッチ14の投入によってリ
レー22が励磁されて四方切換弁2が暖房側に切換わる。
圧縮機1から吐出された高温高圧のガス冷媒は、暖房側
に切換えられた四方切換弁2を通り、室内側熱交換器6
に入り、室内側送風機8によって送風される室内空気と
熱交換して室内空気を加熱するとともに、ガス冷媒が凝
縮液化される。そして、この液冷媒は第2の絞り装置5
の第2の逆止弁5bを通り、第1の減圧装置4aに導かれて
減圧され、低温低圧の液冷媒となる。その後、液冷媒は
室外側熱交換器3に入り、室外側送風機9によって送風
される室外空気と熱交換し、室外空気から採熱して室外
空気を冷却するとともに、これにより液冷媒が蒸発ガス
化し、四方切換弁2、アキュムレータ7を通り圧縮機1
に戻り、暖房時の冷凍サイクルが構成される。
On the other hand, during the heating operation (the flow of the refrigerant is indicated by a thin solid arrow in the figure), the relay 22 is excited by turning on the heating switch 14, and the four-way switching valve 2 is switched to the heating side.
The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way switching valve 2 switched to the heating side and passes through the indoor heat exchanger 6
Then, heat is exchanged with the indoor air blown by the indoor blower 8 to heat the indoor air, and the gas refrigerant is condensed and liquefied. Then, this liquid refrigerant is used as the second expansion device 5
After passing through the second non-return valve 5b, it is guided to the first pressure reducing device 4a and reduced in pressure to become a low temperature low pressure liquid refrigerant. Then, the liquid refrigerant enters the outdoor heat exchanger 3, exchanges heat with the outdoor air blown by the outdoor blower 9, cools the outdoor air by collecting heat from the outdoor air, and thereby the liquid refrigerant is vaporized and gasified. , The four-way switching valve 2, the accumulator 7, and the compressor 1
Then, the refrigeration cycle for heating is constructed.

又、このような暖房運転を継続して行っていると、例
えば室外空気温度が低い場合、室外側熱交換器3に着霜
が生じてくる。このような着霜が多くなると熱交換効率
が悪くなり、室外空気からの採熱量が減少するため、暖
房能力が著しく低下する。従って、このような場合に
は、デフロスト(除霜)を行うことが必要とされる。
Further, when such heating operation is continuously performed, when the outdoor air temperature is low, for example, frost forms on the outdoor heat exchanger 3. When such frost formation increases, the heat exchange efficiency deteriorates and the amount of heat taken from the outdoor air decreases, so that the heating capacity significantly decreases. Therefore, in such a case, it is necessary to perform defrosting (defrosting).

このようなデフロスト運転時(冷媒の流れを図中破線
による矢印で示す。)には、除霜制御部16が動作し、そ
の接点X3がオンすることにより補助リレー15が励磁さ
れ、その接点X2がオフする。このため、リレー22,29が
非励磁となり、四方切換弁2が冷房側に切換るとともに
室外側送風機9が停止される。この状態で圧縮機1から
吐出された高温高圧のガス冷媒は、暖房側から冷房側へ
切換えられた四方切換弁2を通り、室外側熱交換器3に
入る。室外側熱交換器3の表面に着霜していた霜は高温
ガス冷媒により溶解され、この冷媒は凝縮液化して第1
の逆止弁4bを通り、第2の減圧装置5aによって減圧され
て低温低圧の液冷媒となり、室内側熱交換器6に入り、
次いで四方切換弁2及びアキュムレータ7を通って圧縮
機1に戻るという冷凍サイクル運転を行っていた。
During such a defrost operation (the flow of the refrigerant is indicated by a dashed arrow in the figure), the defrost control unit 16 operates, and the contact X3 is turned on to excite the auxiliary relay 15 and the contact X2. Turns off. Therefore, the relays 22 and 29 are de-energized, the four-way switching valve 2 is switched to the cooling side, and the outdoor blower 9 is stopped. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 in this state passes through the four-way switching valve 2 switched from the heating side to the cooling side and enters the outdoor heat exchanger 3. The frost formed on the surface of the outdoor heat exchanger 3 is melted by the high temperature gas refrigerant, and this refrigerant is condensed and liquefied.
Passing through the check valve 4b, is reduced in pressure by the second pressure reducing device 5a to become a low-temperature low-pressure liquid refrigerant, and enters the indoor heat exchanger 6,
Then, a refrigeration cycle operation was performed in which the flow returned to the compressor 1 through the four-way switching valve 2 and the accumulator 7.

ところで、上述した暖房運転からデフロスト運転への
切換は、頻繁なデフロスト運転を避けるため、暖房運転
時間がある一定時間経過し(強制暖房運転モード)、か
つ室外側熱交換器3の入口温度が一定温度に低下すると
いう2条件を満足したときに行われるようになってい
た。又、デフロスト運転から暖房運転への切換は、室外
側熱交換器3の入口温度が一定温度に上昇するか又はデ
フロスト時間が一定時間経過するというどちらか一方の
条件を満足したときに行われるようになっていた。この
ような動作を第3図のフローチャートによって説明す
る。ステップ100では暖房運転を行い、ステップ101では
暖房運転時間THが60分以上経過したか否かを判定し、経
過した場合にはステップ102で室外側熱交換器3の入口
温度即ち温度センサ17による温度TPがデフロスト開始温
度TS以下であるか否かを判定し、ステップ101,102の条
件を満足した場合にはステップ103でデフロスト運転に
入る。逆に、ステップ104で入口温度TPがデフロスト終
了温度TE以上になるか又はステップ105でデフロスト運
転時間TDが15分以上経過した場合には、デフロスト運転
から暖房運転への切換が行われる。
By the way, in order to avoid frequent defrosting operations, the above-described switching from heating operation to defrosting operation has a certain heating operation time (forced heating operation mode) and the inlet temperature of the outdoor heat exchanger 3 is constant. It was supposed to be performed when the two conditions of lowering the temperature were satisfied. Also, the switching from the defrost operation to the heating operation is performed when either the condition that the inlet temperature of the outdoor heat exchanger 3 rises to a constant temperature or the defrost time elapses for a certain time. It was. Such operation will be described with reference to the flowchart of FIG. In step 100, heating operation is performed, and in step 101, it is determined whether or not the heating operation time T H has passed 60 minutes or more. If it has passed, in step 102, the inlet temperature of the outdoor heat exchanger 3, that is, the temperature sensor 17 It is determined whether or not the temperature T P due to is below the defrost start temperature T S , and if the conditions of steps 101 and 102 are satisfied, the defrost operation starts in step 103. On the contrary, if the inlet temperature T P becomes equal to or higher than the defrost end temperature T E in step 104 or the defrost operation time T D exceeds 15 minutes in step 105, the defrost operation is switched to the heating operation. .

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、上記した従来装置においては、暖房運
転時には第4図に示すように暖房運転とデフロスト運転
が単調に繰り返され、室外側熱交換器3に着霜量が多く
なると、1回のデフロストでは全体の霜を取ることがで
きずに残霜が生じ、運転時間が長くなると霜が成長し、
暖房能力の低下や霜の成長による室外側熱交換器3の破
壊という課題を生じた。
However, in the above-described conventional apparatus, when the heating operation and the defrosting operation are monotonically repeated during the heating operation and the amount of frost formed on the outdoor heat exchanger 3 is large, the entire defrosting operation is performed once. Frost cannot be removed and residual frost occurs, and frost grows as the operating time increases,
There was a problem that the outdoor heat exchanger 3 was destroyed due to deterioration of heating capacity and growth of frost.

この発明は上記のような課題を解決するために成され
たものであり、デフロスト後の残霜を無くし、霜の成長
による暖房能力の低下や室外側熱交換器の破壊を防止す
ることができる空気調和装置を得ることを目的とする。
The present invention has been made to solve the above problems, it is possible to eliminate the residual frost after defrost, it is possible to prevent the deterioration of the heating capacity due to the growth of frost and the destruction of the outdoor heat exchanger. The purpose is to obtain an air conditioner.

〔課題を解決するための手段〕[Means for solving the problem]

この発明に係る空気調和装置は、暖房運転とデフロス
ト運転を所定回数繰り返した後暖房運転に切換った場合
に室外側熱交換器の入口温度が第1の所定温度以下にな
ると暖房運転時間にかかわらずデフロスト運転に切換え
る手段を設けたものである。
In the air conditioner according to the present invention, when the inlet temperature of the outdoor heat exchanger becomes equal to or lower than the first predetermined temperature when the heating operation and the defrosting operation are repeated a predetermined number of times and then the heating operation is switched to, the heating operation time is not exceeded. Instead, a means for switching to the defrost operation is provided.

〔作 用〕[Work]

この発明においては、暖房運転とデフロスト運転を所
定回数繰り返した後暖房運転に切換った場合に室外側熱
交換器の入口温度が所定温度以下になると、暖房運転時
間にかかわらずデフロスト運転に切換わる。
In the present invention, when the heating operation and the defrosting operation are repeated a predetermined number of times and then the heating operation is switched to, and the inlet temperature of the outdoor heat exchanger becomes equal to or lower than the predetermined temperature, the defrosting operation is switched regardless of the heating operation time. .

〔実施例〕〔Example〕

以下、この発明の実施例を図面とともに説明する。制
御用電気回路及び冷凍サイクル回路の構成は第1図及び
第2図に示す通りである。
Embodiments of the present invention will be described below with reference to the drawings. The configurations of the control electric circuit and the refrigeration cycle circuit are as shown in FIGS. 1 and 2.

次に、第5図のフローチャートを用いて上記構成のデ
フロスト動作を説明する。ステップ200では、nF即ち暖
房運転とデフロスト運転を1サイクルとする運転回数を
初期設定すると共に、n=1を設定する。ステップ201
では暖房運転を行い、ステップ202では上記運転回数n
=nFか否かを判定し、n=nFであればステップ204に進
み、n=nFでなければステップ203に進む。ステップ203
では暖房運転時間THが60分以上経過したか否かを判定
し、経過した場合にはステップ204で室外側熱交換器3
の入口温度TPがデフロスト開始温度TSより低いか否かを
判定し、低い場合にはステップ205でデフロスト運転に
入る。ステップ206では入口温度TPがデフロスト終了温
度TE以上になったか否かを判定し、以上になった場合に
はステップ208で運転回数nに1を加算し、ステップ209
でnを初期設定値nFと比較し、n≦nFの場合にはステッ
プ201へ戻り、暖房運転に切換わる。n>nFの場合には
ステップ200へ戻り、nFを設定し直す。又、ステップ206
で入口温度TPがデフロスト終了温度より低い場合にはス
テップ207に移行し、デフロスト運転時間TEが15分以上
経過したか否かを判定し、経過した場合には前述のステ
ップ208以下の処理を行う。
Next, the defrosting operation of the above configuration will be described with reference to the flowchart of FIG. In step 200, n F, that is, the number of operations in which the heating operation and the defrosting operation are one cycle, is initialized and n = 1 is set. Step 201
In step 202, the heating operation is performed.
= Determines n F or not, if n = n F proceeds to step 204, the process proceeds to n = n F unless step 203. Step 203
Then, it is determined whether or not the heating operation time T H has passed 60 minutes or more, and if it has passed, in step 204 the outdoor heat exchanger 3
It is determined whether the inlet temperature T P of the engine is lower than the defrost start temperature T S , and if it is lower, the defrost operation is started in step 205. In step 206, it is judged whether or not the inlet temperature T P has become equal to or higher than the defrost end temperature T E.
Then, n is compared with the initial set value n F, and if n ≦ n F , the process returns to step 201 to switch to the heating operation. If n> n F, the process returns to step 200 to reset n F. Also, step 206
If the inlet temperature T P is lower than the defrost end temperature in step 207, the process proceeds to step 207 to determine whether or not the defrost operation time T E has passed 15 minutes or more. I do.

第6図はこの実施例によるデフロスト運転の運転パタ
ーンを示し、暖房運転とデフロスト運転を交互にn回繰
り返した後、次の暖房運転に入ったときに強制暖房運転
モードをキャンセルし、室外側熱交換器3の入口温度TP
がデフロスト開始温度TS以下に低下すれば、暖房運転時
間THが一定時間(60分)経過しなくても直ちにデフロス
ト運転に入るようにしている。
FIG. 6 shows an operation pattern of the defrosting operation according to this embodiment. After the heating operation and the defrosting operation are alternately repeated n times, when the next heating operation is started, the forced heating operation mode is canceled and the outdoor heat Inlet temperature of exchanger 3 T P
If the temperature drops below the defrost start temperature T S , the defrost operation is immediately started even if the heating operation time T H does not elapse for a fixed time (60 minutes).

即ち、n回の暖房運転とデフロスト運転を交互に繰り
返した後、暖房運転に切換った際に残霜があれば室外側
熱交換器3の入口温度TPが短時間で所定温度以下に達す
るのでデフロスト運転が再び開始される。従って、着霜
量が少ないので残霜が生じなくなり、残霜による暖房能
力の低下及び室外側熱交換器3の破壊が防止される。
又、n回の暖房運転とデフロスト運転を交互に繰り返し
た後、暖房運転に切換った際に残霜がなければ、室外側
熱交換器3の入口温度TPが所定温度以下に達するのに長
時間かかり、不必要なデフロスト運転に入ることはな
い。さらに、設置場所、地区によりn回の回数を適宜変
更すれば、最適な暖房運転を行うことができる。
In other words, after repeating the heating operation and the defrosting operation n times alternately, if there is residual frost when switching to the heating operation, the inlet temperature T P of the outdoor heat exchanger 3 reaches the predetermined temperature or less in a short time. Therefore, the defrost operation is restarted. Therefore, since the amount of frost is small, residual frost does not occur, and deterioration of the heating capacity and destruction of the outdoor heat exchanger 3 due to residual frost are prevented.
Further, after the heating operation and the defrosting operation are repeated n times, if there is no residual frost when switching to the heating operation, the inlet temperature T P of the outdoor heat exchanger 3 may reach the predetermined temperature or lower. It will take a long time and you will not enter into unnecessary defrost operation. Further, if the number of times of n times is appropriately changed depending on the installation place and district, optimum heating operation can be performed.

〔発明の効果〕〔The invention's effect〕

以上のようにこの発明によれば、暖房運転時に暖房運
転とデフロスト運転を交互に所定回数繰り返した後暖房
運転に入った際には暖房運転時間の条件をキャンセル
し、室外側熱交換器の入口温度の条件のみでデフロスト
運転に入るようにしており、残霜がある場合には短時間
で再びデフロスト運転に入ることができ、残霜をなくし
て暖房能力の低下や室外側熱交換器の破壊を防止するこ
とができる。そして、このような機能を達成するための
構成としては、運転回数を計数するカウンタあるいは単
純なタイマを追加するだけで良いので、その制御用機器
構成および制御ステップを簡素化することができ、信頼
性が高く、かつ、コスト面で有利なものを得ることがで
きる。
As described above, according to the present invention, when the heating operation and the defrost operation are alternately repeated a predetermined number of times during the heating operation and then the heating operation is started, the condition of the heating operation time is canceled, and the inlet of the outdoor heat exchanger is canceled. The defrost operation is started only under the temperature conditions.If there is residual frost, the defrost operation can be restarted in a short time, and the residual frost is eliminated to reduce the heating capacity and destroy the outdoor heat exchanger. Can be prevented. As a configuration for achieving such a function, a counter for counting the number of operations or a simple timer may be added, so that the control device configuration and control steps can be simplified, It is possible to obtain a product that is highly cost effective and cost effective.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来及びこの発明装置の制御用電気回路図、第
2図は従来及びこの発明装置の冷凍サイクルの構成図、
第3図は従来装置のデフロスト動作のフローチャート、
第4図は従来装置のデフロスト運転パターン図、第5図
はこの発明装置のデフロスト動作のフローチャート、第
6図はこの発明装置のデフロスト運転パターン図であ
る。 1……圧縮機、2……四方切換弁、3……室外側熱交換
器、6……室内側熱交換器、16……除霜制御部、17……
温度センサ。
FIG. 1 is a control electric circuit diagram of a conventional device and a device of the present invention, FIG. 2 is a configuration diagram of a refrigeration cycle of a conventional device and a device of the present invention,
FIG. 3 is a flowchart of the defrost operation of the conventional device,
FIG. 4 is a defrosting operation pattern diagram of the conventional apparatus, FIG. 5 is a flowchart of defrosting operation of the invention apparatus, and FIG. 6 is a defrosting operation pattern diagram of the invention apparatus. 1 ... Compressor, 2 ... Four-way switching valve, 3 ... Outdoor heat exchanger, 6 ... Indoor heat exchanger, 16 ... Defrost control unit, 17 ...
Temperature sensor.

フロントページの続き (56)参考文献 特開 昭59−145455(JP,A) 実開 昭63−188448(JP,U) 実開 昭63−172838(JP,U) 実開 平2−48739(JP,U) 実開 平1−136839(JP,U) 実開 昭63−172837(JP,U)Continuation of the front page (56) Reference JP-A-59-145455 (JP, A) Actually opened 63-188448 (JP, U) Actually opened 63-172838 (JP, U) Actually opened 2-48739 (JP , U) Actually open 1-136839 (JP, U) Actually open 63-172837 (JP, U)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】冷媒を圧縮する圧縮機と、冷房運転と暖房
運転により冷媒流路を切換える四方切換弁と、室外側に
設けられて冷媒と室外空気との熱交換を行う室外側熱交
換器と、室内側に設けられて冷媒と室内空気との熱交換
を行う室内側熱交換器を順次接続して構成された冷凍サ
イクルを備え、四方切換弁の切換により冷房運転と暖房
運転を切換えるようにした空気調和装置において、暖房
運転時に暖房運転時間が第1の所定時間経過しかつ室外
側熱交換器の入口温度が第1の所定温度以下になると四
方切換弁を冷房側に切換えてデフロスト運転に切換える
手段と、デフロスト運転時に室外側熱交換器の暖房時入
口での温度が第2の所定温度以上になるかあるいは第2
の所定時間経過した際に四方切換弁を暖房側に切換えて
暖房運転に切換える手段と、暖房運転とデフロスト運転
を所定回数繰り返した後暖房運転に切換った場合に上記
入口温度が第1の所定温度以下になると暖房運転時間に
かかわらずデフロスト運転に切換える手段を備えたこと
を特徴とする空気調和装置。
1. A compressor for compressing a refrigerant, a four-way switching valve for switching a refrigerant flow path between a cooling operation and a heating operation, and an outdoor heat exchanger provided on the outdoor side for exchanging heat between the refrigerant and outdoor air. And a refrigeration cycle constituted by sequentially connecting indoor heat exchangers that are provided on the indoor side to perform heat exchange between refrigerant and indoor air, and can switch between cooling operation and heating operation by switching the four-way switching valve. In the above air conditioner, when the heating operation time has passed the first predetermined time during the heating operation and the inlet temperature of the outdoor heat exchanger becomes equal to or lower than the first predetermined temperature, the four-way switching valve is switched to the cooling side to perform the defrost operation. And the temperature at the heating inlet of the outdoor heat exchanger during the defrost operation becomes equal to or higher than the second predetermined temperature, or
Means for switching the four-way switching valve to the heating side to switch to the heating operation after a predetermined time has passed, and the inlet temperature is the first predetermined value when the heating operation and the defrost operation are repeated a predetermined number of times and then the heating operation is switched. An air conditioner comprising means for switching to defrost operation regardless of heating operation time when the temperature falls below a temperature.
JP1093706A 1989-04-13 1989-04-13 Air conditioner Expired - Fee Related JP2540938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1093706A JP2540938B2 (en) 1989-04-13 1989-04-13 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1093706A JP2540938B2 (en) 1989-04-13 1989-04-13 Air conditioner

Publications (2)

Publication Number Publication Date
JPH02272246A JPH02272246A (en) 1990-11-07
JP2540938B2 true JP2540938B2 (en) 1996-10-09

Family

ID=14089856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1093706A Expired - Fee Related JP2540938B2 (en) 1989-04-13 1989-04-13 Air conditioner

Country Status (1)

Country Link
JP (1) JP2540938B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2541178B2 (en) * 1991-02-25 1996-10-09 ダイキン工業株式会社 Refrigeration system operation controller
CN113465125B (en) * 2021-06-17 2023-05-26 青岛海尔空调电子有限公司 Defrosting control method, computer readable storage medium and control device for air conditioner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145455A (en) * 1983-02-07 1984-08-20 ダイキン工業株式会社 Defroster
JPH0426834Y2 (en) * 1987-04-30 1992-06-26
JPS63188448U (en) * 1987-05-26 1988-12-02
JPH01136839U (en) * 1988-03-15 1989-09-19
JPH0248739U (en) * 1988-09-30 1990-04-04

Also Published As

Publication number Publication date
JPH02272246A (en) 1990-11-07

Similar Documents

Publication Publication Date Title
US4799363A (en) Room air conditioner
KR100505231B1 (en) A compressor driving method of air-conditioner having multi-compressor
JP3094996B2 (en) Binary refrigeration equipment
JP2540938B2 (en) Air conditioner
JP3175706B2 (en) Binary refrigeration equipment
JP2001174092A (en) Air conditioner
JP2002106998A (en) Heat storage type heat pump air conditioner
JP2513332B2 (en) Air conditioner
JP2504236B2 (en) Air conditioner
JP2962311B1 (en) Binary refrigeration equipment
JPH0634224A (en) Room heater/cooler
JPH0230420B2 (en)
JPH02258467A (en) Heat pump type air conditioner for vehicle
JPH0225101Y2 (en)
JPH0623880Y2 (en) Heat pump device
JP3008925B2 (en) Refrigeration equipment
JP3063746B2 (en) Refrigeration equipment
JP2564980B2 (en) Air conditioner
JP3778687B2 (en) Four-way valve switching method for air conditioner and air conditioner
JPH0233110Y2 (en)
JP2867794B2 (en) Heating and cooling machine
JPS5922440Y2 (en) air conditioner
JP2762605B2 (en) Heating and cooling machine
JPH01127870A (en) Air conditioner
JPH08136067A (en) Air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees