JP2539223B2 - Laser device - Google Patents
Laser deviceInfo
- Publication number
- JP2539223B2 JP2539223B2 JP62162444A JP16244487A JP2539223B2 JP 2539223 B2 JP2539223 B2 JP 2539223B2 JP 62162444 A JP62162444 A JP 62162444A JP 16244487 A JP16244487 A JP 16244487A JP 2539223 B2 JP2539223 B2 JP 2539223B2
- Authority
- JP
- Japan
- Prior art keywords
- laser
- discharge power
- mirror
- laser device
- discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/086—One or more reflectors having variable properties or positions for initial adjustment of the resonator
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08072—Thermal lensing or thermally induced birefringence; Compensation thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/105—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Lasers (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明はレーザ装置の改良に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement of a laser device.
[従来の技術] 第4図は従来のレーザ装置の一例として例えば特開昭
55-154790号公報に開示された3軸直交型すなわちレー
ザガス流方向、放電方向及びレーザ光軸方向が互いに直
交するCO2レーザ装置の発振器を示すaは正面断面図、
bは側面断面図で、図中1a、1bは放電電極、2は放電
部、3はガス循環用ブロワ、4は熱交換器、5はケーシ
ング、6はガス流、7は電源、8は全反射ミラー、9は
部分反射ミラー、10はレーザビームである。[Prior Art] FIG. 4 shows an example of a conventional laser device, for example, Japanese Patent Laid-Open No.
FIG. 3A is a front sectional view showing an oscillator of a CO 2 laser device disclosed in Japanese Patent Publication No. 55-154790, which is a three-axis orthogonal type, that is, a laser gas flow direction, a discharge direction and a laser optical axis direction are orthogonal to each other.
b is a side sectional view, in which 1a and 1b are discharge electrodes, 2 is a discharge part, 3 is a blower for gas circulation, 4 is a heat exchanger, 5 is a casing, 6 is a gas flow, 7 is a power supply, and 8 is all. A reflection mirror, 9 is a partial reflection mirror, and 10 is a laser beam.
図においてケーシング5内には、数十〜百数十Torrの
圧力でCO2、He、Ne等よりなるレーザガスが封入されて
いる。電極1a、1b間で発生した放電によりCO2分子が励
起され、この励起エネルギは全反射ミラー8及び部分反
射ミラー9よりなる共振器によりレーザビーム10となっ
て部分反射ミラー9より出力される。なお放電安定化と
放電部のガス温度上昇を抑えるため、ガスはブロワ3に
より熱交換器4を介して矢印6方向に循環されている。In the figure, the casing 5 is filled with a laser gas composed of CO 2 , He, Ne, etc. at a pressure of several tens to several hundreds of tens Torr. CO 2 molecules are excited by the discharge generated between the electrodes 1a and 1b, and the excitation energy is output from the partial reflection mirror 9 as a laser beam 10 by the resonator including the total reflection mirror 8 and the partial reflection mirror 9. The gas is circulated in the direction of arrow 6 by the blower 3 via the heat exchanger 4 in order to stabilize the discharge and suppress an increase in the gas temperature in the discharge part.
[発明が解決しようとする問題点] ところで従来のレーザ装置の発振器は上記のように構
成されているので、放電部2のガス温度はガス流6の方
向に勾配を有し、第4図bにおいてA部の温度は高く、
B部の温度は低くなる。このようにガス温度に勾配があ
る場合、高温部Aと低温部Bとでは光の屈折率が異な
り、低温部Bではガス密度が高いので屈折率は高くなっ
ている。第4図cは上記発振器の要部平面図であるが、
放電電力が極めて小さい場合のレーザ光軸をPとする
と、放電電力の増大とともに、図に示すように光軸はQ
のように変化して共振器内で湾曲した光路となり、ビー
ムの出射位置と角度はずれてくる。[Problems to be Solved by the Invention] Since the oscillator of the conventional laser device is configured as described above, the gas temperature of the discharge part 2 has a gradient in the direction of the gas flow 6, and FIG. The temperature of part A is high,
The temperature of part B becomes low. When the gas temperature has a gradient as described above, the refractive index of light differs between the high temperature portion A and the low temperature portion B, and the refractive index is high in the low temperature portion B because the gas density is high. FIG. 4c is a plan view of the main part of the oscillator.
Letting P be the laser optical axis when the discharge power is extremely small, the optical axis becomes Q as shown in the figure as the discharge power increases.
As described above, a curved optical path is formed in the resonator, and the beam emission position and the angle deviate.
この位置及び角度のずれの量は、概略放電電力に比例
し、例えば 全反射ミラー8の曲率 20m 部分反射ミラー9の曲率 20m ミラー間隔 2 m 放電電力 8 KW ガス流量 1.3m3/s ガス圧力 100Torr の場合 出射位置のずれ 3.5mm 出射位置のずれ 0.2mrad. となる。The amount of displacement between this position and the angle is approximately proportional to the discharge power, for example, the curvature of the total reflection mirror 8 is 20 m, the curvature of the partial reflection mirror 9 is 20 m, the mirror interval is 2 m, the discharge power is 8 KW, the gas flow rate is 1.3 m 3 / s, the gas pressure is 100 Torr. In this case, the deviation of the emission position is 3.5 mm and the deviation of the emission position is 0.2 mrad.
このように共振器内で光は低温部へ湾曲し、放電電力
の増大とともに、レーザビームの出射位置と角度とがず
れることになる。これが従来のレーザ装置における問題
点であった。In this way, the light is curved to a low temperature portion in the resonator, and the emission position and the angle of the laser beam deviate as the discharge power increases. This is a problem in the conventional laser device.
本発明は従来装置の上記問題点を解消するためになさ
れたもので、ビームの安定性が極めて勝れたレーザ装置
を提供しようとするものである。The present invention has been made to solve the above problems of the conventional device, and an object of the present invention is to provide a laser device having extremely excellent beam stability.
[問題点を解決するための手段] 上記目的を達成するため、本発明はレーザ装置の発振
器において、反射ミラーのガス流方向に対する角度を、
放電電力に比例した信号により駆動して、所定の範囲内
におさめるべく制御されたミラー傾動装置を設けたもの
である。[Means for Solving the Problems] In order to achieve the above object, the present invention provides an oscillator of a laser device in which the angle of the reflection mirror with respect to the gas flow direction is
It is provided with a mirror tilting device which is driven by a signal proportional to the discharge power and is controlled to be kept within a predetermined range.
[作用] 本発明においては、ミラー傾動装置が、反射ミラーの
ガス流方向に対する角度を、放電電力にほぼ比例して変
化させ、所定の範囲内におさめる。その結果、放電電力
の増減に伴うガス密度の変化によるレーザビームの出射
位置と角度のずれが補正される。[Operation] In the present invention, the mirror tilting device changes the angle of the reflection mirror with respect to the gas flow direction to be within a predetermined range by changing it substantially in proportion to the discharge power. As a result, the deviation between the emission position and the angle of the laser beam due to the change in gas density due to the increase or decrease in discharge power is corrected.
[発明の実施例] 第1図は本発明の一実施例を示すレーザ装置の発振器
側面断面図で、図中1〜10は従来装置と同一部品、11は
全反射ミラー傾動装置である。[Embodiment of the Invention] FIG. 1 is a sectional side view of an oscillator of a laser device showing an embodiment of the present invention, in which 1 to 10 are the same parts as the conventional device, and 11 is a total reflection mirror tilting device.
図においてミラー傾動装置11によるミラー8の傾動量
は電源7の電力信号で決定される。例えば放電電力に比
例する直流電圧を、ミラー傾動装置11を構成するピエゾ
素子に印加し、ピエゾ素子の変位量をミラーの角度に変
換する。ここで放電電力というのは、連続発振レーザの
場合は連続(平均)放電電力、またパルス発振レーザの
場合はパルスピークにおける放電の(平均)電力であ
る。In the figure, the tilting amount of the mirror 8 by the mirror tilting device 11 is determined by the power signal of the power supply 7. For example, a DC voltage proportional to the discharge power is applied to the piezo element that constitutes the mirror tilting device 11, and the displacement amount of the piezo element is converted into the angle of the mirror. Here, the discharge power is the continuous (average) discharge power in the case of a continuous wave laser, and the (average) power of discharge at the pulse peak in the case of a pulsed laser.
第2図は上記発振器の要部平面図である。図にみるよ
うに、ガスが矢印6の方向に流れているときは、前述し
たようにガスに温度勾配を生じA部の温度は高くB部の
温度は低い。すなわちA部の屈折率は小さく、B部の屈
折率は大きい。したがって従来例にみるようにミラー8
が固定されている場合は、放電電力が極めて小さい時の
レーザ光軸をPすると、放電電力の増大とともに光軸は
Qに変化し、共振器内で湾曲した光路となりビームの出
射位置と角度はともにずれてくる。FIG. 2 is a plan view of an essential part of the oscillator. As shown in the figure, when the gas is flowing in the direction of the arrow 6, a temperature gradient occurs in the gas as described above, and the temperature of the portion A is high and the temperature of the portion B is low. That is, the refractive index of the A portion is small and the refractive index of the B portion is large. Therefore, as shown in the conventional example, the mirror 8
When is fixed, when the laser optical axis when the discharge power is extremely small is set to P, the optical axis changes to Q as the discharge power increases, forming a curved optical path in the resonator, and the beam emission position and angle are It will shift together.
これに対し本発明に係る装置にあっては、図の一点鎖
線で示すようにミラー8の角度を放電電力に応じて変化
させ得るので、レーザ光軸はQからRのように変化し、
レーザビームの出射位置と角度のずれは補正されゼロと
なる。このミラー8の角度の変化量は、前記「発明が解
決しようとする問題点」の欄で述べた条件と同一条件に
おいて、0.3m rad.である。On the other hand, in the device according to the present invention, the angle of the mirror 8 can be changed according to the discharge power as shown by the alternate long and short dash line in the figure, so the laser optical axis changes from Q to R,
The deviation between the emission position of the laser beam and the angle is corrected to zero. The amount of change in the angle of the mirror 8 is 0.3 m rad. Under the same conditions as those described in the above-mentioned "Problems to be solved by the invention" section.
なお上記実施例は安定型共振器を用いた例であるが、
第3図に示す不安定型共振器によるレーザ装置にも、本
発明は適用可能である。図中20はコリメートミラー、21
は取り出し窓、22は拡大ミラーである。本装置において
もミラー傾動装置11の作用により、出射ビームの位置、
角度ともにずれの全くないリング状のレーザビーム10を
出力することができる。Although the above embodiment is an example using a stable resonator,
The present invention can be applied to a laser device having an unstable resonator shown in FIG. In the figure, 20 is a collimating mirror, 21
Is a take-out window and 22 is a magnifying mirror. Also in this device, by the action of the mirror tilting device 11, the position of the outgoing beam,
It is possible to output a ring-shaped laser beam 10 having no deviation in angle.
また上記実施例では、放電とガス流とが直交する3軸
直交型レーザの例を示したが、放電とガス流とが平行す
るいわゆる2軸直交型のレーザに対しても本発明は適用
できる。換言すると光軸を横切る方向にガスの温度勾配
が存在するレーザ装置に対しても本発明は有効である。Further, in the above embodiment, an example of a triaxial orthogonal type laser in which the discharge and the gas flow are orthogonal has been shown, but the present invention can be applied to a so-called biaxial orthogonal type laser in which the discharge and the gas flow are parallel. . In other words, the present invention is also effective for a laser device in which a gas temperature gradient exists in the direction crossing the optical axis.
[発明の効果] 本発明はレーザ装置の発振器において、反射ミラーの
ガス流方向に対する角度を、放電電力に比例した信号に
より駆動して、所定の範囲内におさめるべく制御された
ミラー傾動装置を設けたので、反射ミラーのガス流方向
に対する角度を、放電電力にほぼ比例して変化させ、所
定の範囲内におさめることができる。その結果、放電電
力の増減に伴うガス密度の変化によるレーザビームの出
射位置と角度のずれを補正できて、ビームの安定性の極
めて勝れた大出力レーザビームを得ることができるよう
になった。[Advantages of the Invention] The present invention provides an oscillator of a laser device, which is provided with a mirror tilting device controlled so that an angle of a reflecting mirror with respect to a gas flow direction is controlled within a predetermined range by driving the signal in proportion to discharge power. Therefore, the angle of the reflection mirror with respect to the gas flow direction can be changed substantially in proportion to the discharge power, and can be kept within a predetermined range. As a result, it is possible to correct the deviation between the laser beam emission position and the angle due to the change in the gas density due to the increase or decrease in the discharge power, and to obtain a high-power laser beam with extremely excellent beam stability. .
第1図は本発明に係るレーザ装置の発振器の側面断面
図、第2図はその要部平面図、第3図は他の実施例のレ
ーザ装置発振器の要部平面図、第4図は従来のレーザ装
置発振器のaは側面断面図、bは正面断面図、cは要部
平面図である。 図中2はレーザガス、6はガス流の方向を示す矢印、7
は電源、8は全反射ミラー、9は部分反射ミラー、10は
レーザビーム、11は全反射ミラー傾動装置、20はコリメ
ートミラー、21は取り出し窓、22は拡大ミラーである。 なお図中同一符号は同一または相当部分を示す物であ
る。FIG. 1 is a side sectional view of an oscillator of a laser device according to the present invention, FIG. 2 is a plan view of a main part thereof, FIG. 3 is a plan view of a main part of a laser device oscillator of another embodiment, and FIG. 2A is a side sectional view, b is a front sectional view, and c is a plan view of a main part. In the figure, 2 is laser gas, 6 is an arrow indicating the direction of gas flow, and 7 is
Is a power source, 8 is a total reflection mirror, 9 is a partial reflection mirror, 10 is a laser beam, 11 is a total reflection mirror tilting device, 20 is a collimating mirror, 21 is an extraction window, and 22 is a magnifying mirror. The same reference numerals in the drawings denote the same or corresponding parts.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 正明 兵庫県尼崎市塚口本町8丁目1番1号 三菱電機株式会社応用機器研究所内 (56)参考文献 特開 昭60−176284(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaaki Tanaka 8-1-1 Tsukaguchi Honcho, Amagasaki City, Hyogo Prefecture Mitsubishi Electric Corporation Applied Equipment Research Laboratory (56) Reference JP-A-60-176284 (JP, A)
Claims (4)
せ、電極に高電圧を印加して放電せしめ、放電空間の両
端に配置された反射ミラーによりレーザビームを発振す
るレーザ装置の発振器において、 上記反射ミラーのガス流方向に対する角度を、放電電力
に比例した信号により駆動して、所定の範囲内におさめ
るべく制御されたミラー傾動装置を備えたことを特徴と
するレーザ装置。1. An oscillator of a laser device, wherein a laser gas is circulated in a gap between opposed electrodes, a high voltage is applied to the electrodes to cause discharge, and a laser beam is oscillated by reflection mirrors arranged at both ends of the discharge space. A laser device comprising a mirror tilting device controlled so that an angle of the reflection mirror with respect to a gas flow direction is driven within a predetermined range by driving the signal in proportion to discharge power.
均放電電力であることを特徴とする特許請求の範囲第1
項記載のレーザ装置。2. The discharge power is an average discharge power in continuous laser oscillation.
The laser device according to the item.
ピーク放電電力であることを特徴とする特許請求の範囲
第1項記載のレーザ装置。3. The laser device according to claim 1, wherein the discharge power is a peak discharge power in pulse laser oscillation.
を利用したものであることを特徴とする特許請求の範囲
第1項記載のレーザ装置。4. The laser device according to claim 1, wherein the mirror tilting device utilizes voltage displacement of a piezoelectric element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62162444A JP2539223B2 (en) | 1987-07-01 | 1987-07-01 | Laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62162444A JP2539223B2 (en) | 1987-07-01 | 1987-07-01 | Laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS649675A JPS649675A (en) | 1989-01-12 |
JP2539223B2 true JP2539223B2 (en) | 1996-10-02 |
Family
ID=15754730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62162444A Expired - Fee Related JP2539223B2 (en) | 1987-07-01 | 1987-07-01 | Laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2539223B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0691293B2 (en) * | 1984-02-22 | 1994-11-14 | 三菱電機株式会社 | Laser device |
-
1987
- 1987-07-01 JP JP62162444A patent/JP2539223B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS649675A (en) | 1989-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5684822A (en) | Laser system with anamorphic confocal unstable resonator | |
JP5517434B2 (en) | Gas laser apparatus and laser generation method | |
US5392309A (en) | Laser apparatus includes an unstable resonator and a shading means | |
RU99105608A (en) | LASER DEVICE | |
EP1139520B1 (en) | Laser resonator | |
JP2539223B2 (en) | Laser device | |
JPS6364070B2 (en) | ||
EP0021419B1 (en) | Dithered laser gyro | |
US5151916A (en) | Electric discharge tube for gas laser | |
US5233406A (en) | Recessed center post mounted dither system | |
JPH05121803A (en) | Semiconductor excitation solid-state laser | |
JPS61187386A (en) | Laser oscillator | |
US5031189A (en) | Laser resonator | |
GB2145274A (en) | Gas laser system | |
US6853670B2 (en) | Laser resonator | |
JP2800503B2 (en) | Diode-pumped solid-state laser | |
JP2903817B2 (en) | Solid-state laser device | |
JP3481553B2 (en) | Solid slab laser equipment | |
JPS61284984A (en) | Gas laser | |
JPH08191166A (en) | Gas laser device | |
JPH10125982A (en) | Laser oscillator | |
JPH056356B2 (en) | ||
JPH04233288A (en) | Waveguide laser | |
JPS6342428B2 (en) | ||
JP2937441B2 (en) | He-Ne gas laser device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |